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Abstract

This thesis deals with the research and development of speech technology-
based systems for the requirements of users with different impairments
or disabilities, with the final aim of improving their quality of life. As
these speakers usually present a wide range of speech disorders, their
access to Automatic Speech Recognition (ASR)-based systems and similar
is difficulted. The thesis proposes the use of personalization techniques to
raise the performance of these speech-based systems in the proposed task of
disordered speech.

This work performs all the steps in the research in speech technologies. A
novel corpus containing nearly 3 hours of signal from young disabled speakers
and nearly 9 hours of data from unimpaired age-matched individuals was
acquired and it is to be described in the thesis. The collected data from
unimpaired speakers is used for the development of a baseline ASR system
adapted to young speakers. However, the baseline results achieved with this
system by the impaired speakers are significantly degraded, compared to
their unimpaired peers, pointing out the dramatic influence of the speakers’
disorders in the performance of the ASR system.

From this starting point, a deep analysis of the disordered speech corpus
is made in two directions. First one shows the acoustic degradation suffered
by the speech uttered by the impaired speakers, compared to the control
speech acquired from the unimpaired speakers. Later, speech and language
disorders are proven to occur in the impaired speakers by means of analyzing
the phonological and phonetic patterns in which the speakers are making
their phoneme-level mispronunciations.

Proven that the disordered speech is degraded in both acoustic and
lexical levels, acoustic and lexical adaptation to the speakers in the corpus
are studied. Strong interrelations between both adaptation frameworks are
observed and the need of matching both adaptation strategies is pointed out.
Both adaptation frameworks (acoustic and lexical) make use of supervised
data-driven techniques to provide the Word Error Rate (WER) improvement
in the recognition, with a larger influence of the acoustic side in the ASR
phase.

Given the impossibility to count at any time with labeled data when
working with this kind of speakers, the need of developing a system
that detect mispronunciations to avoid these acoustically inaccurate parts
of the speech signal is required, prior to feed them to the adaptation
systems. Traditional log-likelihood scoring and normalization trends in
pronunciation verification are tested, altogether with some novel approaches.
The possibility of identifying lexically correct and incorrect segments within
the speech signal opens the gate for unsupervised adaptation frameworks.
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These possibilities are studied over the different acoustic-lexical adaptation
techniques used priorly. Finally, a proposal for on-line personalization is
made, where the same utterances that the ASR has decoded are used for
performing adaptation and create new models for the recognition of the
following utterances from the speaker. In the end, the strong influence
of the initial performance in ASR is observed, limiting the possibilities of
application of these techniques.

The final part of the thesis covers all the attempts in the development of
speech technology-based systems for the handicapped and speech therapy
tools during this work. These systems are making use of the scientific
knowledge acquired in this work and are open for all the community to
use and share. The set of Computer-Aided Speech and Language Therapy
(CASLT) tools in “Comunica”, result of a collaborative work, is shown to
be successful in providing a semi-supervised aid for the speech handicapped
with a great welcome by the community.

The scientific discussion and conclusions show that, even when there is
still a great lack of knowledge in the use of speech technologies for disordered
speech, there is an open possibility for the creation of personalized systems
which can provide enhanced ASR performance to individuals with severe
disabilities.



Resumen

Esta tesis se ocupa del la investigación y desarrollo de sistemas basados
en tecnoloǵıas del habla para las necesidades de usuarios con discapacidades
variadas, con el objetivo final de mejorar su calidad de vida. Dado que este
tipo de usuarios generalmente sufren también algún tipo de trastorno en su
habla y lenguaje, su acceso a sistemas de Reconocimiento Automático del
Habla (RAH) u otros es más dificultoso. La tesis propone el uso de técnicas
de personalización para mejorar los resultados en estos sistemas basados en
el habla en la tarea que se propone en habla alterada.

La tesis lleva a cabo todos los pasos en la investigación en tecnoloǵıas
del habla y reconocimiento del habla. Un nuevo corpus que contiene cerca
de 3 horas de señal de jóvenes locutores con discapacidad y cerca de 9 horas
de señal de locutores de la misma edad fué adquirido para este trabajo y es
descrito en esta tesis. Los datos recogidos de locutores sin discapacidad son
usados para el desarrollo de un sistema inicial de RAH adaptado al habla
juvenil e infantil. Sin embargo, los resultados de base alcanzados por este
sistema en los locutores con trastornos se ven significativamente degradados,
comparados a los de los locutores sin discapacidad, señalando la importante
influencia de los trastornos de los locutores en las prestaciones del sistema de
reconocimiento.

Con este punto de partida, un análisis profundo del corpus de habla
alterada se lleva a cabo en dos direcciones. La primera muestra la degradación
acústica sufrida en el habla de los locutores discapacitados, comparada al
habla de control de los locutores sin ningún tipo de discapacidad. Después,
se prueba que el habla de los locutores discapacitados sufre variaciones léxicas
importantes mediante el análisis los patrones fonológicos y fonéticos en los
que los locutores realizan sus errores de pronunciación.

Una vez probado que este habla se ve degradada en los niveles acústico
y léxico, se estudian situaciones de adaptación acústico-léxica a los locutores
del corpus. La fuerte influencia entre ambos tipos de adaptación es una
conclusión de estos trabajos y la necesidad de correlar ambas estrategias de
adaptación se señala como necesaria para que realmente se obtenga la mejor
mejora posible. Ambos técnicas de adaptación (acústica y léxica) hacen uso
de algoritmos supervisados basados en datos para bajar la tasa de error de
reconocimiento, donde la influencia de la parte acústica se ve como más
relevante.

Dada la imposibilidad de contar en todos los casos con datos etiquetados
cuando se trabaja con este tipo de locutores, se ve la necesidad de desarollar
un sistema que detecte errores de pronunciación para evitar estos segmentos
de voz acústica y léxicamente inexactos antes de usarlas como entrada a los
sistemas de adaptación. Medidas de confianza basadas en scoring y técnicas
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de normalización de los mismos son estudiadas junto con aproximaciones
más novedosas. La posibilidad de identificar las partes de la señal de voz
fonéticamente correctas e incorrectas abre las puertas a la adaptación no
supervisada. Estas posibilidades son exploradas sobre los diferentes sistemas
de adaptación usados anteriormenta. Finalmente, se realiza una propuesta de
perosnalización on-line, donde las propias seales que han sido decodificados
por el sistema de reconocimiento se usan para realizar la adaptación a nuevos
modelos que se usarán an las siguientes interacciones del usuario. Al final,
se aprecia una gran influencia de la tasa de error inicial, limitando las
posibilidades de aplicación de estas técnicas.

La parte final de la tesis cubre todos los esfuerzos realizados en el
desarrollo de sistemas basados en tecnoloǵıas del habla para discapacidad y de
herramientas logopédicas durante este tiempo. Estos sistemas hacen uso del
conocimiento adquirido en este trabajo y están abiertos a toda la comunidad
para su uso y distribución. Las herramientas para logopedia integradas en
“Comunica”, como resultado de un largo trabajo de colaboración, muestran
ser un caso de éxito en proporcionar una ayuda semi-supervisada para las
personas con dificultades en el habla, habiendo tenido una gran acogida por
parte de la comunidad.

La discusión cient́ıfica y las conclusiones muestran que, incluso cuando
aun queda mucho trabajo por hacer en este área, se debe poner un interés
real en construir sistemas personalizados que se adapten a estas importantes
variaciones de la voz, siendo posible el desarrollo de sistemas personalizados
que provean de una interacción oral mejorada a individuos con discapacidad
severa.
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Chapter 1

Introduction

Longtemps, je me suis couché de bonne heure

- Marcel Proust, À la recherche du temps perdu

1.1 Introduction

The vision and treatment that society has given to handicapped and disabled individuals has
widely changed as society itself has evolved during the ages. Recent anthropological discoveries
in [Gracia et al., 2009] have shown up how Pleistocene tribal groups took care of heavily impaired
individuals during childhood, attitude that was kept in earlier civilizations like the ancient Egypt
in which some handicaps like blindness or achondroplasia [Kozma, 2005] were seen as realizations
of the different deities and many of them were personally taken care of within the pharaoh’s court.
But Graeco-Roman civilization brought the dawn of the Western-culture prototype for beauty
and perfection [Garland, 1995]. This prototype supposed the discrimination and rejection of all
individuals that were outside this pattern of beauty. Hence, physical disabilities were seen as
‘deformities’ and these individuals did not have any rights as citizens and in some of the cases were
condemned to exile or to a certain death.

Posteriorly, the rising of the main monotheist religions (Christianity and Islam) started
changing concepts. The principles given in the holy books of both religions (Bible and Koran)
appointed their believers to behave with ‘charity’ towards every handicap person [Berkson, 2005].
Social advances during the Renaissance era and the novel theories in physiology and other medical
sciences started discovering the origins of the impairments and mentally handicapped individuals
started having a legal coverage [Neugebauer, 1989]. Furthermore, the rationalism and social
evolution with the industrial revolution made that families started taking care of their handicapped
ones, although social inclusion was still not considered as a possibility. The view of the disabilities
in the late Victorian era was pointed out with sharp precision in the description that Polish-born
British author Joseph Conrad gave of Stevie, brother of the main character’s wife in one of his
master pieces: “The Secret Agent” [Conrad, 1907]:
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For he was difficult to dispose of, that boy. He was delicate and, in a frail way, good-looking, too,
except for the vacant droop of his lower lip. Under our excellent system of compulsory education
he had learned to read and write, notwithstanding the unfavourable aspect of his lower lip. But
as errand-boy he did not turn out a great success. He forgot his messages; he was easily diverted
from the straight path of duty by the attractions of stray cats and dogs, which he followed down
narrow alleys into unsavoury courts; by the comedies of the streets, which he contemplated open-
mouthed, to the detriment of his employer’s interests; or by dramas of fallen horses, whose pathos
and violence induced him sometimes to shriek piercingly in a crowd, which disliked to be disturbed
by sounds of distress in its quiet enjoyment of the national spectacle. When led away by a grave
and protective policeman, it would often become apparent that poor Stevie had forgotten his address
- at least for a time. A brusque question caused him to stutter to the point of suffocation. When
startled by anything perplexing he used to squint horribly. However, he never had any fits (which
was encouraging); and before the natural outbursts of impatience on the part of his father he could
always, in his childhood’s days, run for protection behind the short skirts of his sister Winnie.

The major change occurred at the end of World War II; the expansion of the so called ‘welfare
state’ [Flora, 1987] to all the Western countries and the need to incorporate all the people who
had suffered different injuries during the war lead to the development of modern mechanical aids
like prosthesis and to the social inclusion of these individuals. The rapid increase in studies in
several subjects like medicine, psychology and pedagogy produced an increase in knowledge of
physical and psychical handicaps. The origin of several impairments got to be known and the new
psycho-pedagogical theories pointed out that with correct attention, impaired individuals could
play an important role in the society. Nowadays, the inclusion of the handicapped individuals is a
major political issue and integration in the work market is a reality as long as everybody is aware
of the capacities of each individual.

Finally, advances in information society in the last decades opened new gates for the
handicapped world: Ubiquitous and immediate access to information without considering the
personal conditions of each user. This seems the perfect scenario for disabled individuals to match
the social capabilities of the unimpaired ones. However, this new gate has to be used carefully
as it might create new barriers. For instance, the use of a computer still requires nowadays the
correct handling of devices like the keyboard or a mouse. These devices rely on a fine control of
the motor system, which is a new and heavy barrier for persons with major physical impairments.

1.2 Thesis Motivation

From this starting point that has been very briefly introduced, the motivation for this thesis arose
due to the possibilities that speech technologies can have to proportionate new interface methods
to interact with the new technological elements in our life or improve the communicative abilities
of impaired individuals. However, these technologies are still not ready to provide an adequate
performance in these domains. Systems based on Automatic Speech Recognition (ASR), for
instance, are working finely these days in controlled situations like home control elements, hands-
free devices for automotive environments or call centers. These environments share a controlled
acoustic environment and a collaborative user with an acoustically normal, well-shaped speech.
Unfortunately, this is not usually the case with users suffering from physical or developmental
disabilities; as these impairments usually have associated physiological problems in the vocal tract
or serious phonological and linguistic delays. A similar situation occurs in other cases with speech
variants like dialectal speech or non-native speech, where the speaker is modifying the canonical
form of the speech at the acoustic and lexical levels. Hence, while this thesis will be focusing on
disordered speech, it expects to extract some type of generalizable results to similar tasks of speech
variants.
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Motivation for this work also came from the special interest that the staff members
of the Colegio Público de Educación Especial (Public School for Special Education)
(CPEE) “Alborada” have shown through the years for the development of technical
aids for the handicapped [Mart́ınez et al., 2007]; being fruitful in several devices like
interactive communication boards [Negre, 2005][Negre et al., 2006], virtual mouse-control
elements [Bergua, 2005][Bergua et al., 2006] or space-time orientation devices for the autistic
[Falcó et al., 2006]. Their interest and offering for collaboration was the final cause that oriented
this thesis to the work and objectives carried out finally.

As it is have been seen in this little presentation of motivations, and as it will be seen during
the thesis, this work required of an effort for a multidisciplinary research. Knowledge in signal
processing and speech technology was the basis of the thesis, as it was the main field it intended
to cover. But a further knowledge in speech disorders and therapy, with special interest in special
education, was necessary to understand the origins and consequences of these handicaps in the real
world. Even psychology was a field of interest within the thesis, as these disorders are also related
to the psychological processes of speech acquisition in children. Finally, another main component
in this work was the linguistic and phonetic knowledge, as it was necessary to understand the
already mentioned processes of speech production and acquisition.

1.3 Oral Communication Disorders

After the presentation of motivations for the thesis, this Section aims to provide a brief introduction
in all the origins of oral communication disorders. Although the thesis deals mainly with disordered
speech, it is important to place all possible types of impairments in the process of language
acquisition and oral communication, because impaired speakers can show up other impairments in
their speech and language. A small review on traditional speech and language therapy techniques
will be furtherer provided.

1.3.1 Voice pathologies

Voice is the basic physiological part of oral communication. Speech production models [Fant, 1960]
consider voice as a stimuli (glottal pulse) generated as an air flow in the lungs that becomes a
periodic signal with the periodic movement (pitch frequency) of opening and closure of the vocal
chords. This periodic stimuli is filtered by all the resonances of the elements and cavities of the
vocal tract (tongue, palate, teeth, nose, ...) that shape the output speech signal as it is finally
transmitted by the air. Unvoiced segments of speech like fricatives are generated by a burst of air
created in the vocal tract.

Voice pathologies gather all kind of physiological impairments that prevent a correct creation
of the glottal pulse in the lungs and trachea, a correct voicing creation in the vocal chords or a
correct vocal tract configuration. These pathologies gather, among others:

• Vocal chords lesions, which are acquired voice pathologies in which an undesired element (like
a polyp, cyst or nodule) appears on the vocal chords. This element limits the movements of
opening and closure of the vocal chord during the speech production and, hence, the glottal
pulse loses some of its properties, producing a loss in the quality of speech.

• Dysphonia, which produces abnormal changes in the voice, like sudden changes in pitch and
volume or abnormal breathiness or raspiness. It can have different origins, ranging from
bacterial elements like in laryngitis or by traumatic reasons like an intubation.

• Morphological malformations, like left clip and palate, produce a misshaping of one or some
of the elements in the vocal tract. These morphological deviations produce the loss of
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articulatory properties of some sounds (for instance, nasalization of phonemes) due to the
inability of the patient to correctly position the elements of the vocal tract.

• Full larynx removal due to cancer or other major traumatic situations can make the patient
lose completely the phonation ability, unless rehabilitation teaches them to produce a glottal
pulse directly with the esophagus (esophagical voice). However, the quality of the esophagical
glottal pulse is poor and has a fundamental frequency abnormally low and with a very high
variance which makes communication difficult.

Evaluation of the relevance of the voice impairment in the quality of life of the affected
patients can be made with different subjective scales like the Voice Handicap Index (VHI)
[Jacobson et al., 1997] or the Grade, Roughness, Breathiness, Aesthenia, Strain (GRBAS) scale
[Hirano, 1981]. These scales rely on the ability of a practitioner to measure the patient’s speech
quality or in the subjective self-assessment of the patient.

1.3.2 Speech impairments

The difference between voice and speech is that speech carries a meaning that can be decoded and
understood by a human listener. The smallest unit of speech is the phoneme, a sound that carries
a certain information in a language (matched to a grapheme(s) in the written language). Syllables
and words are the next step in the generation of speech, being the latests the smallest units with
a full meaning. People with speech disorders suffer, hence, from an inability to articulate properly
certain sounds and phonemes, or a sequence of them, resulting in a difficulty to utter full words
correctly and understandably.

Distinction of different speech impairments is hard to set, as there might be different elements
appearing at the same time to produce a given effect in the patient’s speech. In general, a speech
impairment producing a mispronunciation of one or several phonemes is gathered under the term of
dyslalia [Pascual-Garćıa, 1992]. Four types of mispronunciations are distinguished: Substitutions,
in which another phoneme, simpler to pronounce for the speaker is pronounced in the place of
the correct phoneme. Deletions, in which the correct phoneme is erased from the pronunciation
of the patient. Insertions, in which an extra phoneme appears intercalated in the pronunciation.
Distortions, in which the phoneme is incorrectly pronounced, but it does not resemble another
phoneme of the patient’s language.

A full distinction of dyslalias [Perelló, 1984] can be made attending to the origin of the disorder:

• Evolutive dyslalia, which appears when a child old enough to produce correct speech (above
4-5 years) is still producing the patterns of mispronunciations of children in earlier ages
[Bosch-Galcerán, 2004]. This dyslalia is not related to any neurological or morphological
problem and is usually caused by a phonological delay in the children due to learning
problems. Speech therapy is required, hence, to help the patient to achieve an speech ability
matched to the child’s age.

• Functional dyslalia, which is caused by an abnormal function of the organs involved in the
articulation of the sounds but without existing a morphological impairment on those organs.
The origin usually is an immaturity of the patient for the articulation process due to lack
of motorize ability, hearing loss or psychological or environmental factors. Speech therapy
is also of major help in moderate cases to improve the communicative skills of the patient.
This disorder is linked to cognitive and development disorders which limit the neurological
and learning capabilities of the patient.

• Audiogenous dyslalia, which is caused indirectly by a hearing loss. Lack of correct perception
and feedback makes the patient unable to discriminate different sounds and phonemes; as
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most of the speech acquisition is based on the ability of the child to repeat the sounds heard
in the environment. This inability will produce a further delay in the correct acquisition of
these phonemes. Speech therapy is required in these cases, but it has to be oriented to the
special needs of these patients, as auditive reinforcement shall not work for them.

• Organic dyslalia, which is caused by alterations in any of the physiological elements involved
in the articulation of phonemes. Two of the affections related to organic dyslalias which are
more common are dysarthria and dysglossia: Dysarthria is originated by a major impairment
in the nervous system. It is one of the most severe speech affections and it is usually
related to brain damage like cerebral palsy or stroke. Rehabilitation via speech therapy
is usually of little help as long as the neurological disorder is still present in the patient.
Dysglossia is originated by serious malformations in the organs of the vocal tract involved
in articulation (tongue, palate, lips, teeth, ...). These malformations (genetic or acquired)
produce an inability to generate the sounds in which the affected organ has a major role.
Left clip and palate is a typical disorder producing dysglossia, serving also as example of
voice pathology producing an speech disorders. When correction of the organic impairment
is possible (usually via surgery), speech therapy is required to help the patient recover a
proper speech.

1.3.3 Language impairments

Language is all the process in the transmission of ideas from one human being to another.
It gathers all the elements presented previously like voice and speech, but when referring to
language impairments, they are specifically all oral communication disorders related to the
psychological process of language (symbolization of language, formulation and creation of ideas,
etc) [Launa and Borel-Maisonny, 1989].

Language disorders are usually gathered under the Specific Language Impairment (SLI)
framework [Aguado, 1999]. Language impairments are difficult to detect and diagnose because
they are not connected to any effect in the physiological or psycho-sociological causes of other
impairments. At this point, it is important to distinguish between language delays and language
impairments. A language delay usually supposes that the child has an expressive language
corresponding to children of younger ages and can be recover relatively easily with therapy.

However, language impairments, in the forms of dysphasia (incorrect language) or aphasia (lack
of language), affect all three elements of language [Rapin and Allen, 1983]:

• Expressive language is affected when the articulation does not match the correct production
of sounds in the language of the patient.

• Comprehensive language fails when there is a difficulty in comprehending oral language by
the patient, without any difficulty in the production of the own language.

• Central processes of language are affected when there is an inability to produce language
because the patient is unable to evocate the ideas to be expressed orally; oral production
can be good, but only with memorized sentences or sentences without an understandable
meaning.

1.3.4 Language acquisition and therapy

The natural process of language acquisition starts in the first year of the infant’s life when the child
starts uttering the first vocalic sounds to create the first syllables and words [Bosch-Galcerán, 2004].
In this period, it is very important that the child can perceive normally the environment because
listening is the way in which the acquisition of the first sounds will be made.



6 Chapter 1. Introduction

After the first year, the first complete meaningful words appear in the child’s speech. They are
based in simple vocalic structures like Consonant-Vowel (CV ), where the consonants are mostly
plosives and nasals. The rest of phonemes (fricatives, vibrants or liquids) are more complicated
due to the complex articulation movements that they suppose and are not fully achieved till
the 4th-5th year of life (when the average rate of mispronunciations gets below 20%). Another
complex structures like consonant clusters or dypthongs are also not mastered till the 4th year
of life when they start being correctly pronounced in a consistent way. In parallel, the child
learns the syntax and semantics to create meaningful sentences, while increasing the vocabulary
[Moore and ten Bosch, 2009].

Phonological evaluation and phonological registers, where a child utters a set of specific words
in front of a professional speech therapist, are the way in which the phonological advances of a
student are assessed; and when the development of the speech is below the levels of quality of the
age-matched children, it becomes evident the need of professional help and speech therapy.

In these cases or when a delay in language acquisition is detected, speech therapy is required
to control and overcome those speech and language difficulties. Providing speech therapy is a hard
and time demanding task which, unfortunately, does not always count with the sufficient resources
to reach all the children that require it in the schools. As it has been seen previously, there are very
different disorders that can affect a child’s speech, limiting the student’s performance in school
or in the familiar and social environments. Furthermore, speech therapy becomes a difficult task
when dealing with so many possible disorders [Bustos, 1995].

When children of very young age show an early difficulty in the first stages of
their oral production, prelinguistic therapy is provided according to multiple handbooks
[Acero-Villán and Gomis-Cañete, 2005]. The activities proposed in these cases aim to provide the
young patient with reinforcement and feedback on the possibilities of speech production. Training
of breathing, voicing and vocalization are done in personalized speech therapy sessions with a
professional therapist who stimulates the oral production of the patient.

The phonological level of the language is traditionally treated by evaluations in which the
patient is asked to utter a set of words in which certain phonemes appear in certain positions
and context. The most popular of these handbooks for Spanish are the Examen Logopédico
de Articulación (Speech Therapy Exam for Articulation) (ELA) [Albor, 1991], the Prueba del
Lenguaje Oral Navarra (Oral Language Test) (PLON) [Aguinaga et al., 2004], the Registro
Fonológico Inducido (Induced Phonological Register) (RFI) [Monfort and Juárez-Sánchez, 1989]
as well as other proposals [Bosch-Galcerán, 2004]. Posteriorly, the therapy consists of personal
sessions with the therapist where the patient is encouraged to utter a set of words selected according
to individual needs and reinforced on the correct pronunciation and the correct positioning of the
vocal tract elements.

Concerning higher levels of the language, more related to the communicative or functional side
of language, therapy consists on personal interaction between patient and therapist. The therapist
presents a certain situation of the real life and asks for the oral solution that the patient would give
to it. Several handbooks are published by different authors to provide these practical situations
[Monfort and Monfort-Juárez, 2001a, Monfort and Monfort-Juárez, 2001b] to the community.

1.4 Objectives and Methodology

This section brings together the goals and objectives set for this thesis. Main objectives are in the
scientific field and related to the widening in the knowledge in speech technologies (mainly ASR
and speech assessment) for variants of speech (specifically speech disorders) with the final goal of
using this knowledge for the present and future development of speech-based technical aids for the
handicapped. The development of possible tools for this purpose and for speech therapy based on
robust speech assessment is also seen as a separate set of objectives. Finally, the methodological
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procedure followed in the thesis will be presented.

1.4.1 Scientific objectives

There are three main scientific objectives related to the present thesis:
The first objective of the thesis is to acquire a fully functional speech corpus containing speech

from different speakers suffering from a wide range of speech and language disorders. The speech
signals and the transcriptions of the uttered words are the basis and first requirement for the
completion of this thesis. A deep analysis of the corpus has to be made in order to be able to
understand the properties of this kind of speech prior to start the researching in techniques to
improve the ASR performance in this task.

A further objective is to study algorithms for adaptation techniques for ASR in the presence
of speech variants and for the detection and assessment of these situations. Speaker adaptation
has been shown to provide robust performance improves in ASR systems in situations of normal
healthy speech; but studies of new challenges to be considered when dealing with disordered speech
have to be part of this thesis and proposals to overcome these possible gaps will have to be made.

The third and last objective is the research in algorithms for assessment of the speech
proficiency of speech impaired individuals. Assessment and detection of pronunciation mistakes is
an important issue in the work with disorders of speech as it helps for diagnosis and rehabilitation
of the speaker and, furtherer, it can provide valuable information to other speech-based systems
like ASR to improve their performance or provide unsupervised frameworks of use.

1.4.2 Development objectives

The possible development of real-world applications that can help handicapped persons in different
aspects of their quality of life is fixed as another set of objectives for this thesis. This goal will
require of collaboration and support from educative or assistance centers to the handicapped, as
their knowledge on the real needs of the impaired population and their experience in the work
with them is strongly necessary to develop fully effective tools. Two types of elements will be
considered:

First, devices for interaction and control of the environment partly or fully based on voice
or speech. These devices aim to take an oral input from the user (combined with other possible
inputs) and use it for the control of elements like computers or household systems. The oral input
will be analyzed either for speech recognition or keyword spotting systems or for different voice
features that can discriminate different actions to take.

Moreover, tools for Computer-Aided Language Learning (CALL) benefit from robust speech
assessment techniques like the ones that are aimed to be studied in this thesis. The development
of CALL tools is, hence, another objective for this thesis. These tools should take the speech input
from the user, evaluate it according to the likeliness to the prompted word or sentence and provide
the user with feedback on this evaluation and the improvements required.

1.4.3 Methodological procedure

To fulfill the proposed objectives, a methodological procedure was defined following the flow
diagram in Figure 1.1.

The basis of the thesis is the corpus, well defined to fit the objectives required in the thesis.
Acoustic and lexical analysis are run on parallel over this corpus to understand the possible
distortion existing in the speech production of these special users and the lexical modifications
they produce over the canonical transcriptions of the words. These modifications differing of what
is considered normal speech (at the acoustic and lexical level) will bring up the need of providing
Speaker Dependent (SD) acoustic adaptation and lexical adaptation. These two approaches will
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be firstly studied separately and then in a joint approach to understand how they interact together
to provide higher performance over the baseline ASR system.

Figure 1.1: Methodological structure of the thesis

A separate line studying confidence measuring in this corpus to evaluate and detect the
mispronunciations and the quality of pronunciation of these speakers will be run at the same
time. This confidence measuring will have to achieve a decent performance that makes it able to
be introduced in automated systems for speech therapy that can provide an effective feedback in
young learners.

Final aim is to put the knowledge in all these areas in an unsupervised adaptive SD ASR
system that can provide of sufficiently accurate ASR performance for these users without any
prior enrollment stage. Final step will be to advance to the next level of personalization, in which
more realistic human-machine interaction will be studied and evaluated.

1.5 Organization

The organization of this thesis, shown in this Section, is intended to provide a straightforward
explanation of the work made during it following the methodological procedure of Figure 1.1;
starting from the collection of resources, the analysis of them and the scientific advances of the
thesis. From this point, the reader can jump to any point of interest according to the brief
presentation of the Chapters which is provided.
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1.5.1 Corpus and baseline

A deep review in previous efforts for the topics of this thesis is provided in Chapter 2. These
efforts comprehend the recording of corpora containing speakers with different types of oral
communication disorders, the development of tools for the handicapped (ASR-based systems,
Speech Generating Devices (SGDs), ...) and the creation of tools for CALL and Second Language
(L2) learning. This review will be shown to be useful for identifying the best ideas to be learned
from previous experiences within this kind of work. Much of the work proposed for this thesis
came from the open lines left by previous works, from interesting points of discussion shown by
other authors or from remarkable results obtained in their work. For all these reasons, the whole
Chapter is dedicated to acknowledge and appreciate their extensive work.

Chapter 3 will provide a full overview of the corpus used for the research and results in this
thesis. This corpus was obtained with the effort of two separate institutions, the Instituto de
Investigación en Ingenieŕıa de Aragón (Aragon Institute for Engineering Research) (I3A) and the
CPEE “Alborada”, and contains 14 young impaired speakers with different oral communication
disorders. After reviewing all the previous efforts in corpora collecting, it was decided to carry on
the work of acquiring new data which fitted better the proposals and objectives of this thesis. All
the descriptions in terms of speaker and session characterization is fully provided in the Chapter.
Further work made over the corpus is also reviewed on it, including a parallel corpus with speech
from a large number of unimpaired children and an extensive labeling of the mispronunciations in
the disordered data uttered by the impaired speakers.

In Chapter 4 the results of the proposed baseline ASR system over the corpora are provided.
This system is a conventional state-of-the-art system, based on Hidden Markov Models (HMMs)
and Viterbi decoding. This system will show a fine performance on unimpaired children speech,
but a major degradation will be seen when facing disordered speech from the young speakers in the
corpus. The influence of task and domain adaptation will be shown, isolating the effect of speech
impairments in the task of ASR. Studies on possible topologies (from word to subphone models)
are also shown using in the two different approaches evaluated (Task Independent (TI) and Task
Dependent (TD) models). Results in the task of Acoustic Phonetic Decoding (APD) will also be
reviewed in this Chapter as a possible estimator of phonetic sequences in the corpus; and finally
the studies will be completed with an evaluation of the correlation between the error rates (Word
Error Rate (WER) and Phoneme Error Rate (PER)) of the systems and the mispronunciations
made by the impaired speakers, identifying how different aspects within the disordered speech
affect their performance.

1.5.2 Analysis of disordered speech

Chapter 5 will review the influence of the speakers’ disorders in the acoustic properties of their
recorded spoken utterances. Due to the difficulties of matching the articulatory properties of
consonantal sounds to the acoustic field, only vocalic sounds will be used for this study, described
in terms of their formant frequencies, pitch frequency, energy and length. The vocalic segments
within these utterances will be obtained and the acoustic distortion introduced by the impaired
speakers over these signals wil be calculated with respect to the unimpaired reference speakers.
The study of these four features will come up with a measure of the acoustic distortion in the
disordered speech, that will be especially marked in the loss of discriminative ability between the
formant distributions of certain vowels.

Chapter 6 will evaluate how speakers change the lexicon in their pronunciations from the
canonical transcription of the uttered words. This evaluation will take as starting point the human
labeling on the speaker mispronunciations and will provide a separate mispronunciation rate for
each phoneme. Understanding how the speakers are highly consistent in their production at the
lexical level will allow for a deeper analysis that will try to know if there are certain patterns in
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the way in which speakers produce their mispronunciations related to the phonetic context or to
the syllable context. Syllable context will appear, then, as an effect with a major impact in the
production of mispronunciations by the impaired speakers. The final comparison with the patterns
of phonological acquisition in young unimpaired children will allow for hypothesizing the origins
of the functional speech disorders in the speakers.

1.5.3 Improvements in ASR and PV

As an outcome of the understanding of the origins and effects of speech disorders in Chapters
5 and 6, Chapter 7 will come up with the need of applying acoustic and lexical adaptation in
ASR of disordered speech to neutralize the pernicious effect of the acoustic distortion and lexical
variants. First, acoustic adaptation will be reviewed with different possibilities based on the
different transcriptions that can be fed to the adaptation framework; later, lexical adaptation
with different approaches will be studied, including data-driven and rule-based methods. Finally,
a combined acoustic-lexical adaptation framework will be studied that will make use of all the
knowledge acquired previously and will try to understand how both techniques interact together
in providing a major performance increase in ASR systems.

Chapter 8 will study the possibilities in confidence measuring and scoring systems for
assessment of speech quality and pronunciation quality over the impaired speakers. This task
will be shown to be similar to the traditional speaker verification task and this fact will allow to
determine the best actions to take to improve the system. The suitability of the scores obtained
with the acoustic models used for ASR will be studied and it will be seen how all elements of
variability in speech (speaker, channel, session...) do not allow for an accurate decision in the
detection of mispronunciations. As a first step, traditional and novel score normalization methods
will be tested, showing that more accurate phonetic knowledge is useful for this task. These
novel systems and methods will be evaluated taking advantage of the special lexical properties of
the disordered speech to detect and predict these phonetic mistakes. Speaker adaptation will be
used too to battle the effect of speaker variability in the overall detection problem, in parallelism
with the speaker verification task, achieving an improved performance in terms on Equal Error
Rate (EER).

1.5.4 Personalization of speech-based systems for the speech impaired

Chapter 9 will gather all the knowledge acquired in the previous Chapters and will propose
a framework for unsupervised ASR adaptive systems. This will take the acoustic and lexical
adaptation studied in Chapter 7 and will transfer it to an unsupervised framework that will make
use of the scoring systems studied in Chapter 8. This system will try to provide improvement
in the performance within a more realistic approach in developing ASR-based devices for the
speech handicapped, because it avoids long and exhausting enrollment sessions that are required
in supervised approaches. In this proposal, the system has to adapt itself as the user makes use of
the system without any a priori knowledge of the speaker’s utterances, which will be seen to be a
major problem in the presence of impaired inaccurate speech.

Chapter 10 will make a review of the tools and devices developed through and on parallel to
the thesis. Tentative development of speech-based control devices for the handicapped will be
commented with different systems like a speech-activated wheelchair or voice-acted keyboard and
mouse emulating elements. As major contribution in this field, the set of Computer-Aided Speech
and Language Therapy (CASLT) tools developed by the group in the “Comunica” framework
will be presented. The four tools which are part of “Comunica” are intended to provide a semi-
automated method for speech therapy and they have a strong relation with this thesis. The tools
aim to provide all degrees of speech therapy from simple phonation to language abilities like syntax
or semantics. Some of the results of the thesis were incorporated in these tools in terms of ASR and
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Pronunciation Verification (PV) for evaluation, while extending the tools to Spanish L2 learning,
resulting in encouraging experiences in real situations.

1.5.5 Conclusions

It will be in Chapter 11 where a whole discussion of the results in the thesis will be provided. The
discussion will focus on trying to understand the origins and effects of the speakers’ disorders in
their speech, according to the analyses and results of the thesis. Then, the possibility of developing
personalized adaptive systems for handicapped individuals will be put under examination according
to the results, which will show the real expectancies of these systems. The strong and weak
points of the proposed studies will be shown all through the thesis and interactions between
different elements studied in the thesis will be also pointed out. Finally, a critical approach to the
development of tools for the handicapped will be made according to the experience gained in this
work.

Finally, Chapter 12 will provide the conclusions to this work. A small summarization of the
work and results will be made, prior to indicating which ones of the initial objectives of the thesis
have been fulfilled and which ones could be the next lines to follow in the work in this specific area of
research. Further work has arisen during this thesis and some key points of the arising possibilities
are opened and proposed, encouraging future researchers to move into this area fearlessly.

1.5.6 Appendices

Appendix A is aimed to provide those readers who are unaccustomed to work in the Spanish
language with a small review of all the phonemes and sounds in Spanish, as their distinction is
used in many parts of the thesis. Appendix B just presents a small review on adaptation techniques
and in the actual implementation of them made for the thesis. Finally, Appendix C will present
the confusion matrices for some of the recognition experiments performed through the thesis.
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Chapter 2

Review of Previous Resources

Julien knew no Latin except the Bible

-Marie-Henri Beyle ‘Stendhal’, The Red and the Black

As shown in Chapter 1, this thesis aims to advance in the research on the use of speech
technologies for the improvement of the quality of life of handicapped individuals through speech-
based tools and devices. The variabilities in the speech in these cases are extraordinary as they
merge acoustic and lexical variability and only comparable to other situations like non-native or
dialectal speech.

This research does not follow the mainstream of the current speech research and, hence, the
amount of resources available is significantly smaller than that of traditional tasks in speech
technologies like acoustic modeling, robust ASR or speaker verification and recognition which
are usually oriented to normal healthy speech. For this reason, this Chapter brings a review of
those elements that can be established as an state-of-the-art basis for this research line. This
Chapter also serves as a recognition to previous efforts in this area, from which this thesis has
inherit a lot of interesting ideas and proposals.

Furthermore, this Chapter intends to be more a review in resources than in technologies or
algorithms. Most of the tools and developments reviewed in this Chapter make use of well-known
techniques in ASR of assessment adapted to the specific tasks depicted here. A full review of these
techniques might make the reader to lose track of the interests of this thesis (speech technologies
for the handicapped), so all those references understood as most relevant are provided in this
Chapter for further reading on the specific techniques applied in each work.

The Chapter is organized as follows: Section 2.1 will review speech corpora in the area of voice,
speech and language pathologies and disorders. The features of these corpora (speakers, amount
of data, etc) will be explained and the strong points for research of all of them will be exposed.
Posteriorly, Section 2.2 will review different systems based on speech technology for improving the
quality of life of the handicapped; these systems make use of ASR or Text-To Speech (TTS), among
other technologies. Finally, in Section 2.3, state-of-the-art systems for CALL will be reviewed in
different areas like speech therapy for handicapped individuals or L2 learning for foreigners.

2.1 Speech Corpora

Speech data, collected in different corpora covering all possible sources of variability in speech
like language, age, gender, acoustic environment and a long etcetera of possibilities are the test
bench in which all speech researchers put the foundations of their work. Corpora that are widely
accepted by all researchers from different countries and groups allow them to test their algorithms



14 Chapter 2. Review of Previous Resources

and systems in the same benchmark and, hence, evaluate the improvements they achieve in the
different tasks. An important issue in these speech corpora is, apart from a good characterization
and organization of the data, to gather the biggest possible amount of speech as possible for a
better generalization of the results that are achieved. Hence, massive corpora are being used
nowadays for all speech-technology related tasks.

English is, with a remarkable difference, the language that gathers most of the corpora
widely used in speech research. The most extended corpora in different areas are the Texas
Instruments/Massachusetts Institute of Technology (TIMIT) database [Garofalo et al., 1993] for
ASR and APD, Texas Instruments Digits (TIDigits) [Leonard and Doddington, 1993] for isolated-
word ASR, International Computer Science Institute (ICSI) Meetings [Janin et al., 2004] for
spontaneous speech ASR, Aurora2 for robust ASR in noisy conditions [Hirsch and Pearce, 2000],
the National Institute of Standards and Technology (NIST) Speaker Recognition Evaluation (SRE)
or Language Recognition Evaluation (LRE) corpora [Martin and Przybocki, 2004] for speaker and
language recognition respectively, or the Speech Under Simulated and Actual Stress (SUSAS)
[Hansen, 1999] for speech under stress conditions ASR.

Regarding other languages; more precisely Spanish, which is the target language of this thesis,
the most prominent corpora include the Albayźın [Moreno et al., 1993] corpus for ASR or the
Spanish subset of the SpeechDat-Car corpus [Moreno et al., 2000] in car noisy environments. For
other tasks, further resources are available like the Domolab corpus [Justo et al., 2008] for dialogue
systems in a home environment or Audio Visual at Car (AV@CAR) [Ortega et al., 2004] for multi-
modal in-car interaction. These corpora contain speech from adult unimpaired speakers in the
Iberian peninsula dialect of Castilian-Spanish.

Concerning available corpora that collects disordered speech, a further review is provided over
what have been seen as the most relevant efforts up to this date. Sparsity of data is a relevant
and, somehow, unavoidable matter in these speech resources: The access to a sufficient number of
speakers that deal with the requirements set in the corpus is usually complicated; and, furthermore,
recording sessions are a major challenge for these speakers, as their speech processes are tiring and
difficult and speakers get exhausted easily.

2.1.1 Disordered speech corpora in English

Two corpora in English language were recorded in the earlier years in which disordered speech was
starting to become relevant in the research in speech technologies: The Whitaker database and
the Nemours database. These corpora were used for a long time in the initial studies of ASR for
disordered speech like [Deller et al., 1991].

The Whitaker database [Deller et al., 1993] contained speech from 6 dysarthric speakers with
cerebral palsy. Each speaker repeated 30 times a set of 81 words. An unimpaired control speaker
was also recorded, with 15 sessions of all the words. The set of words was made of 46 isolated
words (10 digits, 26 alphabet letters, 10 commands) and 35 words from a long passage. The total
amount of speech was, hence, 2430 words from each impaired speaker and 1215 words from the
unimpaired reference speaker.

The Nemours database [Menéndez-Pidal et al., 1996] gathered speech from 11 speakers
suffering dysarthria. Each speaker uttered 74 meaningless sentences, where each sentence was
following the structure The X is Y ing the Z with X and Z chosen randomly from a set of 74
monosyllabic nouns and Y from a set of 37 monosyllabic verbs. Furthermore, two whole paragraphs
were recorded from each speaker to complete the corpus. All speakers were assessed by a speech
pathologist to evaluate the overall quality of their speech and all the corpus was labeled and word
and phonemes borders were set within the sentences in the corpus. The main interest of this corpus
is how it gathered connected speech from the dysarthric for the evaluation of the difficulties that
uttering full sentences created in these speakers.
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Concerning pathological speech and voices; usual corpora are recorded containing utterances
from normal and pathological voices. Sustained vowels and isolated words are usually
recorded in these corpora for the detection of voice abnormalities in the patient’s speech as
the ones presented in the review in Section 1.3.1. The Disordered Voice Database (DVD)
[Disordered Voice Database, 1994] is one of the most accepted databases for the task of assessment
of voice pathologies.

Many other corpora have been used for the research in disordered speech; although in many
cases they have been recorded as ad-hoc corpora created specifically for a given task and/or
language. This way, few databases have managed to become a generalized benchmark for the
study in these tasks, limiting the continuity of the work in this area. The large differences between
different impairments and their affections over speech have limited also the generalization of the
corpora, as each corpus can only cover a small set of this wide range of possible disorders.

In recent years, novel efforts have supposed the acquisition of more recent corpora which aim
to fulfill new requirements in the task. Regarding these new corpora, the Universal Access
Database (UADatabase) [Kim et al., 2008] contains speech from 19 speakers (14 males and 5
females) whose intelligibility has been assessed by a set of experts, obtaining ratings as low as
6% of intelligibility for some of the speakers. Each speaker uttered 765 isolated words (155 words
repeated in 3 different sessions and 300 words with only one repetition) to obtain a total of 14,535
isolated words for the corpus. This UADatabase contained 8 different channels of speech and a
video channel of the speakers uttering all the words for the requirements of multi-modal ASR
[Sharma and Hasewaga-Johnson, 2009], which has been shown to improve the accuracy of the
systems via different techniques like lipreading [Potamianos and Neti, 2001].

2.1.2 Disordered speech corpora in Spanish

In Spanish language, the work in characterization of disordered speech started in more recent
dates than in other languages like English; however, a very interesting and well designed
corpus can be found in Spanish: the corpus from the Herramienta de Ayuda para la
Confidencia de Realizaciones Orales (Help Tool for the Confidence of Oral Utterances) (HACRO)
project [Navarro-Mesa et al., 2005], which contained disordered speech as well as unimpaired
control speech for the development of pronunciation assessment tools. The distribution of
speakers was as defined in Table 2.1 for a total of 43 impaired speakers and 19 unimpaired
speakers. Each speaker uttered one session of the 57 words of the speech therapy register RFI
[Monfort and Juárez-Sánchez, 1989] which was introduced in Section 1.3.4 as a major resource of
speech therapy evaluation in Spanish. Phoneme boundaries were fully identified in the speech
signals, characterizing phoneme mispronunciations, deletions or insertions.

Table 2.1: Speakers in the HACRO project corpus
Impaired Speakers Unimpaired Speakers

Age group Males Females Males Females
6-12 years old 3 2 2 1
12-15 years old 2 3 0 1
15-35 years old 6 2 3 3
35-60 years old 17 3 2 3
>60 years old 2 3 2 2
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2.2 Speech Technology-based Systems for the Handicapped

In this Section, different possibilities and developments of applications for the improvement of the
quality of life of handicapped individuals will be introduced, with references to relevant research
works and projects. Three areas of research are distinguished: Voice assessment, oriented to clinical
applications and treatments in cases of voice and speech pathologies; systems based on ASR for
the development of speech interfaces for the handicapped; and SGDs, which make use of speech
synthesis for creating oral output interfaces to improve communication in cases of severe speech
disorders.

Another different set of applications oriented to improve the communication of the handicapped,
hearing impaired in this case, have been developed through the years; including cochlear implants or
systems for translation from speech to sign language and viceversa [D’Haro et al., 2008]. Although
there has been a lot of work involved in this area, they will not be covered by this review, as the
concern in the thesis are the aids for individuals for communicative disabilities in their speech and
not in their hearing, even if in many cases hearing disabilities produce speech disorders as it was
seen in Section 1.3.

2.2.1 Assessment of voice pathologies

Voice pathologies have been shown in Section 1.3 as one of the major causes for impairments in
the language. The evaluation and treatment of these voice disorders differs greatly from the cases
of speech disorders. As voice pathologies have a physical cause (congenital or acquired), their
treatment requires a clinical approach like surgery; speech disorders, on the contrary, are related
to the mental process of language and speech and can only be treated from educative approaches.
Hence, the review of different CALL tools for the speech training of the handicapped will be made
in the next Section; and only the specific developments for voice pathology assessment will be
reviewed here.

Two different approaches are usually taken within the task of detecting voice abnormalities
in the patient’s speech. The first one is based on acoustic features and the second on statistical
methods:

Voice analysis based on the study of different speech features can help to detect incorrect
voice production in a patient. This can be done by means of a group of acoustic parameters
[Yu et al., 2001] in which jitter and shimmer play an important role as jitter is measuring the
abnormal short-time variations of pitch while shimmer measures the abnormal intensity changes in
the voice envelop [Ruiz et al., 2008]. Other voice analysis approaches use more complex acoustic
representation of the pathological voice [Pantazis et al., 2009] or try to obtain a biomechanical
model of the patient’s vocal tract from the recorded voice of that patient [Gómez et al., 2005],
substituting an invasive technique like laryngostroboscopy, for detecting abnormal elements in the
vocal tract.

Statistical methods are also used to discriminate between healthy and pathological voices in
some cases of dysphonic speech. Traditional techniques that are also used for speaker or language
verification like Gaussian Mixture Models (GMMs) [Bocklet et al., 2009] or Neural Networks (NNs)
[Godino-Llorente and Gómez-Vilda, 2004] are also used to provide an initial diagnosis on the
presence of possible voice pathologies. These methods try to create different statistical models
for the healthy and pathological voices in a training phase with labeled data previous to the
assessment procedure.

In the end, both types of methods can be complemented to achieve an enhanced performance
in the correct assessment of these pathologies, which is an extremely helpful tool for practitioners
and otorhinolaryngologists in the diagnosis of vocal chord lesions or head and neck cancer.
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2.2.2 ASR for disordered speech

The research in ASR for disordered started in the early 90’s with the apparition of the first
databases containing this kind of speech. The first remarkable works [Deller et al., 1991] showed
up the need of re-thinking the traditional HMM structures to cope with the special features of
disordered speech. Since them, dysarthric speech has been the main line of research in the work
of developing ASR systems for the handicapped community.

The results of the analytical studies on disordered speech have shown as major conclusions
the increase in acoustic variability in the speech production [Blaney and Wilson, 2000], this
leading to a loss on intelligibility which relates to the loss of performance in ASR systems
[Ferrier et al., 1995]. This larger variability is due to the own nature of these impairments in
which the control of the phonation organs is diminished in these speakers [Patel, 2002] due to
the several causes of their disorders. Further studies in vowel production by impaired individuals
[Croot, 1999, Prizl-Jakovac, 1999] have assured these interpretations of the acoustic distortions in
disordered speech [Croot et al., 2000].

This knowledge of the acoustic variability introduced in dysarthric and disordered speech
put the basis for further works in the improvement of ASR performance. From this, very
different techniques have emerged to face the challenges that each specific type of disorders
apart from the big deal of work in adaptive acoustic modeling: The use of phonological
contexts and lexicons [Sawhney and Wheeler, 1999] have been proposed in the case of speakers
introducing mispronunciations in their speech. The possibility of audiovisual information
[Potamianos and Neti, 2001] with lipreading has also been evaluated as a method for improved
recognition. Furthermore, as more and more work was being done in this line of research,
other languages different than English also added their efforts with initial studies like Dutch
[Sanders et al., 2002] and little by little more and more research groups joined these efforts.

Two very interesting projects deserve a little more space in this review: The Vocal Joystick
[Bilmes et al., 2006] and the Speech Training And Recognition for Dysarthic Users of aSistive
Technology (STARDUST) project [Hawley et al., 2003]:

The Vocal Joystick allows that patients with severe physical impairments like cerebral palsy
can control computer devices like a mouse or handle wheelchairs or prosthetic devices by speech.
The system operates like a joystick in which each direction of the space is operated by a different
vowel from the English vowel map. The device has been thoroughly tested in different situations
[Harada et al., 2008] and has proved to be one of the most relevant oral help devices for assistive
technology.

STARDUST aimed to create a fully functional system for the control of a home environment
for patients with cerebral palsy and different levels of dysarthria based on the speech recognition
of a short list of oral commands. With this system, the impaired community could have an easier
way to acquire more independence in their life, improving their quality of life [Hawley et al., 2005].
STARDUST tried to deal with all the difficulties in the development of ASR for disordered speech,
like the lack of sufficient data for the training of personalized systems [Green et al., 2003] or the
acoustic variability in dysarthric speech [Wan and Carmichael, 2005].

2.2.3 Speech Generating Devices (SGDs)

SGDs are systems that improve the oral communication of a heavily language impaired individual
by means of digital speech substituting the extremely degraded speech from the user. Systems
making use of pre-recorded speech are very usual in the world of Augmentative and Alternative
Communication (AAC), as different communication boards make use of digital speech to reinforce
the acquisition and use of graphic symbols in impaired persons.

However, TTS systems can provide a more flexible aid as they do not force the user to have
a limited number of possible words or sentences to utter. In any case, current TTS systems’
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have to struggle to raise the rates of naturalness and intelligibility of their voices, which is
strongly necessary in SGDs oriented to impaired users. These users, due to their hearing or
development impairments are more sensitive to the loss of quality of synthesized speech and
several studies have been carried out to detect how their comprehension is affected between
natural and synthetic speech. These studies, closer to the psychological and neurological effect
of synthetic speech than to the technological development behind it, have shown that impaired
individuals have a major difficulty in comprehension of synthetic speech compared to unimpaired
individuals of their own age [Koul, 2003], but this can be corrected with the continuous exposing to
synthesized speech [Koul and Clapsaddle, 2003]. The difference between impaired and unimpaired
individuals grows when the task consists in understanding connected speech like full sentences
[Koul and Hanners, 1997] due to the major difficulty of obtaining the message from a signal
acoustically different to normal speech like that of synthesized speech.

Traditional SGDs are based on a communication board where the selection of different words
or symbols synthesizes the desired sentence to augment the communication possibilities of the
subject. However, these persons might feel that they are losing part of their personality for not
being able to use their own speech. Because of this, the possibility of re-synthesizing the own
speech from the user to an speech with better intelligibility, while keeping the original features
from the speaker has become an important line of research recently with several approaches that
aim to synthesize the speech of a dysarthric individual erasing the sources of acoustic variability
and, thus, augmenting intelligibility [Hosom et al., 2003, Kain et al., 2004].

The final outcome of all the technologies presented up to this moment is the realization of
a Voice-Input Voice-Output system, as depicted in Figure 2.1. This system processes the oral
input of an impaired speaker with a major speech difficulty, performs ASR decoding to obtain the
uttered sentence or words and re-synthesizes the speech in a more intelligible voice. The system
may also analyze the speech from the user to extract a set of features that allow the new voice to
sound similar to the original voice of the user, with the methods presented before.

Figure 2.1: Scheme of a Voice-Input Voice-Output system

Although this approach has been evaluated with Linear Prediction Coefficients (LPC)-based
and corpus-based synthesis, these techniques are taking advantage recently of the possibility of
HMM-based synthesis to provide an enhanced synthetic voice with a closer similarity to the user’s
voice.

This approach, merging ASR and TTS, had the Voice-Input Voice-Output Communication
Aids (VIVOCA) project, which took as starting point the knowledge in dysarthric ASR achieved
in the STARDUST project and aimed to create a full communication system, where the user’s
speech could be recognized and re-synthesized via an SGD [Hawley et al., 2007, Creer et al., 2009,
Creer et al., 2010]. The final intention of the project was to be able to use all this technology
within a portable device like a Personal Digital Assistant (PDA) which could accompany at any
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time the impaired individual.

2.3 Computer-Aided Language Learning (CALL) Tools

In this Section, different approaches to CALL systems developed during the recent years will be
reviewed. A traditional separation of CALL tools is shown in Figure 2.2, where two dimensions
are shown: The vertical dimension defines the end user of the application (CASLT tools are
oriented to native speakers with language impairments vs L2 tools for non-native learners) and
the horizontal dimension defines which language ability is being trained by the tool (Computer-
Aided Pronunciation Training (CAPT) for phonological training vs other abilities like tutors for
vocabulary, syntax, grammar,etc).

CASLT

L2

CAPT
Vocabulary
Syntax

Grammar

CALL

Figure 2.2: Organization of CALL tools

The focus of the review in this Section will be on oral-input based CAPT tools, where
the main objective is the objective assessment of the quality of the user’s pronunciation,
although there is also a big deal of work oriented to provide feedback on the grammatical
and syntax abilities of the student. As this thesis is focused on disorders on the speech
production, those tools like Reader-Specific Lexical Practice for Improved Reading Comprehension
(REAP) [Pino and Eskenazi, 2009, Marujo et al., 2009] or many others which aim to improve the
vocabulary or reading comprehension of the student purely by text will not be reviewed.

All CALL tools also require to take care of the different educative aspects of their design, like
presenting in an appropriated way the feedback or providing an stimulating environment to the
student.
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2.3.1 Computer-Aided Speech and Language Therapy (CASLT) tools

CASLT tools are oriented to the improvement of the speech quality in speakers with speech
disabilities and to the improvement of their linguistic abilities. These tools aim to provide a
help to traditional speech therapy techniques shown in Section 1.3.4 in a semi-automated way,
supporting the work of the professional speech therapist.

There has been a great deal of relevance given to these tools from the public institutions
[Cucchiarini et al., 2008a] in the recent years. The 5th Framework Program (FP) of the European
Union (EU) “Quality of Life and Management of Live Resources” covered several projects for
the development of tools like Ortho-Logo-Paedia (OLP) [Oester et al., 2002], SPEech COrrector
(SPECO) [Vicsi et al., 1999] or ISAEUS [Garćıa-Gómez et al., 1999].

There are three major points to study in all systems to understand how they work
[Saz et al., ress]: Target users, selection of the interface and the provided feedback.

The target user of a speech therapy tool has to be defined prior to the development of the tool.
Different systems are aimed to cover different groups of students or different educative needs. Tools
like the Technology-based assessment of language and literacy (Tball) project in [Black et al., 2008]
are oriented to correct difficulties in phoneme acquisition in young children in a pre-linguistic phase.
In the case of reading tutors, the target users are young adults who need to train their language
expression and comprehension. SPECO [Vicsi et al., 1999] performed pronunciation training for
users of different European Union countries like Hungary, Sweden or United Kingdom, focusing
on the requirements for the development of a multi-language tool. A very specific set of tools are
oriented to the hearing impaired community like [Garćıa-Gómez et al., 1999, Lefévre, 1996] and
their acquired pronunciation difficulties.

Developing an adequate interface for the target speakers is important, with the use of AAC
elements considered as a strongly requirement for some research systems [Granstroem, 2005]. The
interface has to be well matched to the target users, as it is not the same to develop a tool for small
children (who will need a more motivational interface) than adults (which require a more precise
feedback), as well as considering possible disorders of the patient: hearing or visual impairments
might limit the interface possibilities of some users and development disabilities require of an
interface that help these users to focus on the educational activities of the tool.

Finally, providing the correct type of feedback is necessary to make the tools useful
for the speakers. An articulatory feedback can be provided to the user, in which the
system is correcting the position of the elements of the speaker’s vocal tract like in
OLP [Hatzis et al., 2003, Oester et al., 2003] and its predecessor Optical-Logo Therapy (OLT)
[Hatzis et al., 1997, Hatzis, 1999, Hatzis et al., 1999]. Purely acoustic feedback as a scoring
measure of the quality of the user’s pronunciation is a most extended way of feedback in
many other systems [Tepperman et al., 2006, Duchateau et al., 2007], based on quality measures
similar to the Goodness Of Pronunciation (GOP) in [Witt and Young, 1997]. Finally, reading
proficiency and text comprehension trained in reading tutors are measured in different ways:
The number of words per minute or the rate of disfluencies measure the children’ reading ability
[Cleuren et al., 2006], and the comprehension of a given text is measure within a dialog with the
student [Gerosa and Narayanan, 2008] in which several questions about a given text have to be
answered.

2.3.2 Second Language (L2) learning tools

One of the most successful areas of CALL systems nowadays is the training of students in a foreign
language with L2 tools. The need for improving the speaking ability in a foreign language in the
global world of today has produced a boost in the development of these tools in both research and
commercial areas.
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One of the major difficulties for this task is the lack of normalized, well-established corpora due
to the large divergence of interests of each group, as this task depends on the L2 to teach and the
original First Language or mother tongue (L1) from the speaker. As English has been one of the
most researched languages for L2 training, corpora including speech from non-native speakers in
English have been gathered containing speakers from Asian countries or different Europen countries
like the Italian and German Spoken Learner’s English (ISLE) corpus [Atwell et al., 2003]. The
main interest of all L2 corpora is to gather speech from speakers uttering words and sentences in
a non-native language in which they may have different levels of knowledge.

As mentioned, early L2 tools were oriented to the learning of English by foreign speakers,
although nowadays a large number of languages are being covered by L2 tools, turning this
line of research as one of the most noticeable in the development of CALL devices. Other
languages with remarkable efforts in the research in L2 have been Japanese [Tsurutani et al., 2006],
Dutch [Neri et al., 2006] or Chinese [Luo et al., 2008]. More novel languages like Polish
[Cylwik et al., 2009] are developing into this area through the EURONOUNCE project and corpus,
as well as Norwegian [Amdal et al., 2009], Swedish [Wik et al., 2009] and many others.

Regarding the specific linguistic abilities that these tools aim to improve, a big deal of research
is put on the development of CAPT tools for L2 training. These tools, hence, try to fulfill the
possible lack of pronunciation training in traditional L2 learning schools where a lot of relevance is
given to the teaching of vocabulary, grammar and syntax, neglecting the pronunciation skills of the
students [Morley, 1994]. In this CAPT approach, the L2 tools ask for the student to utter single
words or sentences and evaluates the phonetic accuracy of the pronunciation [Mak et al., 2003,
Chou, 2005, Neri et al., 2006, Cucchiarini et al., 2007, Luo et al., 2008, Fengpei et al., 2008] with
different techniques and measures like Utterance Verification (UV) [van Doremalen et al., 2009] or
the well-known GOP [Witt and Young, 1997, Kanters et al., 2009].

More novel tools are being researched nowadays towards the elimination of the foreign
accent in non-native speakers via the study of pitch and duration cues [Amdal et al., 2009,
Cylwik et al., 2009, Szaszák et al., 2009]. Also, higher linguistic capabilities like grammar
[Lee and Seneff, 2006] and vocabulary [McGraw et al., 2009] are target elements of these tools.
In the end, the gathering of all these different tools might be used for the creation of full courses in
the new language [Cucchiarini et al., 2008b] covering all the levels of language in an unsupervised
or semi-supervised way.

Although L2 teaching was not initially an objective of this thesis, it was seen during during
this work that the research in CAPT for this task could be extrapolated to CASLT, as long as the
special needs of patients of speech therapy were had into account in the terms explained in the
previous Section (mainly interface and feedback suitable for the handicapped). For this reason, this
Section has brought a small review of the current research, focusing in the points of coincidence
with possible CASLT tools.
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Chapter 3

Alborada-I3A Corpus

“Whenever you feel like criticizing any one”, he told me,
“just remember that all the people in this world haven’t
had the advantages that you’ve had.”

-Francis Scott Fitzgerald, The Great Gatsby

This Chapter presents the corpora used for all the analyses and experiments carried out on
children’ speech and disordered speech in this thesis. After reviewing in Chapter 2 all the available
resources, collected by previous researchers in the recent years, the motivation for exploring new
possibilities in data acquisition appeared, trying to fill the gaps in the recordings acquisition covered
by previous works.

The corpus was given the name of “Alborada-I3A” [Saz et al., 2008a], since these two
institutions were involved in the speech acquisition process. The I3A supported this thesis and
gave all the required framework for the research work during this time; and the CPEE “Alborada”
was the main connection with the world of special education providing the facilities and speakers
for the speech collection.

The chapter is organized as follows: In Section 3.1, the motivation and objectives for the
collection of the speech data will be provided. Section 3.2 will present the environment in which
all the recordings were made. The selection of speakers and their characteristics will be presented
in Section 3.3, and the organization of the recording sessions in Section 3.4. Finally, the two tasks
added at the end of the recording process will be presented: Section 3.5 will describe a parallel
corpus containing reference speech from children and young adults; and Section 3.6 will point out
the results of a human labeling for the detection of mispronunciations in the corpus of disordered
speech. An appreciation to all the people that made possible the creation of these corpora will be
given in Section 3.7.

3.1 Motivation and Requirements for the Acquisition

Before starting the acquisition of a new corpus for speech research, it is strongly necessary to
evaluate the real need and convenience of it. The process of data collection can be really time
demanding for the people in charge of the recordings and for the subjects who donate their speech.
Hence, a deep process of evaluation prior to the speech acquisition was required to make sure that
the collected speech was really useful for the research purposes it was intended to fulfill.

In the case of the corpus that is to be presented in this Chapter, the motivation for the speech
acquisition arose after the review of the previous speech corpora studied in Section 2.1. The
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lack of corpora for this task in Spanish is only avoided by the corpus of the HACRO project
[Navarro-Mesa et al., 2005] seen in Section 2.1.2. The review over this corpus showed that it was
a very interesting corpus as it contained speech from speakers with different speech impairments;
but the lack of sufficient data to characterize each speaker made it unable to apply supervised or
unsupervised adaptation techniques like it has been shown as an objective of this thesis.

Several requirements were set prior to start the speech acquisition, concerning the selection of
the speakers and the speech acquisition process. All of them are listed here:

• The acquired speech signal had to assure good quality in terms of low presence of noise (both
additive and convolutional noises), to avoid its impact in ASR performance. No methods for
noise robustness will be studied in this thesis.

• The speech from all speakers had to be natural and the influence of external elements had
to be minimized. Realistic speech will make easier the translation of the results in the
simulations to real world situations.

• There had to be a balance in terms of gender among speakers. All the results achieved had
to be gender independent.

• The recorded speakers had to be balanced also in terms of age (within the availability in the
CPEE “Alborada”, where students can only attend classes until they become 21 years old)
to also obtain age-independence.

• Furthermore, speakers had to be balanced in terms of the degree of their impairments; this
is, containing heavily impaired individuals as well as persons with slighter disorders in their
speech. Relationship between degree of disorder and performance was seen as an important
effect for study.

• Several sessions had to be collected from each speaker, separating different sessions in different
days to reflect intra-speaker variability. This also assures realistic speech, closer to real
situations.

Finally, the speech had to be donated freely by the speakers, or with the consent of the parents
or tutors when they could not take the legal responsibility for it. Due to this donation, the speech
could not be used for the commercial development of systems in which a monetary profit could be
obtained. This way, the speech corpora presented in this Chapter is totally open and available for
the distribution among research institutions that accept the conditions imposed by this agreement:
to use it only for research purposes and to keep the confidentiality of the speakers’ data as they
are covered by laws protecting the rights of children and handicapped individuals.

3.2 Recording Environment

The environment of the recordings was chosen to fulfill two main goals: To achieve the best quality
in the recorded speech signals while assuring the comfortability of the speakers to obtain the most
natural speech that was possible.

Initially, these two objectives seemed to be divergent. A good quality speech signal is that
one which is not corrupted by any kind of noises (additive noise or convolutional noise), but these
ideal conditions can only be achieved in an anechoic room within a speech laboratory or in a well-
prepared room. However, the target speakers of the corpus are children and young adults with
cognitive and social disorders who are very sensitive to new and different environments. Moving
them to a laboratory or placing them in a specially prepared room might produce an stress in the
speakers which would result in a non-natural speech or even in a total blockage in their language.
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Hence, these limitations imposed the physical environment for the recordings: The CPEE
“Alborada”. As all the speakers were provided by this educative institution where they attended
regular classes, the same classrooms where they were having their classes were chosen for the
recordings. For every recording session, an empty available classroom was selected by the staff
of the CPEE “Alborada” and the recording procedure was installed (computer, microphone, etc).
The target speaker and the person of the I3A who was in charge of the recording each day were the
only ones in the room (sometimes a member of the CPEE “Alborada” also witnessed and helped
in the process). This way, with the use of a good quality microphone set, external noises could
be reduced, but not totally erased because classes were running normally in the rest of the school
(with the expected noisiness of the rest of the pupils in the school).

Another element of relevance was the recording interface that the speakers had to face for the
recordings. Usual interfaces where the target speaker reads aloud a sentence shown plainly on
a screen are good for the acquisition of speech in adults, but it is easy for children (especially,
impaired children) to lose motivation with this kind of interfaces. The solution was “Vocaliza”,
the speech therapy tool that will be presented in Section 10.2; this tool contained an enrollment
phase previous to the speech therapy activities very helpful for the speech acquisition purposes.

With “Vocaliza”, it was possible to create different user profiles and attach some words and
sentences to the users that took part in the enrollment phase. During the enrollment, the word
or sentence was shown to the speaker via a pictograph or group of pictographs and, optionally,
text and synthesized or pre-recorded audio as shown on Figure 3.1(a). For the corpus acquisition
purposes, only the pictograph(s) and text were shown to the speaker, and oral reinforcement
was directly given by the person of the I3A on duty during the recording process. The person
responsible for the recordings navigated through the previously selected words and initiated the
recording. When the recording of a word finished, a plot with the signal waveform was shown as
in Figure 3.1(b), being possible to listen to the signal as many times as needed to finally accept or
discard the utterance depending on the quality of the signal (naturalness, background noise level,
etc).

(a) Word prompting in the corpus recording process (b) Waveform plotting in the recording process

Figure 3.1: “Vocaliza” interfaces in the speech acquisition

Regarding the hardware that was used for the recordings, the application was running in a
commercial laptop with an integrated commercial sound card. More complicated hardware for
speech acquisition would have been difficult to handle in the school facilities and uncomfortable
for the speakers. In each session, it was checked that no external or internal elements in the
environment or in the laptop could create any electromagnetic interferences that might distort or
corrupt the recordings with electrical noise.
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The final element to take care of in the selection of the recording environment was the
microphone. Close-talk microphones assured the best quality in reducing external noise as well
as reverberation effects. Unfortunately, they created a feeling of attachment of the speaker to
the computer that collided with the objective of making the target speaker feel free and natural
during the recordings. Given this, a portable wireless microphone was used so the speakers did not
feel totally attached to the computer and, hence, uncomfortable. The final model of microphone
chosen was the AKG C444L, which had all the commented features.

With this, all the issues in the environment for the recording have been explained. A graphical
illustration of an actual recording situation is shown on Figure 3.2 where all the elements, including
computer and microphone, can be seen together.

Figure 3.2: Disposition for real environment recordings in the IES “Félix de Azara”

3.3 Speaker Characterization

The process of selection of the speakers was initiated by requirement of the I3A to the staff of
the CPEE “Alborada”, which provided all speakers to the corpus from their pupils. An initial
list of possible speakers was made by them, selecting those whose cognitive abilities could allow
them to complete the task of uttering the designed sessions; as subjects with a very high degree
of cognitive disorders might have no language at all or might be unable to follow the process of
recording. The final selection of speakers was made according to the requirements imposed to the
speakers in Section 3.1 in terms of age, gender and disability.

The speaker characteristics in terms of age and gender can be seen in Table 3.1. As it can be
appreciated, gender balance was kept as there were 7 boys and 7 girls in the corpus. Age balance
was also kept in the range from 11 to 21 years old (histogram is shown in Figure 3.3).

The limitations to the ages of the speakers (range 11-21 years old) were imposed by two factors:
Lower boundary (11 years old) was forced by the fact that no one of the children under 11 years
was seen to be able to finish the session acquisition process successfully due to their young age;
and the upper boundary (21 years old) was forced because this was the maximum age in which
they could stay into a public educational institution like the CPEE “Alborada”.
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Table 3.1: Speakers in the disordered speech corpus
Speaker Age Gender Speaker Age Gender
Spk01 14 years old Female Spk02 11 years old Male
Spk03 21 years old Male Spk04 21 years old Female
Spk05 18 years old Male Spk06 17 years old Male
Spk07 18 years old Male Spk08 19 years old Male
Spk09 11 years old Female Spk10 15 years old Female
Spk11 20 years old Female Spk12 18 years old Male
Spk13 13 years old Female Spk14 11 years old Female

Figure 3.3: Histogram of speakers’ ages in the corpus

3.3.1 Speaker disorders

Characterization of the speakers disorders is also necessary in the description of the kind of corpus
described in this Section. The speakers may have physical and cognitive disorders that may
interfere their speech and language in different ways. A summarized diagnosis for all of them, with
special attention to their speech and language disorders is provided in Table 3.2. Each speaker can
be, hence, characterized in terms of the different voice, speech and language disorders presented
in Section 1.3.

Moderate to severe cognitive disorders were common in all speakers and this producesd different
language disorders in their speech. Dyslalias and other speech disorders like dysphemia or some
degree of dysarthria were also shared in different amounts by all of them. Speakers suffering
Down’s Syndrome also suffered in many cases some minor malformations in organs of the vocal
tract that could produce a certain degree of dysglossia.

At this point started one of the major differences with previous corpora in this area. This novel
corpora focused only in children and young adults and their specificities in speech and language
disorders. The impossibility to cover in a properly balanced way a wider range of ages and the
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availability of these speakers at the CPEE “Alborada” produced this. Also, as the development
of speech therapy tools oriented to disabled children (as it will be seen on Section 10) was an
important objective during all the thesis, this corpus fulfilled the requirements to study this speech
and improve the performance of these tools.

Table 3.2: Disorders of the speakers in the disordered speech corpus
Speaker Physical and Cognitive Disorders Speech and Language Disorders
Spk01 Down’s syndrome Semantic-pragmatic disorder
Spk02 Attention deficit, hyperactivity Syntax and semantic disorders
Spk03 Emotional deprivation disorder Dyslalia and semantic-pragmatic disorder
Spk04 Emotional deprivation disorder Semantic-pragmatic Disorder
Spk05 Down’s syndrome Dysphemia and semantic disorders
Spk06 Motor ataxia and tetraplegia Semantic-pragmatic disorder
Spk07 Polymalformation syndrome Dyslalia and semantic-pragmatic disorder
Spk08 Cerebral palsy Phonological and semantic disorders
Spk09 Development disorder Dyslalia and Specific Language Impairment
Spk10 Hypoxic-ischemic encephalopathy Phonological and semantic disorders
Spk11 Cognitive disorder Semantic-pragmatic disorder
Spk12 Development and expressive disability Specific Language Impairment
Spk13 Down’s syndrome Phonological and semantic disorders
Spk14 Development disorder Dyslalia and Specific Language Impairment

3.4 Session Characterization

Three different types of sessions were designed for the impaired speakers chosen for the recordings.
The core of the recordings were isolated words, while some sessions with simple and complex
sentences were furtherer recorded from some speakers.

3.4.1 Isolated word sessions

Each speaker in the Alborada-I3A corpus recorded 4 sessions with isolated words. The sessions
were recorded in different days to obtain a set of sessions which could reflect properly the possible
effects of intra-speaker variability. With these 4 sessions per speaker, the corpus contained a total
of 228 isolated-word utterances per speaker and 3192 utterances as a whole, being a total of 2
hours, 17 minutes and 4 seconds of speech signal (including silence). The average Signal-to-Noise
Ratio (SNR) per utterance was 34.58 dBs with an standard deviation of 6.66 dBs, which reassured
the quality of the speech collection carried out during the acquisition process.

The vocabulary for these sessions was the set of 57 words included in the RFI
[Monfort and Juárez-Sánchez, 1989]. As seen in Section 1.3.4, this is a well-known handbook
for speech therapy in Spanish. Furthermore, it was also the vocabulary for the oral corpus in
the HACRO project [Navarro-Mesa et al., 2005] shown in Section 2.1.2. This 57 words and their
transcription according to the International Phonetic Alphabet (IPA) and the Speech Assessment
Methods Phonetic Alphabet (SAMPA) alphabets are shown on Table 3.3.

RFI contains all the 24 phonemes described traditionally in the Spanish language
[Alarcos, 1950] as well as the most usual allophones. The whole description of Spanish
phonemes and sounds can be seen in Appendix A, altogether with their IPA and SAMPA
transcriptions. Furthermore, RFI contains a major selection of elements of the language, ranging
from monosyllabic words to polysyllabic words, with clusters of consonants, codas and diphthongs.
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The number of syllables in the 57 words is 129 (2,26 syllables average per word) and the number
of phonemes is 292 (5.13 phonemes per word).

Table 3.3: Words in the RFI and their IPA and SAMPA transcriptions
Set of words and transcriptions in the corpus

Word IPA SAMPA Word IPA SAMPA
árbol [’ARB

fl
Ol] [“ArBOl] boca [’boka] [“boka]

bruja [’bRuxa] [“bruxa] cabra [’kaB
fl
Ra] [“caBra]

campana [kAm’panã] [kAm“pana˜] caramelo [kaRa’melo] [kara“melo]
casa [’kasa] [“kasa] clavo [’klaB

fl
o] [“klaBo]

cuchara [ku’
>
ÙaRa] [ku“tSara] dedo [’d”eąflo] [“deDo]

ducha [’d”u
>
Ùa] [“dutSa] escoba [es

ˇ
’koB

fl
a] [es“koBa]

flan [’flAn] [“flAn] fresa [’fResa] [“fresa]
fuma [’fuma] [“fuma] gafas [’gafAs] [“gafAs]
globo [’gloB

fl
o] [“gloBo] gorro (cap) [’goro] [“gorro]

grifo [’gRifo] [“grifo] indio (indian) [’ind”jo] [“indjo]
jarra [’xara] [“xarra] jaula [’xAwla] [“xAwla]
lápiz [’lapiflT] [“lapIT] lavadora [laB

fl
a’ąfloRa] [laBa“Dora]

luna [’luna] [“luna] llave [’LaB
fl
e] [“LaBe]

mariposa [maRi’posa] [mari“posa] moto [’moto] [“moto]
niño [’ñıño] [“ni˜Jo] ojo [’Oxo] [“Oxo]
pala [’pala] [“pala] palmera [pAl’meRa] [pAl“mera]
pan [’pOn] [“pAn] peine [’pEjne] [“pEjne]

periódico [pe’Rjoąfliko] [pe“rjoDiko] pez [’peT] [“peT]
piano [’pjano] [“pjano] pie [’pje] [“pje]
piña [’piña] [“piJa] pistola [piflsˇ

’tola] [pIs“tola]
plátano [’platanõ] [pla“tano˜] playa [’plaJ

fl
a] [“plajja]

preso [’pReso] [“preso] pueblo [’pweB
fl
lo] [“pueBlo]

puerta [’pwERta] [“pwerta] ratón [ra’tOn] [ra“ton]
semáforo [se’mafoRo] [se“maforo] silla [’siLa] [“siLa]

sol [’sOl] [“sOl] tambor [tAm’B
fl
OR] [tAm“BOr]

taza [’taTa] [“taTa] teléfono [te’lefono] [te“lefono]
toalla [to’aLa] [to“aLa] toro [’toRo] [“toro]

tortuga [tOR’tuG
fl
a] [tOr“tuGa] tren ’[tRen] [“tren]

zapato [Ta’pato] [Ta“pato]

These isolated word recordings were expanded for speakers Spk07 and Spk08 who, two years
after the first acquisitions, were recorded again with 4 sessions of the words in the RFI. These
extra sessions were not used during the main work of this thesis work to avoid the unbalance of the
speakers, but it will be seen how they were useful regarding studies on the amount of adaptation
data. Speakers Spk07 and Spk08 were 18 and 19 years old respectively during the initial recordings,
so it could be easily argued that their speech characteristics did not change much in these two
years until becoming 20 and 21, as most of the speech changes in young adults happens at an
earlier age.

An important issue to study when preparing tasks for ASR is to evaluate how distant the
words in the vocabulary were from each other. Phonetic distance between all 57 words in the RFI
was measured and the histogram is presented in Figure 3.4. Lowest phonetic distance was 2 in 35
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cases (for instance in ‘cabra’ vs. ’casa’) and the highest distance was 10 in the case of ‘casa’ vs.
‘periódico’. The average phonetic distance was 4.99 in a total of 1596 possible word comparisons.
The phonetic distance was measured as the total number of phoneme substitutions, insertions and
deletions required to transform a word into one another. This implied that the half of the phonetic
distance between two words was the minimum number of phonetic changes that might produce
total confusion between these two words.

Figure 3.4: Phonetic distance histogram

Example 3.4.1 A simple example of the measure of the phonetic distance can be given between
words in the RFI: Words “taza” and “zapato” have a phonetic distance of 4, because it is necessary
to make 4 phonetic changes to convert “taza” into “zapato” (substitute [t] for [T] at the beginning
and [T] for [p] in the middle, and finally insert [to] at the end). Hence, with only two changes it is
possible to make both words fully confusable, for instance [taTato] is 2 phonemes away from each
one of them; which would make not possible to decode the original word.

3.4.2 Simple sentence sessions

Some of the speakers with better cognitive and language capabilities were also enrolled in a task
consisting in short meaningless sentences constructed with words from the RFI. The structure of
these sentences was created as follows:

el/la Word1 y el/la Word2
Where Word1 and Word2 were chosen randomly from the RFI. Connectors el and la were

the determinants (the in English) and connector y was the copulative joint (and in English). This
approach resembled the speech acquisition in the Nemours database [Menéndez-Pidal et al., 1996]
in Section 2.1, which was seen as an effective way of collecting connected speech from impaired
speakers.

Example 3.4.2 Examples of the simple sentences generated for the impaired speakers are:
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• la lavadora y la playa

• el sol y el peine

• el ojo y el árbol

Four sessions were designed, with each session containing 28 sentences and each word of the
RFI appearing only once in every session (hence, words appeared four times through all sessions).
A further restriction was imposed; that in the appearances of each word, two were in the position
of Word1 and two in the position of Word2.

Only 4 speakers, Speaker01, Speaker04, Speaker06 and Speaker11, could fulfill these sessions,
because the mid to severe range of the cognitive and language impairments of the other speakers
made them unable to utter fluently connected speech as the proposed in the sessions. Each speaker
uttered, hence, 112 of these simple sentences; and the corpus contained 448 of them, for a total of
25 minutes and 30 seconds of speech including silence. The mean SNR per utterance was 34.05
dBs with an standard deviation of 6.72 dBs.

3.4.3 Complex sentence sessions

Finally, three speakers: Speaker04, Speaker06 and Speaker11 were also enrolled in a short session
with 10 full meaningful sentences. Restrictions over these sentences were that they had to contain
three different words of the RFI, and the total number of words had to be lesser or equal than 9.
The final set of these sentences created can be seen in Table 3.4.

Table 3.4: Complex sentences created for the impaired speakers
Sentences

El toro en el árbol bajo la luna
El ratón roe el plátano sobre la silla

La bruja da pan a la cabra
El niño se ducha con su gorro

Dejaba el periódico en la puerta de casa
El indio tocaba la campana del tren
La tortuga abŕıa la boca bajo el sol
Perd́ı la llave de la jaula del preso

La mariposa en la palmera de la playa
Tocar el tambor con pala y cuchara

The difficulties for the production of this complicated sentences were high, as speakers had
problems to utter them, not only due to their phonological difficulties, but for their cognitive
disorders, which made complicated for them to comprehend fully the sentences; which provided
extra problems in the form of hesitations or doubts during the recordings. The total number of
recorded utterances was, then, 40 for a total time of 2 minutes and 9 seconds of speech including
silence. The mean SNR per utterance was 33.21 dBs with an standard deviation of 5.34 dBs.

3.5 Reference Speech Corpus

Speech technologies usually require of well-matched data to achieve the best performance. Speaker
adaptation is the best solution, but it is not always available and sometimes not desirable. Even
in those cases, it is interesting to be able to model properly the task and domain in which the
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system will work; this is, the vocabulary used, the acoustic environment, the dialect or some other
characteristics of the speakers that the system will face.

For the corpus of disordered speech presented in this Chapter, there were several elements
that create a mismatch with the traditional ASR corpora used in Spanish like Albayźın
[Moreno et al., 1993]. Main one was, obviously, the disorders that the speakers in the Alborada-
I3A corpus suffered in their speech and language. But, difference of age was also a main element
that produced a mismatch between the corpora. In this case, this age mismatch could cover effects
of the speech impairments because children’ voices as the one in the Alborada-I3A corpus were
always expected to obtain worse performances than adult voices in ASR. Hence, it was shown the
need of counting with a reference speech corpus from unimpaired children.

This children speech was donated by students from three different institutions in Zaragoza: The
Colegio de Educación Infantil y Primaria (School for Primary and Infant Education) (CEIP) “Ŕıo
Ebro”, the Instituto de Educación Secundaria (School for Secondary Education) (IES) “Tiempos
Modernos” and the IES “Felix de Azara”, with the consent of the parents and educators of the
children.

Recording environment was the same that the one for the impaired speakers shown in Section
3.2; this is, speakers were recorded in the facilities of the schools were they attended their classes,
and each speaker was asked to utter only one session of the RFI isolated words like in Section 3.4.1.
Balance in age and gender was the target in the same range of ages that the impaired speakers;
and finally, the distribution was as shown in Table 3.5.

Table 3.5: Speakers in the reference speech corpus
Age Males Females Age Males Females

10 years old 15 16 11 years old 15 16
12 years old 15 15 13 years old 15 23
14 years old 11 21 15 years old 11 11
16 years old 15 9 17 years old 14 10

With this distribution, the total number of unimpaired speakers in the reference subcorpus was
232 with 13224 utterances (one session per speaker), and a total signal time of 8 hours, 50 minutes
and 15 seconds of speech including silence. The average SNR per utterance was 33.27 dBs with a
standard deviation of 6.0 dBs; similar values to the SNR values of the impaired speech subcorpus
in Section 3.4, as it was expected because the acquisition scenario was similar.

3.6 Human Labeling of the Oral Disorders Corpus

The second of the extra tasks that was made to complete the corpus was to manually label the
mispronunciations in the corpus. This task was required to allow the evaluation of the performance
of algorithms for PV or to study the impact of mispronunciations in the performance of different
proposed ASR systems.

An important decision prior to the labeling was to decide the possible labels that were going to
be the outcome of the labeling. An accurate full quality transcription would be the most precise
labeling possible; in this labeling, the output would be the whole real transcription of the words
uttered by all the speakers with a mark measuring the speech quality of the pronunciations of
that phoneme. Phoneme and word boundaries would be also provided by the labelers; giving, this
way, a manual accurate segmentation. Despite the accurateness of this type of labeling, a major
drawback would be that the consistence among different labelers might be very low as it would
rely on subjective opinions of each one of them. This lack of agreement would give very little
statistical significance to the results of the labeling, limiting the usefulness of it.
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Furthermore, with this kind of labeling, more information would be obtained than really
necessary; as it was not intended to make a speech quality assessment task. The main reason for
this is that the speakers are children with moderate to severe cognitive disorders; in those cases,
the final objective of speech therapy in special education is to provide them with communicative
skills, and communication is not on perfect quality but the perceptual in discrimination of different
phonemes. Hence, real interest in this task is to distinguish whether human listeners could accept
words according to the canonic transcription or not.

For this reason, the ultimate decision was that the label that the human experts were to
assign to each phoneme could only be 0 (phoneme was deleted), 1 (phoneme was substituted
by another phoneme or by an unintelligible pronunciation) or 2 (phoneme correctly pronounced
as the canonic phoneme independently of the quality of the pronunciation). When the experts
marked a 1 for a given phoneme, they were not asked initially to provide which phoneme they
understood to have been pronounced instead of the canonical phoneme to avoid delays in the
labeling and inconsistencies. A phoneme was considered as mispronounced when it was considered
as substituted (1) or deleted (0).

The labeling of the corpus had to be reliable as well as significant. For this purpose, a group
of 14 labelers were chosen from disciplines like speech technology or phonetics. Each one of the
56 sessions (14 speakers and 4 sessions per speaker) was handed to 3 different labelers out of the
group of 14 experts that evaluated separately all the words. A same labeler never had to face more
than two sessions of a same speaker, to avoid two effects: that the labeler could change the results
as the labeler got adapted to the speaker’s speech; and, furthermore, that a same expert had too
much influence in the labeling results of an speaker.

Figure 3.5: Illustration on the labeling process

The orthographic transcription of each word was presented to the labeler and the expert could
listen to the speaker’s utterance as many times as needed prior to give the label (0, 1 or 2) over all
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the phonemes in the canonic phonetic transcription of the word. Finally, with a polling system,
the most voted label by the three labelers was chosen as the final label of the phoneme. In the
case that a phoneme receive three different values by the three different experts, another labeler
was requested to provide a label to that phoneme and untie the result.

Example 3.6.1 An example illustrating the labeling process is shown on Figure 3.5. In this case,
the word to label is árbol (tree), whose transcription is in 5 phonemes (/a/, /R/, /b/, /o/ and /l/).
In the example, Expert i labels phonemes /R/ and /l/ as deletions, while the other are corrects;
Expert n labels /R/ as deleted and /l/ as substituted; and, finally, Expert x only labels /R/ as
substituted. The polling system assigns phonemes /a/, /b/ and /o/ as correct as all three labelers
agree; and also assigns phoneme /R/ as deleted because 2 out of 3 labelers agree. Finally, phoneme
/l/ cannot be assign a final label, as there is a tie between all three labelers. Expert l is called
then and asked to label that phoneme; his label is ’deletion’ and this is the final label assigned to
phoneme /l/.

The outcome of the labeling in terms of correct phonemes, substituted phonemes and deleted
phonemes by speaker is shown on Table 3.6. The final average values for the total corpus (the
4 sessions of the 14 speakers) was 82.39% of correct phonemes, 10.31% of substituted phonemes
and 7.30% of deleted phonemes. A measure of the average rate of mispronunciation for all the
speakers was 17.61%, considering as mispronounced phonemes the sum of substituted phonemes
and deleted phonemes.

Table 3.6: Results of the labeling process
Percentage of correct, substituted and deleted phonemes in the corpus

Speaker Correct Substituted Deleted Speaker Correct Substituted Deleted
Spk01 98.88% 0.94% 0.17% Spk02 78.42% 12.41% 9.16%
Spk03 94.78% 4.54% 0.68% Spk04 96.83% 2.05% 1.11%
Spk05 56.51% 26.11% 17.38% Spk06 99.32% 0.51% 0.17%
Spk07 87.07% 7.36% 5.57% Spk08 69.18% 17.72% 13.10%
Spk09 91.78% 5.31% 2.91% Spk10 78.51% 13.10% 8.39%
Spk11 93.24% 5.15% 2.05% Spk12 74.32% 13.96% 11.73%
Spk13 43.58% 30.48% 25.94% Spk14 91.01% 5.14% 3.85%

To measure the consistency in which different human experts can identify the phonetic accuracy
of the utterances in the corpus the pairwise interlabeler agreement was calculated. This measure
was obtained by the comparison of every two possible pairs of labels assigned by the experts,
which was obtained comparing every two possible pairs of labels for a given phoneme. The total
number of phonemes to label was 16 352, which supposed 49 056 comparisons between experts’
labels pairwise. Labelers agreed in 42 095 cases, which marked a 85.81% of agreement. This meant
that any automatic system that tried to imitate the experts would achieve a reliable performance
(similar to the humans) when reaching 85% of accuracy. If only two levels were to be considered:
correct (marked as 2) and mispronounced (marked as 1 or 0) phonemes; the interlabeler agreement
raised to 89,65%.

Example 3.6.2 Following the Example 3.6.1 and Figure 3.5, the agreement rate could be easily
calculated for that case. There are five phonemes to evaluate and there are three possible pairwise
interlabeler comparisons (Expert i with Expert n, Expert i with Expert x and Expert n with
Expert x), this makes 15 total comparisons. Situations in which the experts disagree are 5 (Expert
i with Expert x in phoneme /R/, Expert n with Expert x in phoneme /R/, Expert i with Expert n
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in phoneme /l/, Expert i with Expert x in phoneme /l/ and Expert n with Expert x in phoneme
/l/). Hence, interlabeler agreement is 10 out of 15 situations (66.67%).

The last measure of the labeling consistency was the rate of phonemes in which a fourth expert
was required; this only happened in a 1.38% of all the phonemes in the corpus (226 out of 16,352
phonemes). It is to remind that this was a very unexpected situation, as it meant that labelers
were giving extremely contradictory labels to the same phoneme, although it might happen in
extreme cases where the pronunciation was difficult to assess for the labelers.
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Chapter 4

Experimental Framework and
Baseline Results

The box.
You opened it.
We came.
Now you must come with us, taste our pleasures.

-Clive Barker, The Hellbound Heart

Characterizing the task in which an ASR system is aimed to work is strongly required prior
to start the study of further improvement methods. This Chapter aims to set the baseline ASR
performance on the disordered speech corpus introduced in the previous Chapter. The objectives
are to detect sources of variability in this speech and evaluate their effect on the ASR recognition
rates, while considering different possibilities in HMM topologies.

The Chapter is organized as follows: In Section 4.1, the presentation of the different HMM
possible topologies and the feature extraction method that was used in the experimental framework
will be made. Sections 4.2 and 4.3 will present the results in ASR in the impaired children’ speech
corpus in two different approaches: TI and TD, comparing these results to the results obtained in
the same tasks by the unimpaired age-matched speakers. A small review on the results in ASR
with connected disordered speech will be given in Section 4.4, as well as the baseline results in
APD in Section 4.5. Finally, a discussion on the influence of the labeled mispronunciations in the
disordered speech corpus on the presented results will be given in Section 4.6.

4.1 Description of the Baseline ASR System

A correct selection of the characteristics in the ASR system to be used in a given task and domain
is necessary to achieve the best possible performance. The aim of this thesis is to personalize a
traditional ASR system towards disordered speech, so all the experiments in the thesis were run on a
state-of-the-art system, throughly used and evaluated in many tasks with adult normal and healthy
speech like digits [Buera et al., 2007, Miguel et al., 2008], command control [Garćıa et al., 2008]
and broadcast news subtitling [Ortega et al., 2009], with results comparable to those of well-known
libraries like Hidden Markov Model Toolkit (HTK) [Young et al., 2006] or Sphinx [Lee, 1989]. No
modifications on the Viterbi search or in the HMM left-to-right topology were made from the
original framework, to make possible the use of the system by both unimpaired and impaired
speakers indistinctly.
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4.1.1 Selection of the HMM topology

HMMs have been used for a long time in ASR to model and characterize human speech
[Jelinek, 1998]. This statistical modeling fits the pseudo-stationary properties of the speech signal
and allows the decoding of the uttered message via forward-backward algorithms in a Viterbi
search [Huang et al., 2001]. Traditional HMM topologies follow a left-to-right structure like the
one shown in Figure 4.1. In this topology, the model follows the speech variations in time from
one state to the next, where the time of latency in each state is defined by the probability of
permanency. Each state in the HMM is defined by a probability density function (pdf) (usually
a GMM with a certain number of Gaussian distributions) that sets the probability with which a
given speech frame has been generated by that state.

Figure 4.1: Left-to-right HMM topology

To define the HMM topology used in an ASR experimental framework, it is necessary to
provide the acoustic units that are modeled with each HMM, the number of states per HMM and
the number of Gaussian mixtures per state. An acoustic unit is the segment of speech that is
modeled with a different HMM and hence defines the smaller units in which the recognition can
be divided.

Three types of acoustic units were considered initially for the experimental framework in this
thesis: Word units, phoneme units and sub-phone (context dependent) units. Each one of them
has its own advantages and disadvantages in different tasks and domains that will be seen along
this Chapter and thesis.

Word units model acoustically a whole word and, hence, a new unit is required each time a
new word is included in the vocabulary. They have a great specificity, as they are trained to model
one and only word. Furthermore, the training of a new word unit can not be assured as the word
might not appear in the training database and requires the whole re-training over the database.
The number of states per word HMM is variable as the length of the different words might highly
vary. The number of word models included in the works of this thesis was 57, one for each word
in the RFI.

Phoneme units are trained to model a given phoneme or allophone, independently of its left
and right phonetic contexts. These units are very generalizable, as every possible word in the
vocabulary can be described as a concatenation of a small set of units (Spanish has 24 phonemes
and about 50 allophones). However, they are very little specific, because it is well known the high
acoustical influence of the context in the production of the different phonemes (part of this can
be avoided with the use of an extended set with all the allophone units). The final number of
phoneme units in the experiments in this thesis was 25, covering 23 of the 24 phonemes of Spanish
(phonemes /J

fl
/ and /L/ are gathered in the lateral sound [L] due to the common ‘yéısmo’ explained

in the Appendix A) and the two glides [j] and [w], allophones of the vowels /i/ and /u/ respectively.
The reduction of /J

fl
/ to /L/ was justified by the fact that all speakers in the corpus came from the

North-Eastern region of Spain, where yéısmo is fully expanded [Frago-Gracia, 1978], which made
the speakers of the corpus unable to separate both phonemes in their speech. Furthermore, all
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labelers came also from the same geographical distribution, which limited their ability to distinguish
the differences between /J

fl
/ and /L/ as a mispronunciation if that would have happened in the

speakers’ utterances.
On the other hand, separation between glides and their corresponding vowels has shown a

significant improvement in ASR performance in Spanish because their role on syllable construction
differs extremely when the vowel phoneme is nucleus or glide. Moreover, this separation was a
necessary requirement for the analysis carried out at the acoustic and lexical levels of the quality in
the speakers speech. Glides will be separated from vowels in the acoustic analysis in Chapter 5 and
glides in diphthongs will be shown to have a major influence in the lexical mistakes of the speakers
in Chapter 6. However, in any case, labelers were never required to distinguish both sounds (vowel
from glide) in their annotation, so for PV purposes no distinction was made amongst then.

Finally, sub-phone units split phoneme units into several smaller units that consider the context
of the given unit. Three type of units are considered then: left context units, which model the
beginning part of a phoneme with the current left context; center context units, that model the
context-independent part of the phoneme in the middle of the phoneme; and the right context units,
modeling the ending part of the phoneme towards the phoneme to the right. Sub-phone units are
highly specific, as they consider an specific context of the unit. They are also generalizable, because
every new word in the vocabulary can also be created from these units. However, sub-phone units
are difficult to train as the number of possible units is in the order of the number of phonemes
squared, creating possible situations of sub-training if there are not enough realizations of the unit
in the training set. The final number of context-dependent sub-phone units trained for the works
in the thesis was 744, although only 309 were actually used in the recognition experiments due to
the small size of the vocabulary.

Figure 4.2: Examples of the different HMM topologies

Other possible units like syllable units or triphone units, widely used in ASR, were not
considered for this job, as they shared similar properties with the proposed units. While syllable
units model long contexts like word units, triphones consider the left and right contexts like the
sub-phone units.

Example 4.1.1 An example illustrating the possible topologies is shown on Figure 4.2. In this
case, the different possibilities to model the word árbol (tree) are shown. With word units, an
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only model is created with the whole word and 15 states for this model. With phone units, the 5
models for /a/, /R/, /b/, /o/ and /l/ are used to construct the word; each phoneme unit with 3
states. Finally, 15 sub-phone units are required to construct the same word, with only 1 state per
model.

Training of the HMMs used is usually made via large transcribed databases, where the number
of appearances of each unit is high enough to provide enough examples in all its relevant possible
contexts. The training is based on the solution of an Expectation-Maximization (EM) problem
that finally achieves a Maximum Likelihood (ML) solution [Dempster et al., 1977].

The initial models for this work were trained with data from three major speech corpora in
Spanish containing adult clean healthy speech: Albayźın [Moreno et al., 1993], Spanish SpeechDat-
Car [Moreno et al., 2000] and Domolab [Justo et al., 2008]. With 44,018 sentences from several
speakers in different tasks, these corpora were consistent enough for the training of baseline
acoustic models in different tasks like ASR in clean [Miguel et al., 2008] and noisy conditions
[Buera et al., 2007] or speaker verification. With these corpora, the phone and sub-phone models
were trained. Baseline word models were constructed by the concatenation of sub-phone units,
because they could not be consistently trained for all the words in the RFI vocabulary from these
databases due to the lack of training data for some of them.

4.1.2 Feature extraction method

The speech signal processing for ASR was based in the extraction of a group of features that
describe the articulatory properties of each frame of speech in the best and most compact possible
way. A Mel Frequency Cepstral Coefficients (MFCC)-like processing was applied to the input
speech signal following the flow diagram in Figure 4.3.

Figure 4.3: Feature extraction method

Each input speech signal was framed into 25msec. frames with an overlap of 15msec. A pre-
emphasis filter was used to discard the possible continuous component of the speech signal and the
very low frequencies. Posteriorly, a Hamming window was applied to each frame and zero-padded
to 512 samples per frame to apply the Fast Fourier Transform (FFT) to the frame. The real part of
the FFT was converted to a 24-bin Mel scale and converted to logarithm scale. With the Inverse
Discrete Cosine Transform (IDCT), the Mel-scale parameters were transformed to the cepstral
domain, and the first 12 cepstral coefficient, discarding c0, were used (c1, ..., c12). The logarithm
of the energy of the input frame was calculated and added to the cepstral coefficients instead of
c0.

Posteriorly, the first and second discrete derivatives of the obtained 13 parameters per frame
were calculated and the final 39 MFCC features were fed to the training and recognition systems.

4.2 Task Independent ASR Results

With the MFCC-based feature extraction method presented and the three HMM topologies
proposed for study, the first ASR experiments had to be oriented to determine the baseline of
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the recognition system in the oral disorders corpus. Initially, the reference speakers provided the
knowledge on how accurate the models were for children’ speech.

4.2.1 Reference speakers’ results

The 232 reference speakers of children and young speech were fed to the ASR system defined
previously. The initial Speaker Independent (SI)-TI models trained as commented in the previous
Section were used for recognition, with the results shown in Table 4.1. All the ASR results in this
thesis are provided in terms of WER, but in the presence of isolated words as it is the case, only
the substitution of words was possible and, hence, the standard WER equation was simplified to
Equation 4.1.

WER =
Substitutions

Words
(4.1)

Table 4.1: Baseline ASR results for the reference speakers with the TI models
WER results for the unimpaired speakers

Word models Phoneme models Sub-phone models
3.99% 9.91% 3.99%

Figure 4.4: ASR results of children’ speech in terms of age and gender

As it could be expected, word and sub-phone models outperformed the phoneme models due
to the better modeling that they did of the context and coarticulation of phonemes. The results
of word and sub-phone models were exactly the same because, as it was explained in previous
Section, word models were created from the concatenation of sub-phone units.

Speech from children and young adults is known to be very variant depending on the age of
the speaker. Different speakers in these ages present different vocal tract and vocal chords features
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(lengthening of the vocal tract and lowering of the fundamental frequency with growth) which
may produce very different performance of the ASR systems. To study the impact of these effects,
the results obtained in the ASR system with the reference corpus were separated in terms of age
and gender to know how this variability affected them. Figure 4.4 shows these results per age
and gender for the sub-phone models. Variations in the WER through age and gender marked a
minimum decrease for the older speakers (especially in female speakers). Anyways, the variations
were not so significant to indicate a trend with age or gender, probably due to the good modeling
of the different units, the short size of the vocabulary and the controlled environment of the
recordings. A task more oriented to spontaneous speech would suffer more of this age effects in
the speech.

4.2.2 Impaired speakers’ results

The same experimental framework was posteriorly evaluated over the 14 impaired speakers. The
special characteristics of these speakers exposed out the need of providing full results separately per
speaker; the results for these speakers are provided in Table 4.2. Again, results for word and sub-
phone models were the same as the initial TI word models were created from the concatenation
of sub-phone units. The average (AV G) results for all speakers (36.69%, 40.86% and 36.69%)
showed a significant loss of performance in comparison to the unimpaired speakers (3.99%, 9.91%
and 3.99%).

Table 4.2: Baseline ASR results for the impaired speakers with TI models
WER results for the impaired speakers

Speaker word phone sub-phone Speaker word phone sub-phone
Spk01 16.23% 19.30% 16.23% Spk02 39.47% 40.79% 39.47%
Spk03 21.49% 32.02% 21.49% Spk04 13.60% 18.42% 13.60%
Spk05 63.60% 63.16% 63.60% Spk06 6.58% 16.67% 6.58%
Spk07 33.33% 37.72% 33.33% Spk08 42.54% 46.05% 42.54%
Spk09 36.40% 38.16% 36.40% Spk10 43.86% 50.44% 43.86%
Spk11 13.60% 21.93% 13.60% Spk12 69.30% 72.37% 69.30%
Spk13 82.46% 79.39% 82.46% Spk14 31.14% 35.53% 31.14%
AV G 36.69% 40.86% 36.69%

The high variability in the results pointed out the very different performance obtained by all
the speakers, which was due to the very different personal situation of each speaker. Results
ranged from the 6.58% and 16.67% of Spk06 to the 82.46% and 79.39% of Spk13 in WER. It was
interesting to see how phoneme units did not perform so badly in comparison to the highly specific
sub-phone units in the impaired speakers (40.86% vs. 36.69%) than in the unimpaired speakers
(9.91% vs. 3.99%). Main explanation for this might arise from the loss of accurate articulatory
properties in the disordered speech, which produced that the high accuracy of the sub-phone units
was not so relevant in the speech from speakers whose articulation is in many cases different from
the baseform pronunciation.

4.3 Task Dependent ASR Results

Task and domain adaptation is an easy and direct way to improve the performance of all ASR
systems. If the vocabulary expected to be uttered by the speakers (task) is fixed and the acoustic
context and characterictics of the speakers (domain) are also fixed; it is possible to train or adapt
the acoustic models to this specific task and domain situation.
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In the situation proposed in this thesis, the task is fixed to the 57 words in the RFI and the
domain are the special properties of speech from children and young adults recorded in a clean
acoustic environment. Hence, task and domain adaptation could initially provide a very interesting
improvement in the ASR results.

This adaptation was carried out by means of the Maximum A Posteriori (MAP) algorithm
[Gauvain and Lee, 1994]. MAP can provide a very good adaptation (similar to ML when sufficient
data is available for adaptation). A small review on adaptation algorithms like MAP or Maximum
Likelihood Linear Regression (MLLR) is provided on Appendix B, to provide the reader a view on
the final implementation of both algorithms.

4.3.1 Reference speakers’ results

For studying the improvement that TD models could provide in the recognition of the reference
speech, two different tests had to be carried out to assure independence between the speakers used
for training and for testing. These two tests were defined by the creation of two subsets in the
reference speech corpus as seen in Table 4.3 that kept balance in age and gender as the original
full reference corpus.

Table 4.3: Speakers in the subsets of the reference speech corpus
Subset A Subset B

Age Males Females Males Females
10 years old 8 8 7 8
11 years old 7 8 8 8
12 years old 8 8 7 7
13 years old 7 11 8 12
14 years old 6 11 5 10
15 years old 5 5 6 6
16 years old 8 5 7 4
17 years old 6 5 8 5

Total 55 61 56 60

With this separation, two TD models were trained with the 116 speakers in each subset via the
MAP algorithm. Each one of these two models was used to recognize the other subset. The final
WER results in Table 4.4 were obtained as the average of the results obtained in both experiments.

Table 4.4: Baseline ASR results for the unimpaired speakers with the TD models
WER results for the unimpaired speakers

Word models Phoneme models Sub-phone models
2.04% 2.77% 2.11%

The results showed an improvement which lowered the WER to 2-3%, depending on the acoustic
units. The impressive improvement achieved by TD phoneme models (from 9 to 3%) could be
explained by the small size of the task vocabulary. With this small vocabulary, the number of
different contexts in which the phonemes appeared got extremely reduced and could be better
modeled by context independent models like phonemes.
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4.3.2 Impaired speakers’ results

The results with the TD models trained from the whole reference speech are in Table 4.5 for the
three units (word, phoneme and sub-phone). The improvement achieved by the task and domain
adaptation reached in some speakers very impressive values, up to 75% of reduction in WER for
Spk04; while in the extremely impaired speakers like Spk13, it only implied a 5% improvement.
The average WER was lowered down up to 25.85%, 31.96% and 28.20% with word, phone and
sub-phone units respectively, marking the baseline for all the experiments performed in the thesis
to try to obtain an improved recognition to these speakers.

Table 4.5: Baseline ASR results for the impaired speakers with TD models
WER results for the impaired speakers

Speaker word phone sub-phone Speaker word phone sub-phone
Spk01 6.14% 11.40% 10.09% Spk02 16.67% 22.81% 20.18%
Spk03 5.26% 14.91% 5.70% Spk04 3.07% 4.39% 3.51%
Spk05 58.77% 60.09% 56.14% Spk06 4.39% 7.46% 3.07%
Spk07 22.37% 32.02% 25.44% Spk08 39.91% 46.49% 43.86%
Spk09 22.81% 25.00% 22.81% Spk10 22.37% 38.16% 32.46%
Spk11 7.46% 13.60% 9.21% Spk12 57.02% 70.61% 63.60%
Spk13 77.63% 77.19% 80.26% Spk14 17.98% 23.25% 18.42%
AV G 25.85% 31.96% 28.20%

Figure 4.5: Confusion matrix for the ASR of the 14 impaired children

More information on the way the recognition system was producing the misrecognitions could
be observed in the confusion matrix for the 14 speakers in the experiment with word units, shown
in Figure 4.5. This matrix showed up how the mistakes were being produced quite uniformly over
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the matrix, with no specific pattern for the 14 speakers, apart from a noticeable poor performance
for the recognition of the word “ratón”. Anyways, Appendix C provides more information with
the confusion matrices of all the speakers in this recognition experiment. These confusion matrices
were consistent with the WER values showed by each speaker, and some of them showed very
interesting phenomena of reduction of words.

Word units showed the best performance in the TD system, showing that with a short
vocabulary like the RFI they could achieve a good modeling of the coarticulation effects.
Unfortunately, their inability to adapt to new lexicon entries in the vocabulary (either they are
new words or new transcriptions of old words) will be seen in further Chapters in the thesis as an
obstacle for the further research in personalized systems where vocabulary could change dinamically
or where new lexicon variants could be introduced in the vocabulary. This drawback did not exist
for the other units, sub-phone and phone units, which, especially in the case of sub-phone units,
did not lose much performance compared to the outstanding word models.

4.3.3 Domain adaptation to disordered speech

Another possible framework for task and domain adaptation was to adapt the models to the
impaired speakers domain within the same 57 RFI task. This domain was characterized by the
set of speakers in the disordered speech corpus, who shared similar conditions in age and were all
affected by different speech disorders. To evaluate this approach, 14 different models were trained
using the baseline TI models as seed. Each model used speech from the 4 sessions of 13 of the
impaired speakers and was evaluated in recognition over the 4 sessions of the remaining speaker.

The results in Table 4.6 did not show a significant difference with the TD models trained from
the reference unimpaired speakers. Hence, it could be seen that there was not further effect of
adaptation to the disorders of the speakers and that the overall effect was an adaptation to the
characteristics of the age of the speakers. This was probably due to the very different nature of
the disorders of each speaker, which made unable to create an acoustic model that could provide
effective adaptation for all the range of possible disorders existing in the corpus.

Table 4.6: Baseline ASR results for the impaired speakers with disordered TD models
WER results for the impaired speakers

Speaker word phone sub-phone Speaker word phone sub-phone
Spk01 6.58% 7.02% 7.46% Spk02 21.05% 24.12% 25.88%
Spk03 13.60% 24.56% 17.54% Spk04 4.83% 8.33% 5.26%
Spk05 53.51% 56.14% 50.44% Spk06 8.33% 17.54% 11.40%
Spk07 21.05% 27.63% 23.68% Spk08 41.23% 47.37% 47.37%
Spk09 23.25% 21.93% 20.61% Spk10 23.68% 25.88% 26.75%
Spk11 7.89% 20.61% 10.96% Spk12 62.72% 74.56% 64.04%
Spk13 74.12% 75.44% 75.88% Spk14 15.79% 14.91% 13.16%
AV G 26.97% 31.86% 28.60%

As the whole group of impaired speakers did not show the ability of being characterized by
itself, the need of personalization appeared stronger than ever and provided further motivation for
the overall objective in the thesis of building fully personalized systems in future Chapters.

4.4 Results in Connected Speech

This Section wants to bring a small introduction to the influence of language impairments
in disordered speech. The comparison of the isolated word results and the connected speech
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results might indicate the possible extra difficulties that impaired speakers face when uttering
full sentences. Unfortunately, the results in this Section could not be considered significant for
obtaining conclusions because the amount of data in isolated words was much bigger than the
amount of data in connected speech. The special characteristics of these speakers did not allow to
acquire more of this data in the time of the recordings as it was seen in Chapter 3.

The experimental framework in connected speech was divided in simple meaningless sentences
and complex meaningful sentences as it was made during the recordings explained in Section 3.4.

4.4.1 Simple meaningless sentences

The simple meaningless sentences defined in the corpus followed a direct construction from the
words in the RFI. For the recognition experiments of these sentences a new grammar had to be
created to expand the isolated-word grammar used in the previous experiments. This new grammar
included the rules that defined the meaningless sentences and followed the flow diagram in Figure
4.6. The connecting words (’el’, ’la’ and ’y’) were forced into the grammar for recognition and
not considered for computing the WER. With this approach, the WER obtained in the sentences
could be compared to the WER of isolated words where only the RFI words were recognized.

Figure 4.6: Grammar for the recognition of the simple meaningless sentences

A drawback in the change of task from isolated words to connected speech was the inability to
use word models. As it was explained at the beginning of this Chapter in Section 4.1, word acoustic
models cannot be generalized to introduce new words in the vocabulary like the connectors that
were used in this task. Hence, only phoneme and sub-phone models could be used by introducing
the new words in the vocabulary with their phonetic expansions. Although, the new word units
could have been created directly from sub-phone units like it was made with the baseline units, it
was decided to maintain in all cases the original units to reflect a more realistic case, in which new
word units cannot be created directly from previous word units.

Table 4.7: Baseline ASR results for the impaired speakers
Model Spk01 WER Spk04 WER Spk06 WER Spk11 WER

Phoneme TI 16.37% 26.55% 7.96% 25.22%
Sub-phone TI 15.04% 18.58% 5.31% 14.16%
Phoneme TD 13.72% 24.78% 11.06% 24.34%

Sub-phone TD 14.16% 18.14% 6.19% 15.04%

The results in the simple meaningless sentences can be observed in Table 4.7. Comparison
between the results of TI models in isolated words and connected speech showed similar results,
except for Spk04, who suffered a major increase in WER for phoneme and sub-phone models.
This result in this speaker might indicate that the degree of her language disorders was seriously
degrading the quality in her speech in the change from isolated to connected speech. However,
there was no sufficient data in this new task to make any ultimate conclusion about this. Any
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conclusions about these results had to be kept, hence, as pure suppositions as it was necessary to
remark again the insufficient data for this task.

Regarding the TD models, there was a major loss of performance in connected speech compared
to isolated words, resulting in a lack of improvement between TI and TD models. However, it was
noticed that the condition of task dependence was not strictly accomplished this time, because
these models were trained with isolated words from young unimpaired children and did not cover
the special coarticulation effects appearing in a task of connected speech.

4.4.2 Complex meaningful sentences

For the recognition of the complex sentences, a new grammar was created adapted to this task
following the diagram in Figure 4.7. These sentences were richer that the simple sentences in
terms of the words that appeared in them; and no ad-hoc grammar was created this time and
no Statistical Language Model (SLM) was created as no corpora was available that could model
properly the special types of sentences created with the words in the RFI. The proposed grammar
allowed for computing the recognition mistakes of the system in the 3 RFI words included in each
sentence while the phoneme network forced the recognition of the phonemes of the rest of the
words.

Figure 4.7: Grammar for the recognition of the complex meaningful sentences

The results in this task are presented in Table 4.8 showing a serious loss of performance
when compared to the isolated words or the simple meaningless sentences. However, these results
could not be generalized due to the small amount of data for the experiments (only 30 words for
recognition from each speaker). These poor results were also influenced by the fact that no specific
recognition system was prepared for the connected speech task and the recognition was limited to
the RFI words with the Out-Of-Vocabulary (OOV) words just modeled as phone sequences.

Table 4.8: Baseline ASR results for the impaired speakers
Model Spk04 WER Spk06 WER Spk11 WER

Phoneme TI 63.3% 56.7% 46.7%
Sub-phone TI 60.0% 36.7% 40.0%
Phoneme TD 53.3% 33.3% 43.3%

Sub-phone TD 43.3% 36.7% 46.7%

4.5 Acoustic Phonetic Decoding (APD)

APD aims to decode the most probable sequence of phonemes uttered by the speaker
[Lee and Hon, 1989] in a utterance. An APD system can be seen as an ASR system where the
words in the vocabulary are the phonemes of the language. The uses of APD can be many like the
decode of OOV words like words in a foreign language or proper names.

In the case of disordered speech, it can be useful to compare the decoded phoneme sequence
with the canonical transcription and determine if possible dissimilarities are appearing because
of possible mispronunciations due to the speakers’ disorders. These differences obtained by the
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output of the APD framework could be closer to possible lexical variants introduced by these
special speakers as it will be seen later.

The outcome of the APD was measured in terms of PER. The PER considers all possible
mistakes in recognition: substitutions, insertions and deletions, following the tradition equation
for computer recognition mistakes in Equation 4.2.

PER =
Insertions+ Substitutions+Deletions

Phonemes
(4.2)

4.5.1 Phonotactic language modeling for APD

The phonotactic language model in an APD system models the way in which phonemes get together
in a language to create syllables and words in a similar way in which a grammar in ASR models
the way in which words get together in the target language or task to create sentences.

Two strategies for language modeling in APD were considered: First, a data-driven stochastic
grammar with bigrams and trigrams was trained from 700,000 sentences of the Spanish subset of
the Europarl corpus [Koehn, 2005], with more than 18 million words and more than 94 million
phonemes. A total of 628 bigrams and 9110 trigrams were created for the grammar with phone
units and 1834 bigrams and 10316 trigrams were trained for the phonotactic grammar using sub-
phone units.

Figure 4.8: Rule-based phonotactic grammar

A rule-based grammar was created following the rules of creation of syllables in the Spanish
language. This grammar followed the diagram in Figure 4.8, where a word was a sequence of
syllables, whose structure was the traditional onset-rhyme structure, where the onset and coda
were optional parts of the syllable. The onset of the syllable was every possible consonant or the
cluster of a plosive or fricative with the vibrant /R/ or the lateral /l/. The nucleus was a single
vowel or a diphthong or triphtong created with the glides [j] or [w]. Finally, the coda was every
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possible consonant. This grammar fitted well to a big majority of the possible instances in Spanish,
being more than enough for the words in the target task.

4.5.2 Results in the unimpaired speakers

The results with the reference speakers in Table 4.9 marked the good properties of the designed
APD system. The results with the sub-phone TD models (8.48% PER) achieved a decent
performance for this task, indicating the accuracy of the phonotactic recognizer used in this task.
Another interesting conclusion was the similar performance achieved by the rule-based grammar
in comparison with the trained data-driven grammar, marking the well-matching of the syllable
creating rules to the language. Anyways, these results would require to be generalized to a more
difficult task to evaluate this performance of the two models. Furthermore, the rule-based grammar
was tested only with the the phone units due to the difficult inclusion of the context dependencies
in the grammar that was the main feature of the sub-phone units.

Table 4.9: Baseline APD results for the unimpaired speakers (TI models)
PER results with TI models PER results with TD models

Phoneme models Sub-phone models Phoneme models Sub-phone models
Rule-based Stochastic Stochastic Rule-based Stochastic Stochastic

33.40% 32.55% 26.42% 16.24% 15.76% 8.48%

4.5.3 Results in the impaired speakers

Both TI and TD models were evaluated in these experiments with phoneme and sub-phone models,
and the results are given in Tables 4.10 and 4.11. Results indicated a significant loss of performance
for the impaired speakers compared to the reference ones, marking once again the strong influence
of the speakers’ disorders in the performance of the APD system as it did in the performance of
the ASR system.

Table 4.10: Baseline APD results for the impaired speakers (TI models)
PER results with TI models

Phoneme Sub-phone Phoneme Sub-phone
Speaker Rules Stochastic Stochastic Speaker Rules Stochastic Stochastic
Spk01 52.31% 50.86% 53.68% Spk02 60.70% 56.68% 61.99%
Spk03 58.90% 58.56% 62.93% Spk04 47.69% 45.55% 53.34%
Spk05 75.00% 70.38% 67.12% Spk06 51.37% 49.32% 49.14%
Spk07 58.99% 55.14% 57.79% Spk08 59.85% 59.85% 63.44%
Spk09 63.27% 57.62% 58.30% Spk10 61.30% 60.19% 65.50%
Spk11 45.55% 42.55% 39.73% Spk12 79.54% 75.26% 75.86%
Spk13 72.09% 72.00% 72.52% Spk14 58.56% 54.28% 58.90%
AV G 60.37% 57.73% 60.02%

The gain for applying TD models was around 20% in all cases (sub-phone and phoneme models
with rule-based and data-driven grammars); significantly smaller than the gain in ASR with TD
models which was 30%. In this task, the mismatch between adult trained TI models and children
trained TD models had less impact in the overall PER than it had in the WER, indicating that
the speakers’ disorders had a very stronger effect at the phoneme level than at the word level.
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Table 4.11: Baseline APD results for the impaired speakers (TD models)
PER results with TD models

Phoneme Sub-phone Phoneme Sub-phone
Speaker Rules Stochastic Stochastic Speaker Rules Stochastic Stochastic
Spk01 42.89% 41.18% 37.67% Spk02 43.24% 42.04% 42.04%
Spk03 45.21% 45.29% 42.81% Spk04 30.39% 29.62% 26.03%
Spk05 70.55% 68.16% 61.04% Spk06 34.42% 33.82% 31.42%
Spk07 50.86% 49.74% 48.20% Spk08 54.37% 54.02% 58.22%
Spk09 42.89% 41.27% 34.59% Spk10 54.88% 53.51% 53.42%
Spk11 35.96% 34.67% 25.94% Spk12 79.02% 76.71% 72.86%
Spk13 69.61% 67.38% 67.81% Spk14 40.92% 38.44% 34.67%
AV G 49.66% 48.28% 45.48%

4.6 Influence of the Acoustic and Lexical Disorders

The previous results all across this Chapter have shown the significant decrease in ASR and APD
performance between unimpaired and impaired speakers. Considering that all the speakers in both
groups were equally balanced in age and gender and that, the unimpaired and impaired groups
were age-matched, it could be hypothesized that this difference in performance was due to the
speech and language disorders that the impaired speakers were suffering. These impairments had
acoustic and lexical effects on this speech, that, at the lexical level, were measured in terms of
the phonetic mispronunciations made by these speakers and labeled by a set of human experts in
Section 3.6. The presence of correlation between these mispronunciations and the ASR and APD
results could assure the hypothesis of the influence of the disorders in the performance of both
systems and somehow separate the acoustic and lexical effects of the disorders.

Figure 4.9: Correlation of the WER results with the percentage of correct phonemes
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4.6.1 WER and mispronunciations

The possible relationship between the ASR results and the different impairments of the speakers
arose when evaluating the separated results per speaker in terms of their rates of mispronunciations.
In the best system described yet (word TD models), the scatterplot between the WER of each
speaker against the rate of mispronunciations of that speaker is given in Figure 4.9. The same
figure plots the regression linear function for this scatterplot (y = 134.38 − 1.3173x) whose r
value was 0.938, indicating the existing correlation that could be detected at first sight from the
scatterplot.

However, these results might have a dependency on the speakers’ acoustical properties of their
speech, so a further study was made to study in a speaker independent way how the number
of mispronunciations per word affected the ASR results. In this case, a different WER was
extracted for the words according to the number of phonemes within the word and the number
of mispronounced phonemes in the word. These results can be seen in Table 4.12 for sub-phone
TD models (where N/A indicates cases with no examples). As this Table indicated, words with
no mispronounced phonemes (1,669, 52.29% of the total) achieved a WER (9.1%) closer to the
results achieved in the same situation (word TD models) with the unimpaired speakers (2.04%),
with the WER increasing as the number of mispronunciations increased for all word lengths.

Table 4.12: WER depending on the number of phonetic mispronunciations
Number of Number of mispronounced phonemes in the word
Phonemes 0 1 2 3 4 5 6 7 8

3 8.4% 30.5% 85.7% N/A N/A N/A N/A N/A N/A
4 10.9% 35.0% 66.7% 70.0% N/A N/A N/A N/A N/A
5 11.1% 40.8% 57.6% 80.7% 100.0% 100.0% N/A N/A N/A
6 5.4% 18.4% 50.0% 77.4% 85.7% 100.0% N/A N/A N/A
7 1.7% 7.9% 34.6% 59.3% 91.7% 100.0% 100.0% N/A N/A
8 6.8% 14.6% 73.3% 88.2% 80.0% 96.2% 92.0% 100.0% 100.0%
9 0.0% 8.3% 33.3% 66.7% 66.7% 100.0% 100.0% 100.0% 100.0%

All 9.1% 30.7% 58.3% 75.6% 88.4% 97.6% 92.86% 100.0% 100.0%

With these results, it was seen how correctly pronounced words were consistently recognized
with a high rate in all cases, while strongly mispronounced words were not recognized in nearly
100% of cases when half or more of the phonemes mispronounced. These results were considered
for the ASR-based validation of word-level utterances in speech therapy tools like “Vocaliza”, as it
will be presented in Section 10.2.2. This tool based part of its evaluation in the performance of the
ASR system, which has been shown to be highly dependent on the quality of the pronunciation in
terms of the number of mispronunciations.

After this review, a more precise description of the different elements present in the disordered
speech could be given. An approximation is shown in Figure 4.10 with the results obtained with
sub-phone models. This Figure presents a line whose axis represents the values of WER: In the
bottom right of the line, the 0.0% WER represents the ideal recognition system; the closest system
is that in which the acoustic models are fully adapted to the task and the domain, which happened
with the children speech TD models obtaining a 2.1% WER over children reference speech. In
the top left of the line, the results with TI models over disordered children speech (36.7% from
Table 4.2). From this point to the end of the line there are three effects that were separated with
different experiments:

The training of TD models produced an improvement in the system, shifting the WER to a
value of 28.2% (from Table 4.5). This 24.57% of difference was, hence, hypothesized to be caused
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by the acoustic mismatch between adult and children speech.
The evaluation of those words which were labeled with all their phonemes as correctly

pronounced obtained a WER of 9.1% (from Table 4.12). This further 73.18% of difference was,
hence, caused by the lexical variants due to the speech and language disorders in the speakers.

Finally, the remaining difference between this last value of 9.1% WER and the best possible
system (2.1%) could be hypothesized to be caused by the acoustic distortion due to the speech
disorders of the speakers.

Figure 4.10: Influence of the different elements in speech over the WER

These hypotheses were just gross simplifications of the complicated processes of speech
production in these impaired speakers, because the many interrelations between acoustic and lexical
levels, as lexical mistakes could be produced by either top-level linguistic disorders or acoustic
disorders and distortion, were not considered with the experiments that were done. Furthermore,
there was always the underlying speaker variability in all the ASR experiments that could not be
neglected, even when special care was taken to balance in age and gender the impaired speakers
selection. Figure 4.10 just pointed all this possible effects in a simple and direct way.

4.6.2 PER and mispronunciations

A similar study could be made in terms of the PER of the proposed APD system seen in Section
4.5. While the PER achieved in the impaired speakers task clearly overpassed the PER of the
unimpaired speakers, these results were obtained considering the canonical transcription as the
ground truth of the speakers utterances. But the outcome of the human labeling showed than in
18% of the phonemes this was not accurate.

A different measure of the PER was considered: Instead of considering a recognition task, it
was considered as a detection task. In this task, as it will be seen in the methods proposed in
Chapter 8, the aim of the APD is to recognize correctly the actual pronounced phonemes and
to reject the incorrectly pronounced phonemes (either deleting them from the output string or
substituting them).

Table 4.13: FAR and FRR values for the outcome of the APD
Phoneme models Sub-phone models
FAR FRR FAR FRR

TI 11.84% 43.33% 9.17% 51.17%
TD 12.26% 31.27% 10.52% 33.68%

The values in this task are shown on Table 4.13 for all the acoustic models evaluated in this
Chapter in terms of False Acceptance Ratio (FAR) and FRR. These measures were defined as it
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has been traditionally used in detection problems as the rate of incorrect units falsely accepted
and correct units falsely rejected in Equations 4.3 and 4.4.

FAR =
Incorrect units accepted as correct

Incorrect units
(4.3)

FAR =
Correct units rejected as incorrect

Correct units
(4.4)

The values of the False Rejection Ratio (FRR) are the values of PER for the correctly
pronounced phonemes. These newly obtained values were closer to the results for the impaired
speakers, but still significantly over [Saz et al., 2009d]. Only the data-driven grammars were
evaluated, as the rule-based obtained a similar result for the evaluation done in phone models.

Once again, it was seen the different performance that ASR and APD systems could achieve
when separating all types of existing data (lexically accurate or lexically incorrect). Furthermore,
the proposed systems showed very high ability to discard incorrectly pronounced phonemes (FAR
as low as 10%), although the rejection ratio of correct phonemes was too high to allow the use of
the APD system as PV method without further help from other methods as it will be explain in
further Chapters. It was also remarkable how TD models reduced the FRR (and PER) without
increasing the FAR, indicating how these models were more accurate and fitted better to the
children speech within the task.
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Chapter 5

Acoustic Analysis of the Corpus

Come forth Lazarus!
And he came fifth and lost the job.

-James Joyce, Ulysses

In the two previous Chapters, a novel corpus with speech from children with disordered speech
has been presented and the baseline results in recognition shown. A major degradation in the
performance of ASR and APD systems has been shown, with a strong correlation with the grade
of disorder of the speakers, at both the acoustic and lexical levels. The two following Chapters
will try to further show the degradation of the acoustic and lexical properties within the impaired
children’ speech; with the current Chapter measuring the acoustic distortion in different acoustic
features [Saz et al., 2006a, Saz et al., 2009g] of speech to understand the changes in the speech
production due to the different speech impairments.

The following Chapter is organized as follows: Section 5.1 will review the most important
acoustic and suprasegmental features that affect the production and perception of the Spanish
vowels; with the method used for extracting these features also to be presented. In Sections 5.2
and 5.3, the values of these features for the set of speakers in the unimpaired and impaired corpus,
respectively, will be presented. Finally, the comparative study of the values for both groups will
be made in Section 5.3 and the possible degradations in impaired speech will be measured and
studied.

5.1 Acoustic Features for Analysis

The selection of the acoustic features to study the quality of the speech from a given speaker is not
an straightforward decision. Consonants are described by their articulatory features, and there
is not a unique relation between acoustic and articulatory features that can help to define them
acoustically [Neiberg et al., 2008]. Different works oriented to the detection of the articulatory
features from purely the acoustic signal having shown these difficulties [Liu, 1996], as the only
accurate way to detect articulatory features is by means of an electropalatograph. This way, for
the study of the acoustic distortion introduced by the impaired speakers in their speech, it was
decided to restrict the study to the 5 vowels of the Spanish language, which are described uniquely
by their acoustic properties (mainly formants).

This imposed restriction limited the outcome of the acoustic analysis carried out in this
Chapter, but it was assumable as the goal of the Chapter was just to obtain a brief outlook
to the acoustic distortion hidden in the disordered speech from the impaired speakers, whose
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significance in the degradation of the ASR results was shown in Chapter 4. Hence, the selection
of vowels to perform the acoustic analysis on the disordered speech in the corpus and measure the
sources of acoustic degradation with relation to speech acquired from the age-matched individuals
was reassured.

5.1.1 Acoustic features in the Spanish vowels

The Spanish language contains five vowels (/a/, /e/, /i/, /o/ and /u/) as seen in Appendix A.
These vowels are defined by the position of the tongue in the mouth in a 2-dimensional way (up
vs. down and front vs. back). There are two allophones of the /i/ and /u/ vowels acting like glides
([j] and [w], respectively) that, despite being close to the vowels, cannot be considered as vocalic
sounds when they are unstressed and make the transition from or to a purely vocalic sound which
is the nucleus in the syllable [Hualde, 2005]. Hence, these glides were never considered for analysis
in this work. Apart from the information provided in the formants, other suprasegmental features
affect the perception of vowels and were also studied to evaluate possible further difficulties within
the production of speech by the impaired speakers.

Formant frequencies are the only acoustic feature needed to describe Spanish vowels, where
these frequencies rely heavily on the articulatory properties of each vowel [Quilis, 1981]. As
mentioned, the two main articulatory properties are the horizontal position of the tongue (defining
palatal or front vowels vs. velar or back vowels) and the vertical position of the tongue (defining
high vowels vs. low vowels). The vertical position of the tongue affects the first formant, while
the horizontal position affects the second formant. Higher order formants like the third or fourth
formants do not have a significant impact in Spanish vowels and were not considered in this work;
moreover, tone does not have an impact either in the distinction of vowels.

According to this organization, Spanish has two high vowels (low first formant, 300-400
Hz): the velar /u/ (low second formant, 900 Hz) and the palatal /i/ (high second formant,
2300-2700 Hz), while only one low vowel (high first formant, 700-900 Hz) /a/ with a central
position between palatal and velar (middle second formant, 1500-1700 Hz). Finally, two more
vowels share a central-high position (high first formant, 500-600 Hz): the velar /o/ (low second
formant, 1000-1200 Hz) and the palatal /e/ (high second formant, 2000-2400 Hz). These
values of the formants are the approximate standard values for an adult healthy speaker
[Mart́ınez-Celdrán and Fernández-Planas, 2007], and some variations can be produced with age
and gender, what made necessary the comparative study of the impaired speakers with age-matched
unimpaired speakers.

There are three main acoustic features that affect the suprasegmental production in Spanish:
Tone, intensity and duration. In isolated words like was the case in this analysis, these features
mostly affect the distinct perception of stressed and unstressed vowels, although they do it in very
different ways. Stress is considered in many phonetic theories as a binary feature that can be
characterized as +stress or -stress, as perceived by the listener. In Spanish, each word presents
an stressed syllable, marked over the vowel which is nucleus in that syllable. Several trends differ
in which suprasegmental feature carries most of the stress information, although nowadays it is
widely accepted that tone is the main carrier of stress [Fry, 1958], followed by intensity. Anyways,
no categorical assertion can be made in this subject, as the main prosody of the sentence and other
microprosodic features can affect this perception in different utterances, as well as in the different
characterization of tone in each language.

Finally, duration also has an influence in the perception of stress, but it is very affected by
the fact that every syllable has a canonic length, so the duration of a stressed vowel is only
comparable to the duration of the same unstressed vowel when they are the nucleus of the same
syllabic structure. Otherwise, no categorical conclusion can be made from the comparison of
the duration of stressed and unstressed vowels. However, a correct control of speech production
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produces a correct control of phoneme duration and influences the perception of the speech by the
listener.

5.1.2 Estimation of the acoustic features

The acoustic analysis carried out aimed to achieve a robust estimation of the four features
concerned for study. State-of-the-art speech processing algorithms were implemented to estimate
these values following the diagram on Figure 5.1 as also implemented in the speech therapy tool
“PreLingua” for the improvement of phonatory controls in young children in Section 10.1.1. The
speech processing was applied framewise (with a frame length of 25 ms. and a frame shift of 10
ms.) after obtaining the automated segmentation of the input speech via a Viterbi-based forced
alignment. TD-HMMs used for ASR in Chapter 4 were used for the Viterbi alignment.

Figure 5.1: Estimation of pitch, energy and formants

An example of the outcome of the automated segmentation over one of the utterances of the
reference speakers can be seen in Figure 5.2(a). The automated segmentation is initially based on
the canonic transcription of every one of the utterances (isolated words) but, to avoid the pernicious
effect of phoneme deletions in the pronunciations of the impaired speakers, the deleted phonemes
(as perceived in the human labeling) were not fed as input into the automated segmentation, as
shown in the example in Figure 5.2(b).

After segmentation, impaired speech was studied in two different groups: Correctly pronounced
vowels and mispronounced vowels. This way, the intelligibility could be studied separately in the
situations in which the human experts understood the vowel as correctly pronounced (lexical
accuracy) and in the situation of perception of mispronunciations (lexical substitution).

The feature estimation was carried out following the next steps: After signal pre-processing
(DC offset, pre-emphasis and Hamming windowing), a LPC analysis was applied to every frame
to extract the roots of the coefficients ak in the 16-order speech prediction model in Equation 5.1.

H(z) =
G

1−
∑16

k=1(akz−k)
(5.1)

Where the input signal s(n) was estimated as ŝ(n) using the time-domain impulsional response
h(n) associated to H(z) in Equation 5.2, with d(n) the glottal pulse signal.

ŝ(n) = h(n) ∗ d(n) (5.2)

The estimation of the formants used the 16 LPC coefficients ak in the prediction model H(z)
and extracted the polynomial roots, each one of them associated to a formant frequency. The roots
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with the two higher absolute values corresponded to the first and second formants.

(a) Word “moto” (b) Word “árbol” with deletions of /R/ and /l/

Figure 5.2: Examples of segmentation via forced alignment

Tone estimation calculated the autocorrelation of the prediction error e(n) given in Equation
5.3 and its autocorrelation r(k) in Equation 5.4 with frl the value of frame length (25 ms. per
frame).

e(n) = s(n)− ŝ(n) (5.3)

r(k) =
frl∑
n=0

e(n)e(n− k) (5.4)

The index k in which the autocorrelation had its maximum value outside from the area around
the origin r(0) was set as the pitch period (kpitch) associated to the pitch frequency as in Equation
5.5 with an Fsample of 16 kHz.

Fpitch =
Fsample
kpitch

(5.5)

An estimation of the sonority value, as the ratio between the maximum value of autocorrelation
and the autocorrelation in the origin (Equation 5.6), indicated if the frame was sonorant enough
to be considered as a vowel and, hence, use the calculated pitch and formant values as correct.
A high sonority ratio avoided the possibility of pitch and formant prediction mistakes (especially
in vowel boundaries), although some correct frames might be rejected. Moreover, it intended to
compute the formant values in the steady central part of the vowel to avoid possible coarticulation
effects in them.

sonority =
r(kpitch)
r(0)

(5.6)

For the intensity estimation, some arguments were considered prior to direct estimation. First,
actual values of intensity (this is, sample values or directly computed frame energy) could not be
considered into the study as it was not possible to reliably argue that input intensity during the
recording process stayed steady through all different sessions, as the whole process of recordings
from all the speakers took more than one year. However, it was reasonable to argue that SNR
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maintained steady values independently of the input volume since a close-talk microphone was
used for the recordings.

This assumption was evaluated by the estimation of the background noise power level calculated
for the corpus used in the work, whose mean value was 27.15 dB (7.22 dB of standard deviation)
for the reference recordings and 27.07 dB (6.61 dB of standard deviation) for the recordings of the
impaired speakers, which validated the hypothesis that noise level was directly related to intensity
level and maintained similar and good properties through all the recordings. Hence, prior to energy
estimation, average background noise power was calculated through all the frames considered as
non-speech in the forced alignment. Afterwards, for each frame of the vowels, framewise energy
was calculated and SNR obtained by subtracting the noise power in the utterance. The values of
intensity provided through this Chapter will refer to these values of SNR as it was just described.

Duration calculation was done by estimating the length of the vowel in milliseconds, computing
the number of frames assigned to each vowel in the forced alignment and then multiplying by the
frame shift value of 10 ms. per frame. A threshold over the energy was applied to restrict the vowel
boundaries and hence avoid the effect of coarticulation in the transitions to or from consonantal
sounds. This threshold was pre-set to restrict boundary frames with low energy whose calculation
of pitch and formants could be inaccurate.

(a) Formant map (b) Pitch means with age

(c) Intensity histogram (d) Duration histogram

Figure 5.3: Acoustic features in the reference speakers
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5.2 Values of the Selected Features in Children’ Speech

The reference 232 unimpaired young speakers were initially analyzed to determine the standard
values of the formants and suprasegmental features under study in this work in a population in
the same age than the impaired speakers. Some general assumptions were made concerning the
statistical properties of the features studied in this work: First, the values of the formants were
modeled as 2-dimension Gaussian distributions for each vowel. Values of pitch and energy were
modeled like a Gaussian distribution separately for stressed and unstressed vowels; where values
of pitch were also modeled independently for different speakers of age groups separately. Finally,
the values of vowel duration were modeled as a Gaussian distribution.

Table 5.1: Formant statistics in the unimpaired speakers
First formant Second formant

Vowel µ σ γ1 γ2 µ σ γ1 γ2

/a/ 803.8 120.2 0.33 -2.83 1645.2 299.3 0.23 -0.63
/e/ 511.0 66.2 -0.45 -3.00 2396.6 410.7 0.49 0.13
/i/ 382.0 78.8 1.10 -2.91 2825.3 247.3 -0.15 0.94
/o/ 566.5 70.2 -0.40 -2.94 1198.6 206.3 1.49 3.16
/u/ 436.3 53.9 -0.60 -2.98 1106.7 198.3 0.55 0.10

Hence, all these features were described in terms of their mean (µ), standard deviation (σ),
skewness (γ1) and excess Kurtosis (γ2) values; where the values of γ1 and γ2 validated the Gaussian
assumptions. Once assured the Gaussian properties in the reference speakers, µ and σ were the
only statistics for the rest of the study. The graphical representation of these features for the
unimpaired speakers is provided in Figure 5.3.

Table 5.2: Pitch statistics in the unimpaired speakers
Stressed vowels Unstressed vowels

Group µ σ γ1 γ2 µ σ γ1 γ2

Males 10yo 240.4 23.1 0.18 -0.14 214.2 25.8 1.34 5.38
Females 10yo 246.9 20.9 0.19 -0.23 218.8 23.6 0.99 3.74
Males 11yo 249.2 23.5 0.06 1.57 209.0 23.5 0.94 5.10

Females 11yo 255.2 28.3 0.20 -0.63 217.6 26.6 0.41 0.32
Males 12yo 222.9 31.7 -0.58 0.99 205.0 26.2 0.85 5.45

Females 12yo 237.4 22.8 -0.27 0.58 223.6 31.1 0.85 1.86
Males 13yo 189.9 31.4 0.10 0.86 179.1 30.1 1.39 7.62

Females 13yo 223.4 21.7 -0.21 0.28 205.0 23.5 0.83 3.07
Males 14yo 172.0 34.4 0.28 -1.22 169.0 27.3 0.18 -0.72

Females 14yo 226.0 17.6 0.12 1.82 208.3 22.0 1.51 7.29
Males 15yo 164.7 30.1 -0.07 -1.32 159.7 23.4 0.39 1.01

Females 15yo 219.2 19.1 0.16 1.25 198.3.2 24.4 1.59 7.35
Males 16yo 142.8 18.7 1.74 4.96 135.9 22.6 2.94 9.37

Females 16yo 210.0 20.9 0.08 -0.55 190.0 23.5 1.18 4.26
Males 17yo 143.8 25.0 1.24 1.75 138.9 22.9 2.37 6.65

Females 17yo 204.7 17.3 0.23 0.46 189.9 23.2 1.50 8.87

The results of the formant analysis in Table 5.1, plotted in Figure 5.3(a), obtained results in the
range of the canonical values of the Spanish formants map, adapted to the known fact that those
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speakers with a higher pitch will also present higher formant values [Rodŕıguez and Lleida, 2009].
No normalization was applied to these formant values, as these values represented the standard
formants for the population in the age of the impaired speakers. Dispersion of the values (measured
as standard deviation) was in the reasonable margins for a set of different speakers like the one
used in this work. The 5 vowels were correctly separable and distinguishable in the formant map,
as could be expected from a group of healthy unimpaired speakers.

The pitch reference values were studied in terms of age and gender as in Table 5.2 and Figure
5.3(b). The difference in pitch between stressed and unstressed vowels was measured in around
20-30 Hz. for all cases, except for the older males where these differences got reduced in absolute
value. As expected, values of pitch got reduced for the reference speakers as the age was increasing,
with this reduction being especially noticeable for the male speakers. For the 17 years old speakers,
the pitch values were close to the standard pitch values for reference healthy adults (140Hz for the
male speakers and 190 Hz for the female speakers). The dispersion of the values (around 20-30
Hz. of standard deviation) was also between the expectable values.

Regarding the reference intensity values, a difference of 8 dBs in mean was measured between
stressed and unstressed vowels, indicating the special emphasis that stressed vowels have on the
production of speech. The histogram in Figure 5.3(c) and the values in Table 5.3 indicated the
statistical properties of both values and the separability of them, as the dispersion of the values
was kept in values around 8 dB of standard deviation.

Table 5.3: Energy statistics in the unimpaired speakers
Stressed vowels Unstressed vowels

µ σ γ1 γ2 µ σ γ1 γ2

37.39 7.00 -0.88 4.25 29.90 8.90 -0.95 3.64

Finally, the duration of the vowels obtained from the reference speakers in Figure 5.3(d) and
Table 5.4 gave a value of 111.8 msec. of duration per length with an standard deviation of 52.2
msec. These were normal values for the production of vowels in real speech, where every sound
can take around 50-150 msec.

Table 5.4: Duration statistics in the unimpaired speakers
µ σ γ1 γ2

111.8 52.2 0.73 1.86

5.3 Results of the Analysis for the Impaired Speakers

After the study of the reference values for the four features subject of analysis in this Chapter,
this Section brings the result of the analysis over the disordered speech with the same signal
processing tools introduced previously and used over the reference speech. The analysis separated
the correctly pronounced vowels from the mispronounced (substituted) vowels to understand how
their acoustic properties differed when the speakers were correctly pronouncing the vowels or when
producing a perceptible lexical mispronunication.

5.3.1 Formants in the disordered speech

The formant map for the 14 impaired speakers is shown on Figure 5.4. Figure 5.4(a) provides the
formant map for the vowels perceived as correctly pronounced by the human labelers, with their
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statistics given in the first columns of Table 5.5. Two major effects were appreciated: First, the
increase in the area of vowels /a/, /e/, /o/ and /u/ in the formant map in Figure 5.4(a), which was
appreciated as an increase in the standard deviation of the formants in Table 5.5 when compared
to the formants of the reference speakers in Table 5.1. And second, the approximation of vowels
/a/, /e/ and /o/ towards the center of the formants map in Figure 5.4(a), also appreciated in the
mean results in Table 5.5.

(a) Vowels labeled as correct (b) Vowels labeled as mispronounced

Figure 5.4: Formant map in the impaired speakers

Concerning the results for the vowels perceived as mispronounced by the human labelers, given
in Figure 5.4(b) and the second half of Table 5.5, it was appreciated a total confusion in the
formants as expectable in this case where a mistake in the pronounced vowel was made by the
speakers. In this case, all the formants were gathered around the middle of the formant map and
the standard deviation increased in most of the cases, although the statistical values of standard
deviation had to be taken cautiously because in some vowels there were not sufficient cases of
mispronunciations for such a significant modeling.

Table 5.5: Formant statistics in the impaired speakers
Correct vowels Mispronounced vowels

First formant Second formant First formant Second formant
Vowel µ σ µ σ µ σ µ σ

/a/ 822.1 205.6 1591.0 297.9 751.9 153.3 1575.8 313.0
/e/ 571.9 62.6 2270.5 391.3 599.9 99.8 2074.0 492.8
/i/ 366.9 70.5 2800.1 413.3 570.2 57.4 2124.5 146.6
/o/ 613.2 95.5 1249.9 213.5 626.3 74.0 1258.1 208.8
/u/ 395.0 79.7 1091.5 155.8 596.4 91.1 1178.8 94.8

In this case, what the speakers were really uttering was different from the canonical vowel to be
expected and what was initially a given vowel had been uttered as a totally different sound. Another
vowel, different from the canonical one, or a consonant, was uttered instead. As the labelers did
not provide the alternative transcription to the uttered word, it was not possible to obtain the
quality of the vowel production in those cases, but these results served secondarily as a validation
of the reliable labels set by the human experts to correctly detect these mispronunciations.
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5.3.2 Pitch in the disordered speech

The study of the pitch values for the impaired speakers was studied separately for each speaker;
the high dependence of pitch in age and gender did not allow for the study of the full group of
impaired speakers. These results for the impaired speakers are provided in Table 5.6 for correct
and mispronounced vowels.

Table 5.6: Pitch statistics in the impaired speakers
Correct vowels Mispronounced vowels

Stressed Unstressed Stressed Unstressed
Speaker µ σ µ σ µ σ µ σ

Spk01 313.5 25.1 287.2 26.5 - - - -
Spk02 299.9 18.9 258.8 26.2 288.9 28.3 274.5 28.8
Spk03 149.2 28.9 131.7 32.8 - - - -
Spk04 264.6 21.1 226.8 20.4 248.5 16.2 224.3 10.9
Spk05 244.1 44.6 205.9 42.9 247.5 49.3 212.1 43.0
Spk06 140.2 31.9 130.1 33.3 - - - -
Spk07 155.5 19.5 142.2 16.4 - - - -
Spk08 207.9 19.9 178.4 28.5 211.0 23.5 185.8 21.2
Spk09 253.4 20.5 237.2 23.6 - - - -
Spk10 247.4 30.1 217.5 30.4 259.9 39.4 218.2 16.9
Spk11 247.5 18.5 199.6 23.7 221.5 15.4 231.6 14.4
Spk12 156.7 12.3 145.6 36.0 154.1 8.3 145.1 16.5
Spk13 268.7 29.3 239.8 33.5 268.7 28.7 243.5 30.4
Spk14 265.3 21.9 223.4 27.1 233.1 12.2 204.7 7.8

It could be seen as impaired speakers kept a good control of these prosodic features: Speakers
showed the ability to discriminate stressed vowels from unstressed vowels in similar ways to the
reference speakers. However, some of the results of pitch values for mispronounced vowels could
not be studied for speakers Spk01, Spk03, Spk06, Spk07 and Spk09, due to the lack of enough
mispronounced vowels to obtain a significant statistical modeling. These speakers were the ones
who produced a lower rate of mispronunciations and their influence in the study of how the acoustic
features varied in the mispronounced phonemes was much smaller.

5.3.3 Energy in the disordered speech

Regarding the values of framewise energy (SNR as explained on Section 5.1), the average results
for all the impaired speakers are given in Table 5.7. It was seen as the energy distinction between
stressed and unstressed vowels was totally lost for the correctly pronounced vowels and was even
reverted for mispronounced vowels, although this could be originated by some other causes not
under study in this analysis. In general, impaired speakers tended to lower the intensity of their
speech production, as unstressed vowels kept similar energy mean values than unstressed vowels
by the unimpaired speakers.

Moreover, the dispersion of the energy framewise values increased for the impaired speakers,
indicating that their speech production was more variable in terms of intensity than that of the
impaired speakers.
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Table 5.7: Energy statistics in the impaired speakers
Correct vowels Mispronounced vowels

Stressed Unstressed Stressed Unstressed
µ σ µ σ µ σ µ σ

31.95 12.14 31.60 11.39 28.53 13.08 33.90 10.25

5.3.4 Duration in the disordered speech

The statistics for the results of the vowel length in the group of 14 impaired speakers are shown on
Table 5.8. It could be seen that there was an increase in the average length of around 40 ms. for all
vowels when compared to the reference speakers in Table 5.4, for both cases of correctly pronounced
and mispronounced vowels. But what was more noticeable was the increase in standard deviation
(double than the dispersion in the unimpaired speakers), which indicated the presence of vowels
with an extremely variable length, meaning the existence of extremely long and extremely short
vowels.

Table 5.8: Duration statistics in the impaired speakers
Correct vowels Mispronounced vowels
µ σ µ σ

153.9 104.1 140.6 111.3

These results in the increasing of the dispersion of the duration, altogether with the increase
in dispersion in intensity shown previously, indicated that the speech production was less steady
for the disordered speech speakers.

5.4 Comparative Studies and Distortion Measurement

The results obtained in the previous Sections could give way to a discussion on several aspects of the
vocalic production of impaired speakers. The computation of several measures of distance between
statistical distributions like the Kullback-Leibler Divergence (KLD) and the Fisher’s Ratio (FR)
[Cover and Thomas, 1991] provided the required statistical analysis to understand the achieved
results. These two measures are known to provide a good metric of the discriminative power of
two different random variables. In this work, both helped to know the discriminative separation
between vowels in the formant map and between stressed and unstressed vowels in terms of tone
and intensity for both subsets of speakers.

For this work, it was considered the KLD definition for n-dimensional Gaussian distributions
(2-dimensional in the case of formants and 1-dimensional in the other features). This definition,
considered for two distributions A = ℵ(µA,ΣA) and B = ℵ(µB,ΣB) with µA and µB as mean
vectors, ΣA and ΣB diagonal covariance matrices and n the dimension of the distributions, is
given by Equation 5.7.

KL(A,B) =
n∑
i=0

(log(
ΣAi

ΣBi

) +
(µAi − µBi)

2

ΣBi

+
ΣAi

ΣBi

(5.7)

However, given this definition, the KLD had non-symmetric properties; this meant that
KL(A,B) 6= KL(B,A), so a symmetric Kullback-Leibler Divergence (sKLD) was defined in
Equation 5.8.
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sKLD(A,B) =
KLD(A,B) +KLD(B,A)

2
(5.8)

Furthermore, the FR equation for the two n-dimensional Gaussian distributions A = ℵ(µA,ΣA)
and B = ℵ(µB,ΣB) is given in Equation 5.9, and was symmetric by definition.

FR(A,B) =
n∑
i=0

(
(µAi − µBi)

2

ΣAi + ΣBi

) (5.9)

5.4.1 Formant degradation

Concerning the formants, there was an important decrease in sKLD and FR in the formant map
between the vowels /a/, /e/ and /o/ in Table 5.9, while vowels /i/ and /u/ separate from the other
3 vowels, increasing their sKLD and FR in the formant map.

Table 5.9: Formant distances in unimpaired and impaired speakers
Unimpaired Impaired (correct) Impaired (mispronounced)

Vowels sKLD FR sKLD FR sKLD FR
/a/-/e/ 18.59 6.74 17.43 3.26 4.26 1.42
/a/-/o/ 12.04 4.42 6.49 1.71 5.06 1.26
/e/-/i/ 5.91 2.37 11.36 5.59 5.61 0.08
/e/-/o/ 22.89 7.13 16.34 5.37 11.17 2.37
/o/-/u/ 4.99 2.27 7.42 3.43 2.18 0.18

To understand how this could affect the perception of vowels, it was studied the different rates
of appearance of the vowels in the Spanish language, not only in this corpus, but in some other
major text corpora in Spanish like the Europarl corpus [Koehn, 2005], which was seen in Section
4.5 as a good reference for phonotactic knowledge in Spanish, where the percentage of appearances
of vowels was measured as 11.83% for /e/, 9.51% for /a/, 8.07% for /o/ and only 4.28% for /i/
and 1.74% for /u/ of all the Spanish phonemes. This way, the distance between /a/, /e/ and /o/
is the one that affects mostly in Spanish, and according to Table 5.9, the distances between these
3 vowels (/a/ vs. /e/, /a/ vs. /o/ and /e/ vs. /o/) are the ones that suffered a major reduction
between unimpaired and impaired speakers.

This reduction in discriminative power became total in the situation in which the impaired
speakers were making mispronunciations detected by the human experts. Once again, this result
related to the fact that speakers were not uttering the vowel that they were expected to in the
canonical transcription of the word.

5.4.2 Pitch degradation

Table 5.10 shows that there was no decrease in the weighted sKLD and FR in pitch between
unimpaired speakers and impaired speakers. The values for the impaired speakers was obtained
as the average of the sKLD and FR between stressed and unstressed vowels for each age group in
Table 5.2; while the values of sKLD and FR for the impaired speakers was obtained as the average
of the respective sKLD and FR values for each impaired speaker in Table 5.6.

These results were consistent with some previous works [Patel, 2002] where it was seen that
heavily impaired speakers could control some prosodic features in their speech even when they lost
their intelligibility in their vowel production. This control of the fundamental frequency was kept
even in the case of mispronunciation of the vowel, which indicated that it was independent of the
actual pronounced phoneme.
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Table 5.10: Pitch distance of stressed-unstressed vowels in unimpaired and impaired speakers
Unimpaired Impaired (correct) Impaired (mispronounced)
sKLD FR sKLD FR sKLD FR
0.85 0.38 1.91 0.77 2.70 0.91

5.4.3 Energy degradation

It was in terms of energy (or intensity) where impaired speakers seemed to have bigger problems
in the control of prosody and stress. There was a total reduction in the sKLD and the FR in the
discriminative power between these two distributions, as seen in Table 5.11. For mispronounced
vowels, even there was a contrary effect as unstressed vowels had more intensity that stressed
vowels, although it was not significant.

Table 5.11: Energy distance of stressed-unstressed vowels in unimpaired and impaired speakers
Unimpaired Impaired (correct) Impaired (mispronounced)
sKLD FR sKLD FR sKLD FR
1.04 0.44 0.01 0.00 - -

The origin of this total lack of stress discrimination by means of the energy, on the contrary to
pitch, which kept properly the stress features, is due to the lower intensity in the stressed vowels
and to the increase in the dispersion of the intensity values. This indicated, as mentioned before,
that the speech production in the impaired was less steady than that of the unimpaired speakers.

5.4.4 Duration degradation

Finally, the study of the length of the production of vowels by the impaired speakers in Table 5.8
showed an effect of dispersion in the length of the vowels. This meant that vowels uttered by the
impaired speakers were more often abnormally long or short. Actually, two separate effects could
be appreciated; on one side, there was an effect of lengthening of the vowels (around 30% of increase
in the mean values between Tables 5.4 and 5.8); and on the other side, the dramatic increase in
standard deviation (double in the comparison between impaired and unimpaired speakers).

The increase in the duration might be due to hesitations or slowness in the impaired speakers
to reassure their speech production in the cases in which they have difficulties for the correct
pronunciation. The higher dispersion might indicate once again, as in the case of the intensity
study, the inability of the impaired speakers to keep an steady oral production through different
words and utterances.



Chapter 6

Lexical Analysis of the Corpus

Logic, n. The art of thinking and reasoning in strict
accordance with the limitations and incapacities of the
human misunderstanding

-Ambrose Bierce, The Devil’s Dictionary

After evaluating and measuring the acoustic degradation on the disordered speech of the
Alborada-I3A corpus, this Chapter digs into the evaluation of the lexical variants introduced in
this speech by the speakers due to functional speech disorders. These lexical variants are analized
as perceived by the human experts in Chapter 3 and are studied over the whole range of phonemes
(consonants and vowels) to understand the possible origins and patterns of these lexical difficulties.

The Chapter is organized as follows: Section 6.1 will analyze the distribution of the impaired
speakers’ mispronunciations over the set of Spanish phonemes and the effect of some articulatory
features like point and manner of articulation in these mispronunciations; finally it will measure
the consistency of the speaker’s pronunciation across different sessions. Posteriorly, in Section 6.2,
the influence of the syllabic structure and context on these patterns of mispronunciations will be
studied; and finally, in Section 6.3, the studies of the lexical degradation and variants introduced by
these speakers will be compared to the processes and patterns in language acquisition of preliterate
Spanish children.

6.1 Non-contextual Analysis of Phonetic Mispronunciations

The presentation of the words in the RFI in Section 3.4 showed how the 24 phonemes of Spanish
language in Appendix A (23 with the reduction of /J

fl
/ to /L/ by yéısmo) appeared in different

amounts in this set of words. The comparison of how the different phonemes were mispronounced
with different rates by the impaired speakers could be seen as an initial step to understand the
phonological and phonetic patterns of the mispronunciations.

Although it was seen that each speaker had a very different rate of mispronunciations; with
some speakers producing up to 56% of mispronunciations, and others barely reaching the 1% of
mispronunciations, all the analysis of the lexical variants in this Chapter was made totally speaker
independent, gathering all the utterances from the 14 speakers. The possible loss of specificity
due to the merge of speakers with such different characteristics was subdued to the fact that, by
grouping as much data as possible the results were much more significant from a statistical point
of view.

Tables 6.1 and 6.2 present the rate of correct, substituted and deleted phonemes for vowels
and consonants separately. Vowels presented a very high rate of correctness (over 90% in average),
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except for the high vowels /i/ and /u/, in which higher rates of mispronunciations or deletions
were observed. Consonants, on the contrary, suffered a more noticeable rate of mispronunciations
for all cases, including some dramatic cases like /T/, /r/ and /rr/ with a correctness rate around
50% or lower. On the other side, the fricative consonant /x/ obtained a correctness rate over 90%.
As it can be seen, there was no separation into sounds or allophones for the study in Tables 6.1 and
6.2, as this initial study was totally non-dependent on the actual context in which each studied
phoneme appeared.

Table 6.1: Labeling rates for vowels
Percentage of correct, substituted and deleted phonemes per phoneme

Phoneme (SAMPA) Number of Examples Correct Substituted Deleted
/a/ 3248 95.85% 2.37% 1.79%
/o/ 2128 95.39% 3.53% 1.08%
/e/ 1008 90.08% 5.75% 4.17%
/u/ 504 84.33% 10.71% 4.96%
/i/ 784 83.93% 7.91% 8.16%

Table 6.2: Labeling rates for consonants
Percentage of correct, substituted and deleted phonemes per phoneme

Phoneme (SAMPA) Number of Examples Correct Substituted Deleted
/x/ 224 91.52% 6.70% 1.79%
/t/ 784 87.76% 8.16% 4.08%
/p/ 1064 87.41% 7.80% 4.79%
/J/ 112 86.61% 7.14% 6.25%
/n/ 672 84.08% 7.89% 8.04%
/L/ 224 82.59% 15.18% 2.23%
/s/ 560 79.46% 10.89% 9.64%
/b/ 616 77.60% 17.21% 5.20%
/k/ 504 76.79% 15.67% 7.54%
/f/ 392 75.26% 19.64% 5.10%
/m/ 448 69.42% 12.50% 18.08%
/d/ 336 66.07% 22.62% 11.31%
/tS/ 112 63.39% 35.71% 0.89%
/l/ 952 61.45% 17.96% 20.59%
/g/ 280 61.43% 26.07% 12.50%
/T/ 224 58.48% 19.20% 22.32%
/r/ 1008 50.79% 21.63% 27.58%
/rr/ 168 35.12% 61.31% 3.57%

However, no conclusion could be extracted directly from these results. While some phonemes
had a very high correctness rate (mainly vowels and some consonants like /x/), most of the
phonemes were around a 60-80% correction rate, which did not indicate any special phonological
difficulty. If a phonological difficulty was present for these speakers, it would have produced a
total inability in the production of a certain phoneme or phonemes, as the speakers would have
never acquired such sound and they would be totally unable of uttering it. Next step was, hence,
to study the influence of possible difficulties due to the articulatory features of each consonantal
sound, mainly the point and manner of articulation in consonants.
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6.1.1 Influence of the point and manner of articulation

The point and manner of articulation are the two main features that describe the production of
consonants, altogether with the feature of voiceness or unvoiceness, as it can be seen in Appendix
A. These features describe the position of the tip of the tongue during the production of the
sound and the mode in which the air flows through the vocal tract. Physiological or functional
difficulties in the speech production may produce that the speaker presented a major difficulty in
the production of those sounds whose articulation point and mode required the correct functioning
of an element suffering an alteration (tongue, lips, etc).

The study of the rates of mispronunciation depending on the point of articulation was made
and the results are presented in Table 6.3. The influence of the point of articulation did not
seem relevant for the production of mispronunciations in these speakers. All points of articulation
presented a rate of correctness around 75-80%, except for alveolar consonants, whose rate got
decreased to 66.61%, accompanied by an increase to 18% of the deletion rate compared to the
values achieved by the rest of the points of articulation.

Table 6.3: Labeling rate for different points of articulation
Percentage of correct, substituted and deleted phonemes

Point of articulation Number of Examples Correct Substituted Deleted
Lips 2128 80.78% 11.51% 7.71%

Teeth 1736 76.96% 14.98% 8.06%
Alveolar ridge 3360 66.61% 16.25% 18.81%

Palate 448 78.79% 18.30% 2.90%
Velum 1008 75.79% 16.57% 7.64%

On the contrary, the study on the manner of articulation produced some more conclusive results
as seen in Table 6.4. Plosive, nasal and fricative consonants maintained a similar correctness rate
around 75-80%, but laterals and vibrants got lowered down to 65% and 48% respectively, in which
seemed like a major difficulty for these speakers.

Table 6.4: Labeling rates for different manners of articulation
Percentage of correct, substituted and deleted phonemes

Manner of articulation Number of Examples Correct Substituted Deleted
Plosives 3584 80.27% 13.42% 6.31%
Nasals 1232 78.98% 9.50% 11.53%

Fricatives 1512 75.86% 15.61% 8.53%
Laterals 1176 65.48% 17.43% 17.09%
Vibrants 1176 48.55% 27.30% 24.15%

From all the achieved results, very little conclusions could be extracted anyways. Neither the
point or the manner of articulation seemed to have a major influence in how speakers produced
their mispronunciations in their speech. The high mispronunciation rate of the phonemes /r/ and
/rr/ indicated a possible difficulty in the production of the alveolar vibrant consonants, also shared
by the lateral consonants /l/ and /L/. These two features (vibrants and laterals) are known to be
the most complicated for the acquisition of preliterate children or foreigners; but these problems
were not explained by possible phonological problems in the speakers, as that would result in the
total inability to utter them, which was not the case. Consequently, the influence of the phonetic
context was seen as the main possibility that made the speakers commit mispronunciations in some
situations of the phonemes, while uttering the same phoneme correctly in other situations.
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6.1.2 Consistency in the speakers mispronunciations

A possible effect that might have led to the lack of conclusiveness results in the phonological study
presented previously could be the possibility that the pronunciations given by the speakers of
the same word in the different sessions were very different. This inconsistency in the speakers’
pronunciation would make totally irrelevant any study of their production of mispronunciations as
these might change easily from utterance to utterance of the same word, without relation to any
stable pattern or origin.

The measure of this consistency or “rate of repeatability” was made directly at the phoneme
level; for each phoneme of a given word in the corpus there were four utterances made by every
speaker. This measure aimed to know how probable was to obtain a similar label in the phoneme
of a word if the label of that phoneme in another utterance of the same word was known previously.
The human labels given to every possible pair of phonemes were compared, and the number of times
this comparison obtained a similar result were counted. The relationship between this value and
the total number of comparisons (292 phonemes per speaker and 6 comparisons per phoneme: 1,752
total comparisons) provided finally the measurement of the “rate of repeatability” or consistency
in the speakers’ pronunciation.

Example 6.1.1 An example of the process for measuring the consistency in the speakers’
pronunciation is shown on Figure 6.1. Considering the four utterances from a given speaker of the
word ‘árbol’ in the four sessions, there are 6 possible comparisons of sessions: Session 1 vs. Session
2, Session 1 vs. Session 3, Session 1 vs. Session 4, Session 2 vs. Session 3, Session 2 vs. Session 4
and Session 3 vs. Session 4. In all of these cases, the labeling assigned to the 5 phonemes of the
word are compared, giving a result for each case. The final value is obtained adding up the results
from all cases. In the example, 24 out of the 30 possible phoneme comparisons obtain the same
labeling, providing a final rate of repeatability or consistency of 80%.

Figure 6.1: Measure of the rate of repeatability (consistency) in the impaired speakers

The complete results per speaker after this process are shown in Table 6.5. The mean result
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of 87.91% indicated that there was a very high consistency in the speakers’ pronunciation and the
pronunciation of a given word by a speaker could be predicted by listening to previous utterances
of the same word. These results also validated the quality of the process of human labeling, as
inconsistencies between the labels assigned to different utterances of the same word by a speaker
might have been provoked by a very inconsistent labeling by the experts. It was to remember
that each human expert was never handed more than 2 sessions of the same speaker (each speaker
requested around 7 or 8 different experts), so this consistence in the labeling between sessions of
the same speaker could not be due to the overexposure of these sessions to a same labeler.

Table 6.5: Consistency the impaired speakers’ pronunciation
Speaker Consistency Speaker Consistency
Spk01 98.00% Spk02 87.10%
Spk03 91.04% Spk04 95.77%
Spk05 72.26% Spk06 98.74%
Spk07 88.47% Spk08 81.62%
Spk09 94.29% Spk10 83.85%
Spk11 94.29% Spk12 77.96%
Spk13 73.06% Spk14 94.24%
AV G 87.91%

6.2 Context-based Analysis of Phonetic Mispronunciations

Once it was seen that no relevant conclusion could be obtained from the mispronunciation rates
of the different phonemes in non-contextual positions and that the consistency with which the
speakers tended to produce similar pronunciations of the same words in different days was high;
it was considered to evaluate how the context influenced the production of mispronunciations by
the impaired speakers.

However, the possible phonetic contexts of all the phonemes considering both the left and
right neighboring phonemes were extremely elevated and that would lead to results with very low
statistical significance due to the little amount of data for each context of study.

Hence, it was decided to study the context of the phoneme within the syllable that contained
it. Syllables are full speech units with little influence from their neighbors (with this trend being
more prominent in Spanish) and the study of the phoneme within the syllable can be considered
independent from the rest of the word. Furthermore, the context within the syllable can be easily
explained only in terms of the point and/or manner of articulation of the neighbor phonemes; as
this will mark how complex is the coarticulation of the phonemes to be studied.

The complexity of the syllable was seen, hence, extremely relevant in the phonetic context
within a syllable. Spanish presents a natural trend for CV syllabic structures (C: consonant, V :
vowel), which leads to more complex structures with the presence of consonants in coda position
CV C, diphthongs CV V , consonant clusters CCV or mixes of them in CV V C, CCV V or CCV V C.
Syllables with only one phoneme V can also appear in certain situations, as well as syllables with
a triphtong V V V within their structure.

The rates of mispronunciation for all the speakers in terms of the length of the syllable in which
the phoneme was included are presented in Table 6.6. There was a noticeable change in the rates
in the pass from 2-phoneme syllables to 3-phoneme syllables, resulting in a decrease of around
7-10% of correct phonemes and an increase of 8-10% in deleted phonemes. This indicated that
certain syllabic contexts were more difficult to pronounce, with disregard of the exact phonemes
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that appeared in them. The presence of codas, dyphthongs or consonant cluster appeared, hence,
as a possible source of phonetic mispronunciations.

Table 6.6: Rate of mispronunciations per syllable length
Syllable length Number of Examples Correct Mispronounced Deleted

1-phoneme 112 88.39% 7.14% 4.46%
2-phoneme 5264 85.32% 10.47% 4.20%
3-phoneme 1680 77.50% 9.97% 12.54%
4-phoneme 168 75.30% 10.12% 14.58%

6.2.1 Influence of the syllable phonetic context

In the 57 words of the RFI which were the basis for the recording sessions with the impaired
speakers, there was presence of vowels and consonants in different positions:

• Vowels as nucleus: /a/, /e/, /i/, /o/ and /u/.

• Vowels as glides in diphthongs: /i/ and /u/.

• Consonants as onset: /b/, /d/, /t/, /p/, /k/, /g/, /f/, /s/, /T/, /tS/, /m/, /n/, /J/, /l/,
/L/, /r/ and /rr/.

• Consonants as codas: /m/, /n/, /T/, /s/, /r/ and /l/.

• Consonants as first parts of a consonant cluster: /b/, /g/, /p/, /k/, /f/ and /t/.

• Consonants as ending parts of a consonant cluster: /l/ and /r/.

Once seen this, phonemes that appeared in several syllabic positions were studied separately
according to these different positions. The rates of correct, substituted and deleted phonemes were
re-calculated for the phonemes in their different positions. As the standard syllable structure in
Spanish is CV , the situation of onset and nucleus was considered as baseline for consonants and
vowels, respectively, for the comparison of the other possibilities (consonant clusters, codas and
diphthongs).

Table 6.7: Rate of mispronunciations for coda position
Onset Coda

Phoneme Number Correct Subst. Deleted Number Correct Subst. Deleted
/m/ 336 73.51% 16.07% 10.42% 112 57.14% 1.79% 41.07%
/n/ 392 86.99% 10.20% 2.81% 280 80.00% 4.64% 15.36%
/T/ 112 61.61% 27.68% 10.71% 112 55.36% 10.71% 33.93%
/s/ 392 84.18% 11.48% 4.34% 168 68.45% 9.52% 22.02%
/r/ 448 65.62% 24.33% 10.04% 224 35.27% 23.66% 41.07%
/l/ 448 70.31% 23.88% 5.80% 168 54.17% 10.71% 35.12%

The first comparison was made among the 6 consonants who appeared on coda position, whose
results are in Table 6.7. The number of appearances of the phonemes in each position is on the first
column of the results. The number of these appearances was for all cases in the range of hundreds
of examples for study (100-500). This was considered a very small number for what it could be
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seen as usual in language processing, so statistical significance of the given results could not be
assured until a deeper statistical study was made. A certain trend could be seen, anyways, as the
rate of correct phonemes decreased for all cases in coda position compared to onset position, with
an increment of deletions and a slight decrease in substitutions.

For the 6 phonemes appearing in the initial position of a 2-phone consonant cluster, the labeling
rates are shown on Table 6.8. Initially, there did not seem to be much change between the labeling
rates in the two positions until a full statistical analysis was made, although the phoneme /g/
presented a noticeable increase in the rate of deletions when inserted at the beginning of this
syllabic structure.

Table 6.8: Rate of mispronunciations for initial position of consonant cluster
Onset Consonant cluster

Phoneme Number Correct Subst. Deleted Number Correct Subst. Deleted
/b/ 448 79.91% 16.29% 3.80% 168 71.43% 19.64% 8.93%
/g/ 168 69.64% 24.41% 5.95% 112 49.11% 28.57% 22.32%
/p/ 896 87.72% 7.48% 4.80% 168 85.71% 9.52% 4.76%
/k/ 448 77.90% 14.73% 7.37% 56 67.86% 23.21% 8.93%
/f/ 280 75.36% 19.29% 5.36% 112 75.00% 20.54% 4.46%
/t/ 728 87.64% 7.97% 4.40% 56 89.29% 10.71% 0.00%

For the 2 consonants appearing in the final position of a 2-phone consonant cluster, the re-
estimated labeling rates are seen in Table 6.9. A noticeable increase in deleted phonemes in
the consonant cluster position was seen, at the cost of a reduction of the correctly pronounced
phonemes; even the rate of substituted phonemes was decreased.

Table 6.9: Rate of mispronunciations for ending position of consonant cluster
Onset Consonant cluster

Phoneme Number Correct Subst. Deleted Number Correct Subst. Deleted
/r/ 448 65.62% 24.33% 10.04% 336 41.37% 16.67% 41.96%
/l/ 448 70.31% 23.88% 5.80% 336 53.27% 13.69% 33.04%

Finally, for the two vowels that acted like glides in diphthongs, the new separated labeling
rates, shown in Table 6.10, marked an increase in substituted and deleted cases for the glides,
decreasing the 90% correctness rate of the same vowels in nucleus position to a 70% correctness.

Table 6.10: Rate of mispronunciations for glide position
Nucleus Glide

Phoneme Number Correct Subst. Deleted Number Correct Subst. Deleted
/i/ 504 90.48% 6.35% 3.18% 280 72.14% 10.71% 17.14%
/u/ 336 91.07% 7.44% 1.49% 168 70.83% 17.26% 11.90%

6.2.2 Statistical significance of the results

Once obtained the results of mispronunciations of the phonemes in different positions the
questioning of the statistical significance of these results arose, as mentioned previously, due to the
small number of cases for study. For this reason, z-test [Sprinthall, 2007] was used; this statistical



74 Chapter 6. Lexical Analysis of the Corpus

method provides a measure, z, of how different are two groups for study according to their statistical
properties in a full population. In this case, the full population were the realizations of a given
phoneme, characterized by the rate of correct, substituted and deleted phonemes, and was divided
in two groups: Phonemes in the baseline position and phonemes in the position of study; both
groups with the labeling rates re-calculated previously. For these populations, the value z of the
z-test was obtained as in Equation 6.1:

z =
pposition − pbaseline√

pphoneme(1− pphoneme)( 1
nposition

+ 1
nbaseline

)
(6.1)

Where pphoneme is the rate with which the given phoneme was correctly pronounced, substituted
or deleted, pbaseline is that corresponding rate for the group of phonemes in the baseline position
(onset for consonants, nucleus for vowels) and pposition is the rate in the position of study (coda,
consonantal cluster or glide). Finally, nbaseline is the number of times the phoneme appeared in
the baseline position and nposition is the number of times the phoneme was seen in the position for
evaluation.

The z-values for all cases studied in this Section are given in Table 6.11. Positive values
indicated an increment in the rate (correct, substituted or deleted) from the baseline to the
evaluation position, and negative a decrease. The decision of whether the two groups were different
(baseline position vs. evaluation position) had to be made setting a confidence threshold that
indicated statistical significance. Typically, confidence thresholds for the 95% or 99% of confidence
interval are used in statistical studies; for these confidences, the z-value had to be over 1.96 or
2.575 in absolute value, respectively, to mark statistical significance

Table 6.11: Z-values for the analyzed phonemes
Phoneme Position Correct Substituted Deleted

/m/ Onset vs. Coda -3.26 -3.96 7.30
/n/ Onset vs. Coda -2.44 -2.64 5.90
/T/ Onset vs. Coda -0.95 -3.22 4.17
/s/ Onset vs. Coda -4.22 -0.68 6.50
/r/ Onset vs. Coda -7.42 -0.20 8.48
/l/ Onset vs. Coda -3.67 -3.79 8.01
/b/ Onset vs. Ini Cluster -2.25 0.98 2.56
/g/ Onset vs. Ini Cluster -3.46 0.78 4.06
/p/ Onset vs. Ini Cluster -0.72 0.91 -0.02
/k/ Onset vs. Ini Cluster -1.68 1.65 -0.41
/f/ Onset vs. Ini Cluster -0.07 0.28 -0.36
/t/ Onset vs. Ini Cluster 0.36 0.72 -1.60
/r/ Onset vs. End Cluster -6.72 -2.58 9.90
/l/ Onset vs. End Cluster -4.86 -3.68 9.33
/i/ Nucleus vs. Glide -6.70 2.17 6.84
/u/ Nucleus vs. Glide -5.89 3.36 5.08

Table 6.11 also marks with ascendant or descendant arrows the situations in which statistical
significance was seen with 95% confidence. A sign of equal close to the results in Table 6.11 marks
that those results were not significant at that confidence interval.

The statistical significance study showed that most of the remarks seen during the calculation
of the separated results were actually significant. All consonants suffered an statistical increase
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in their rate of deletions if inserted in coda position within a syllable when compared to the
baseline onset position. This increase in deletions was accompanied by a decrease in correct
phonemes (for /s/ and /r/), substituted phonemes (/T/) or both (/m/, /n/, /l/); indicating that
the impaired speakers were reducing codas consistently independently of their ability to produce
the same phoneme in the onset position or not.

Similar results occurred for consonants in the ending position of a consonant cluster. Phonemes
/r/ and /l/ significantly increased their deletion rates when situated in this new syllabic context
instead of in the baseline onset positions, at the expense of the rate of correct and substituted
phonemes.

The results that did not show a sufficient statistical significance were the changes in phonemes
acting as initial part of a consonant cluster. Only /b/ and /g/ showed a significant increase in
deletions at the cost of a decrease in correct phonemes; but this trend was not even significant for
phoneme /b/ with a 99% confidence interval. However, certain interrelations with the previous
results could have been expected to happen, as if the second part of a consonant cluster is deleted
(as it was shown to happen consistently) the structure CCV is reduced to CV and, hence, the
consonant which started the consonant cluster is now acting as an onset, resulting in a better
production for the speakers as it was shown for onsets.

The final study, for vowels in glide context, showed up the significant way in which /i/ and
/u/ were mispronounced (substituted and deleted) when they were together with another vowel to
create a diphthong. These results showed up to be significant too at the 99% confidence interval.

With all these results in hand, it was seen the dramatic influence of the syllabic context in the
difficulty of the phoneme pronunciation for the impaired speakers. Complex syllabic structures
were, this way, confirmed as a main source of mispronunciations in these speakers, due to the
coarticulation effects and lexical difficulty of these syllables.

6.3 Relations with Language Acquisition Delays

The previous results showed a significant decrease in the ability of the impaired speakers to produce
correctly consonants in coda position or consonant cluster and vowels in dypthongs. Several studies
on the speech of preliterate children during the process of language acquisition showed some results
that were seen as relevant to understand better the speech processes of the impaired speakers in
the Alborada-I3A corpus.

The deep study in [Bosch-Galcerán, 2004] designed a vocabulary of 32 words for the assessment
of the mispronunciations in a population of 293 children between 3 and 7 years, distributed in ages
as in Table 6.12. The correctness in the pronunciation of these target speakers was evaluated
by two different experts with with an agreement rate over 99%. All the children had Spanish as
mother language and did not present any kind of voice or speech disorder or another impairment
that could difficulty their speech production or acquisition.

Table 6.12: Distribution of ages in the study in [Bosch-Galcerán, 2004]
3 years old 4 years old 5 years old 6 years old 7 years old

50 70 64 54 55

The production of mistakes was studied to obtain the trends in similar situations to the ones
proposed for the impaired speakers in this Chapter. Initially, [Bosch-Galcerán, 2004] studied the
production of mistakes in the children according to the manner of articulation of the consonants
(nasals, plosives, fricatives, laterals and vibrants). The results, summarized in Figure 6.2, showed
up how the 3 year old children had problems with vibrants (more than 60% mispronunciations)
with a 10-20% of mistakes in the rest of consonants. Older children produced more accurately all
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the phonemes; except for vibrants (/r/ and /rr/) and laterals (/l/ and /L/), that kept a 10-20%
of mispronunciation rate in the 6-7 year old speakers.

Figure 6.2: Mispronunciation rates in children’ speech (results from [Bosch-Galcerán, 2004])

These results had many points of similarity to the non-context study of how impaired speakers
produced mispronunciations (Table 6.4 in Section 6.1), in which vibrants had less than 50% of
correctness and laterals stood by 65% of correctness, when the rest of the consonants reached 80%
of correctly pronounced phonemes.

More similarities arose concerning three of the syllabic positions studied in this Chapter (coda,
consonant cluster and dypthong), [Bosch-Galcerán, 2004] provided the set of results summarized
in Table 6.13 of the mispronunciations of these structures for the speakers in the study. It showed
how these syllabic structures were mispronounced in 20% of the cases by the 3-year old speakers;
with these rates of mispronunciations being reduced in the older speakers to nearly disappear in
the 7-year old children.

Table 6.13: Mispronunciation rates in children’ speech (from [Bosch-Galcerán, 2004])
Position 3 years old 4 years old 5 years old 6 years old 7 years old

Coda 24.33% 11.83% 9.94% 4.54% 0.59%
Consonant cluster 21.9% 11.3% 9.1% 3.3% 1.3%

Diphthong 14% 4.33% 1% 0% 0%

The conclusion that arose from this comparison of results was that the lexical difficulties of the
impaired speakers had relationship with problems of language acquisition that delayed the impaired
children’ speech to that of young preliterate children (3-5 years old). [Bosch-Galcerán, 2004] showed
how vibrants and laterals and complex syllabic structures supposed a major difficulty for preliterate
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children and how these mistakes were corrected through the natural process of language acquisition.
All this discussion led this work to some areas far away from the initial objectives, as they

merged with the knowledge in neurolinguistic [Caplan, 1987] and psycholinguistic sciences. This
Chapter has shown how the speakers in the corpus, with different cognitive disabilities like Down’s
Syndrome, also have suffered severe delays in their speech and language acquisition. Different
neurolinguistic trends aim to understand if language has some specific areas in the brain or not.
In the case studied in this thesis, it was clear the relationship between cognitive impairment and
speech impairment; but there have been many cases that have shown individuals with severe
cognitive impairments who presented a perfect control over their speech and language.

Another element of study, in the humble approach of this Section to neurolinguistics, was how
the speakers’ mispronunciations resembled those of young preliterate children in an early age (3-4
years old). Although the speakers’ mental age was lower than their physical age for many of the
dairy life activities, as they had a high degree of dependence, in any case their overall mental age
was as low as their linguistic age, an effect that proposed more discussion which, of course, could
not be fulfill in this work.

However, we expect that this could be more deeply studied and analyzed in the future, and this
knowledge can provide further elements for discussion to the work of all the speech technologies
researchers dealing with this area.
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Chapter 7

Acoustic-Lexical Adaptation for ASR
of Disordered Speech

He did not know that the new life would not be given to him for nothing,
that he would have to pay dearly for it, that it would cost him great
striving, great suffering.

-Fyodor Dostoevsky, Crime and Punishment

Chapter 4 showed the dramatic reduction in ASR performance for young impaired speakers
compared to their age-matched peers. Two causes for this loss have been shown in Chapters 5 and
6: On one hand, the acoustic distortion produced in the speakers’ speech due to morphological and
functional disorders affects the way their speech matches acoustic HMMs trained with unimpaired
speech; while, on the other hand, the problems in speech and language acquisition in these speakers
produced that their utterances did not match in many cases the canonical pronunciation of the
words in the lexicon of the task.

This Chapter proposes speaker adaptation to avoid the loss of performance that these two
factors produce in ASR. Speaker adaptation provides a framework to create an ASR system
matched to the specific features of a target speaker. While, traditionally, speaker adaptation has
referred to purely acoustic adaptation, the lexical variability in these speakers makes that two
different approaches have to be taken in this Chapter: acoustic adaptation and lexical adaptation,
studying their possible interrelations.

The Chapter is organized as follows: Sections 7.1 and 7.2 will provide the results of different
strategies for acoustic and lexical speaker adaptation, respectively; while Section 7.3 will show how
the ASR results improve with the joint use of both approaches (acoustic and lexical adaptation).
Finally, Section 7.4 will discuss different issues in the interaction between both adaptation
frameworks and the possible interrelations between them.

7.1 Acoustic Speaker Dependent Adaptation

Acoustic speaker adaptation aims to estimate the set of new HMM parameters that better fit to
the speech characteristics of a given user from a set of utterances belonging to that speaker. The
requirements for speaker adaptation are the set of input speech signals and their transcriptions.
Different frameworks for speaker adaptation, MAP and MLLR, are presented and briefly discussed
in Appendix B. When accurate transcriptions of the adaptation utterances are available and used
for the creation of the SD models, it is called supervised adaptation; on the contrary, when it is
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required the use of a previous phase, like ASR or APD to obtain an estimate of the transcription,
it is referred to as unsupervised adaptation.

The speaker adaptation carried out in the experimental part of this Chapter was based in a
MAP adaptation [Gauvain and Lee, 1994] where the transition probabilities, the Gaussian weights
and the Gaussian means in the HMMs were retrained and recalculated after 12 iterations of MAP.
MAP adaptation was initially taken because it achieved fast and reliable performance in a situation
like the one proposed in this Chapter, in which the task is controlled and all the words and
units in the test data are seen on the train data. Further possibilities of MLLR adaptation
[Legetter and Woodland, 1995] could be considered later if required.

A set of 4 leave-one-out experiments were designed as explained in Figure 7.1 with the 4
available sessions from each speaker: 4 models were trained with 3 different sessions from the
speaker, and each model was used in the ASR of the utterances in the remaining sessions. The
outputs of the four ASR systems were finally merged to calculate the final WER for the speaker.
The initial model for all the acoustic speaker adaptation experiments was the SI-TD model trained
in Section 4.3 with the 232 unimpaired children’ speech.
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Figure 7.1: Design of the leave-one-out experiments

This process was carried out for all the adaptation strategies studied in this Chapter, including
the estimation of different adapted models for the different HMM units used in Chapter 4 when
possible (word, phone and sub-phone units). This way, all results were comparable as the process
of adaptation was kept unchanged among experiments.

Three frameworks for acoustic speaker adaptation were evaluated at this point, based on Figure
7.2. The MAP adaptation system was fed with the train signals and with one out of the three
possible set of transcriptions:

• The baseform transcription, corresponding to the prompts of the words used as adaptation
data.

• The labels assigned by the human experts to the adaptation signals.

• The output of the SI-TD APD system seen in Section 4.5 over the adaptation data.
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Figure 7.2: Acoustic adaptation frameworks

The initial strategy for speaker adaptation was to feed the canonical phonetic transcription
of all the 57 words in the sessions to the adaptation system. The results with the SD models
trained with this strategy are shown on Table 7.1. Results were available for word, phone and sub-
phone models. The average WER for the three models (12.78%, 16.38% and 15.49%) supposed a
significant improvement over the result with the TD models in Section 4.3. This gain achieved for
the speaker adaptation was 50.56%, 48.75% and 45.07% for word, phone and sub-phone models
respectively, with the improvement calculated over the TD results as in Equation 7.1. Once again,
word models showed their outstanding performance over sub-phone and especially phone models.

Improvement(%) =
WERTD −WERSD

WERTD
∗ 100% (7.1)

Table 7.1: WER for ASR with acoustic models adapted to the canonical transcriptions
Speaker word phone sub-phone Speaker word phone sub-phone
Spk01 2.19% 2.63% 2.63% Spk02 7.02% 11.40% 10.96%
Spk03 2.19% 2.63% 2.19% Spk04 2.19% 2.19% 2.19%
Spk05 40.35% 47.81% 44.74% Spk06 1.75% 1.75% 1.75%
Spk07 6.14% 10.09% 7.02% Spk08 19.74% 31.58% 28.51%
Spk09 10.96% 10.96% 10.96% Spk10 8.77% 16.67% 12.72%
Spk11 2.19% 3.07% 2.19% Spk12 11.84% 23.25% 17.54%
Spk13 58.77% 60.53% 66.67% Spk14 4.82% 4.82% 6.58%
AV G 12.78% 16.38% 15.49%

Evaluating every single speaker, 4 of them (Spk01, Spk03, Spk04 and Spk11) achieved WER
results comparable to the results in unimpaired children with TD models. 5 more speakers obtained
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a WER around or lower than 10%, and the remaining 5 obtained higher values of WER, and as
high as 60% in the case of Spk13. This showed up that for many of the speakers, simple acoustic
adaptation was enough to provide a reliable performance in ASR and function similarly to their
unimpaired peers.

However, there was a question that arose at the evaluation of these results, and it was how
phonetic mispronunciations might alter the performance of the SI models trained with the baseform
transcriptions. Although these transcriptions corresponded to the words that were prompted to
the users; it was seen during the human labeling how the speakers produced a significant number
of mispronunciations that altered these baseform transcriptions. As the real speaker utterances
did not match the transcriptions fed to the adaptation system in the previous system, it could be
expected that there was a certain effect associated to these mismatches between the utterances
and the transcriptions.

The evaluation of this possible effect was made by retraining only with those phonemes within
the utterances that were correctly pronounced according to the human experts. In this experiment,
the human labels were also fed to the speaker adaptation system, that rejected the phonetic unit
when it was labeled as substituted or deleted. Because of this phonetic approach, this experiment
could not be run with word HMMs, because they retrained the word as a whole and did not allow
for the phonetic separation.

Results with this strategy are presented in Table 7.2. The average WER for phone and sub-
phone supposed a relative degradation of around 13% with respect to the models trained with the
full canonical transcriptions.

Table 7.2: WER for ASR with acoustic models adapted to the labels of the human experts
Speaker word phone sub-phone Speaker word phone sub-phone
Spk01 - 2.63% 2.63% Spk02 - 14.91% 12.72%
Spk03 - 2.63% 1.75% Spk04 - 2.63% 2.19%
Spk05 - 50.88% 46.05% Spk06 - 1.75% 1.75%
Spk07 - 11.40% 9.21% Spk08 - 34.21% 35.53%
Spk09 - 12.28% 11.40% Spk10 - 19.74% 18.86%
Spk11 - 4.82% 3.07% Spk12 - 27.19% 23.25%
Spk13 - 68.86% 70.61% Spk14 - 7.02% 6.14%
AV G - 18.64% 17.51%

The loss of performance with these new models, which were supposedly more accurate that
the previous models, could only be explained by the fact that the acoustic models might prefer
inaccurate data which fitted better the inaccuracies that appeared during the recognition phase
instead of more accurate data as decided by the labelers. Furthermore, the new strategy was using
an 18% less of adaptation data than the previous one, because this was the rate of mispronounced
phonemes that were not used for adaptation, and the adaptation system might have been very
sensitive to this lower presence of data as it will be seen in Section 7.1.1.

The possibility of automating a way to adapt with only correct phonemes was then studied.
In a realistic environment, it is not the case that it is possible to count with an expert, or a group
or experts, who can decide whether some utterance is suitable or not for retraining of models, and
automated decisions have to be made. At this moment, the APD system in Section 4.5 was used
with this purpose. This system provided an estimation of the most likely sequence of phonemes,
with a decent accuracy of prediction of mispronunciations, as seen in Section 4.6. The system
was, hence, implemented and it used the phonetic decoded sequence as input in the MAP acoustic
adaptation.

Results for this proposal are presented in Table 7.3. Although these results improved the
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baseline TD performance for phone units, there was a serious loss of gain compared to the previous
proposals. It was seen, hence, that although the APD had some ability to detect mispronunciations
with the same rate that the human labelers, as it was seen in Section 4.6, the recognition mistakes
in APD were highly affecting the accuracy of the adapted models.

Table 7.3: WER for ASR with acoustic models adapted to the output of the APD
Speaker word phone sub-phone Speaker word phone sub-phone
Spk01 - 12.28% 9.65% Spk02 - 20.61% 22.37%
Spk03 - 10.09% 10.09% Spk04 - 4.82% 3.07%
Spk05 - 55.26% 54.39% Spk06 - 7.02% 4.83%
Spk07 - 28.07% 27.19% Spk08 - 44.30% 45.61%
Spk09 - 20.61% 16.67% Spk10 - 39.47% 35.09%
Spk11 - 15.35% 9.65% Spk12 - 69.30% 67.54%
Spk13 - 73.68% 78.07% Spk14 - 13.16% 14.04%
AV G - 29.57% 28.45%

7.1.1 Influence of the amount of adaptation data

All the results presented in this Section for the acoustic adaptation used 3 sessions for adaptation
and 1 session for test. The amount of data available for adaptation is always a major issue in
all adaptation frameworks [Saz et al., 2006b], as usually the performance of the systems grows up
as the amount of data gets increased until a stable point is reached where more amount of the
same data does not produce a significant change. The studies for increasing the performance of
the speaker adapted models in cases of little adaptation data have been many during the years, as
it is not always possible to count with large amounts of this data.

The framework adopted in this Chapter (171 utterances for adaptation, 57 for recognition)
provided the biggest amount of data possible with only 4 sessions per speaker, but did not allowed
for understanding how the system changed with different amounts of data. A small study on
this subject was later possible with speakers Spk07 and Spk08, who counted with 8 sessions
per speaker as seen in Chapter 3. A set of hold-out experiments were prepared with all the
possible combinations of data for adaptation and recognition considering the available sessions.
The organization of experiments is explained in Table 7.4, with all the number of experiments
carried out for each case.

Table 7.4: Amount of Data for the Experiments
Number experiments Adaptation Sessions (Utterances) Recognition Sessions (Utterances)

8 1 (57) 7 (399)
28 2 (114) 6 (342)
56 3 (171) 5 (285)
70 4 (228) 4 (228)
56 5 (285) 3 (171)
28 6 (342) 2 (114)
8 7 (399) 1 (57)

Example 7.1.1 The hold-out procedure followed in these experiments can be seen with a simple
example. For the case of re-training with 4 sessions and testing with 4 sessions, the possible
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combinations of experiments are 70. The experiments include the case of re-training with sessions
1, 2, 3 and 4 and testing over sessions 5,6 , 7 and 8; as well as the contrary or other possible
combinations like sessions 2, 4, 5 and 7 for training and 1, 3, 6 and 8 for testing. The order does
not matter in these experiments, as it is the same to re-train with sessions 1, 2, 3 and 4 than with
sessions 4, 3, 2 and 1. At the end, the possible experiments when re-training with a number n of
sessions and testing with 8 − n sessions is obtained as the binomial coefficient that indicates the
number of ways in which n elements can be chosen from a set of 8 elements:

(
8
n

)
.

The experiments were run over the purely acoustic adaptation with the baseform transcription
fed to the adaptation MAP framework. The WER achieved over the 8 sessions from each speaker
with the baseline TD sub-phone models was 23.46% for Spk07 and 47.81% for Spk08, similar to the
results in Chapter 4 for the initial 4 sessions from each speaker (25.44% and 43.86% respectively),
what indicated that this new task with the 4 extra sessions was well designed and the speech in
the new sessions was similar to the speech initially recorded. The improvements achieved by the
different adaptation frameworks are plotted separately for each speaker in Figure 7.3 in terms of
the number of sessions used for adaptation.

Figure 7.3: Influence of the amount of adaptation data in supervised acoustic adaptation

The relative marginal improvements achieved with every extra session added for adaptation
are shown in Table 7.5. The marginal improvement for the adaptation with i sessions was the
extra improvement achieved over the results with i− 1 sessions for adaptation as in Equation 7.2.

MarginalImp(%) =
Imp(i)− Imp(i− 1)

Imp(i− 1)
∗ 100% (7.2)

The results in relative marginal improvement were slightly different for both studied speakers.
Spk07 had a faster adaptation curve, and the fourth and following sessions could only provide
less than 5% relative marginal improvements; for this speaker, hence, 3 sessions were enough for
achieving a nearly optimal result. On the contrary, Spk08 had a slower adaptation curve, because
the sixth and seventh sessions for adaptation provided a 12.32% and 8.76% of relative marginal
improvement. The latent reason for these different reactions might be, once again, the different
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disorders and rates of mispronunciations for each speaker. This rate of mispronounced phonemes
was significantly higher for Spk08 (30.82% vs. 12.93%), which meant that more inaccurate data
was being fed to the adaptation and, hence, more amount of data was required for the accurate
data to overwhelm the effect of the mispronounced phonemes.

Table 7.5: Relative marginal improvements for different amount of adaptation data
Speaker 1 Sess. 2 Sess. 3 Sess. 4 Sess. 5 Sess. 6 Sess. 7 Sess.
Spk07 - 39.28% 13.83% 8.54% 1.99% 3.59% 1.15%
Spk08 - 44.77% 20.83% 23.75% 4.52% 12.32% 8.76%

In all cases, the number of available sessions for adaptation with the rest of speakers (3 sessions)
seemed sufficient to provide significant results close to the optimal results. Furthermore, the
proposed adaptation framework was well-behaved as the improvement rates in Figure 7.3 raised
steadily and no performance loss was found as the number of sessions grew up.

7.2 Lexical Speaker Dependent Adaptation

Works for lexical adaptation have been oriented traditionally to avoid the loss of performance in
ASR on the use by dialectal speakers, non-native speakers and, like in this case, impaired speakers
with speech disorders [Strik, 2001]. Rule-based strategies for lexical adaptation in Spanish have
been used used for dealing with dialectal speech [Caballero et al., 2002], as this speech can be
modeled according to the rules of pronunciations of the current dialect, although data-driven
methods work well too [Caballero et al., 2004]. However, disordered speech presents very different
lexical variants from one speaker to another and the use of pre-set rules could limit the performance
of the system.
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Figure 7.4: Framework for lexical adaptation
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Data-driven methods, where new lexical variants of each word are estimated an introduced
in the vocabulary will be, hence, mainly used for lexical adaptation. Although the initial
works carried out towards lexical adaptation were focused on the possibilities that generic units
based in the manner of articulation could offer for the substitution of mispronounced units
[Saz et al., 2008c, Saz et al., 2008d], in a similar way to those works of [Fossler-Lussier et al., 2005];
they quickly turned to a dead line of work when it was seen that no improvement could be achieved
with these techniques.

The proposed method for lexical adaptation in Figure 7.4 obtained the decoded phonetic
sequence of the utterances included in the adaptation data via APD and added them to the
lexicon with the canonical transcriptions of the words. This new lexicon was posteriorly used
in the recognition phase. As 3 sessions were used in all cases for adaptation, the new lexicon
included 3 new lexical variants for each word, which added to the baseform transcription supposed
4 possibilities per word. In the end, the 228 variants in the vocabulary competed freely against
each other without any weighting on any of them.

The results with this approach for lexical adaptation are provided in Table 7.6. It was
remarkable to see that, even when the acoustic models were kept unaltered, a significant
improvement was achieved by directly using the proposed lexical adaptation framework. A possible
drawback of the lexical adaptation was how it tended to achieve minor improvements (or even no
improvement) in those speakers as Spk01 which do not produce so many lexical variants in their
speech. In those cases, the novel expanded lexicons might be only adding confusability and lexical
“noise”, so a decision could be used to limit the new lexical variants that are introduced for each
speaker in the dictionary.

Table 7.6: WER for ASR with lexical models expanded with the APD results
Speaker word phone sub-phone Speaker word phone sub-phone
Spk01 - 10.53% 8.77% Spk02 - 17.98% 16.23%
Spk03 - 18.86% 9.65% Spk04 - 5.70% 3.07%
Spk05 - 55.70% 52.63% Spk06 - 8.33% 5.70%
Spk07 - 24.56% 23.68% Spk08 - 39.91% 33.33%
Spk09 - 17.98% 13.16% Spk10 - 27.63% 32.89%
Spk11 - 9.21% 6.58% Spk12 - 57.02% 50.44%
Spk13 - 64.04% 69.74% Spk14 - 13.60% 14.91%
AV G - 26.50% 24.34%

7.2.1 Rule-based lexical adaptation

Data-driven lexical adaptation has already been argued to be the only assumable possibility for the
lexical variants produced by the impaired speakers. However, Chapter 6 showed how the speech
from these speakers presented a very similar trend with the speech of preliterate young children
in the process of language acquisition. In [Bosch-Galcerán, 2004], a set of rules were proposed to
characterize these speech processes at the lexical level for the preliterate children, which opened
the gates for evaluating rule-based lexical adaptation in the impaired speakers. The rules were
defined as follows:

• Rule 1: Velar consonants /k/ and /g/ are changed to labial consonants /t/ and /d/.

• Rule 2: Labial consonants /t/ and /d/ are changed to the velar consonants /k/ and /g/.

• Rule 3: Voiced plosives /b/, /d/ and /g/ are changed to the unvoiced plosives /p/, /t/ and
/k/.
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• Rule 4: Fricatives /f/, /s/ and /x/ are changed to the plosives with the same point of
articulation /p/, /t/ and /k/.

• Rule 5: Plosives /p/, /t/ and /k/ are changed to the fricatives with the same point of
articulation /f/, /s/ and /x/.

• Rule 6: Consonant /tS/ is changed to /s/ due to the loss of the plosive start in /tS/.

• Rule 7: Fricative dental /T/ is changed to the strident fricatives /f/ or /s/.

• Rule 8: Velar fricative /s/ is changed to the interdental fricative /T/.

• Rule 9: Vibrants /r/ and /rr/ are changed to the lateral /l/.

• Rule 10: Multiple vibrant /rr/ is changed to the simple vibrant /r/.

However, the direct creation of a new lexicon that included all these rules was not seen as
useful for these speakers. The number of different variants in the lexicon grew up so much that
the confusability in the lexicon was too high to produce good performance. Hence, it was decided
to use a mixed data-driven/rule-based lexical adaptation. In this framework, the knowledge of
the data came from the experts’ labeling to detect the mispronunciations. The new lexicons for
each speaker contained variants for each word according to the human labels: When a phoneme
was marked as deleted, it was erased from the new variant; and when a phoneme was marked
as substituted, the rules were used to determine the most plausible substituting phoneme in the
variants. If no rule existed for a given phoneme, the canonical phoneme was kept.

Example 7.2.1 A simple example can be explained, with one of the utterances of the word
“campana” (bell) by Spk05. Human labelers have marked the initial sound [k] as substituted and
the inner [p] as deleted. According to the rules proposed in [Bosch-Galcerán, 2004], phoneme /k/
is usually substituted by [d], due to the rule 1 of the list, or by /x/, due to rule 5. Hence, for this
speaker, the baseform transcription of “campana”, [kampana] is accompanied by [damana] and
[xamana] according to the detected substitution and deletion.

As this mixed technique was SD, all the leave-one-out experiments were replicated again, while
keeping the SI acoustic models as in the previous experiments to provide only lexical adaptation.
The results for this framework can be seen in Table 7.7.

Table 7.7: WER for ASR with lexical models based on rules and the labelers’ data
Speaker word phone sub-phone Speaker word phone sub-phone
Spk01 - 10.53% 10.09% Spk02 - 18.42% 19.74%
Spk03 - 14.47% 7.89% Spk04 - 4.82% 3.07%
Spk05 - 53.07% 45.61% Spk06 - 7.46% 3.07%
Spk07 - 31.58% 23.68% Spk08 - 44.74% 40.35%
Spk09 - 19.74% 18.42% Spk10 - 33.77% 29.82%
Spk11 - 10.96% 8.33% Spk12 - 73.25% 60.09%
Spk13 - 71.05% 74.56% Spk14 - 19.74% 15.35%
AV G - 29.54% 25.72%

The results showed up some ability to improve performance over the SI lexicon results, but it
showed worst performance than the fully data-driven proposal previously explained. Furthermore,
it was never really proven that the speakers followed strictly those rules in [Bosch-Galcerán, 2004],
as no real transcription from their utterances was available. Anyways, the improvement with
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the data-driven/rule-based SD lexicons indicated that in a certain way the rules could model the
mispronunciations, which could be useful to works where no kind of previous data or a priori
knowledge were available.

At this point, the use of rules for obtaining alternative lexical variants was abandoned to benefit
the purely data-driven method. While the data-driven method was fully automatic, the rule-based
proposal required experts’ knowledge on the mispronunciations and a set of expert-defined rules;
and, even with all of this, the later obtained better performance than the rule-based system, which
made it not interesting at this point for further research in this thesis.

7.2.2 Influence of the amount of lexical adaptation data

In a similar way to how the influence of the amount of adaptation data was studied for acoustic
adaptation, it was studied how having more lexical variants affected the performance of the ASR
with a SD lexicon. The experiments prepared for this task were parallel to the ones carried out
in Section 7.1.1 with the 8 sessions from Speakers Spk07 and Spk08, in terms of the number and
organization of experiments.

In this case the number of lexical variants to be included in the SD dictionary ranged from
1, when only one session from the speaker went through the APD to obtain an alternative
transcription, to 7, when 7 sessions followed this process. The number of total experiments for each
possibility was the same as in Table 7.4. In the case with the smaller amount of data, there were
114 transcriptions competing in the ASR phase (2 for each word: one canonical and one learned
from training data); and in the case with the larger amount of data, there were 456 transcriptions
competing freely (8 for each word: one canonical and seven learned from training data). These
values of competing transcriptions included those cases when a same transcription of a word was
decoded twice from two different adaptation utterances, which reduced the number of effective
competing transcriptions in the SD lexicon.

Figure 7.5: Influence of the amount of adaptation data in supervised lexical adaptation

The curve that shows the different improvements according to the amount of training data is



7.3 Mixed Acoustic-Lexical Adaptation 89

in Figure 7.5, with the same process to extract the results than in Figure 7.3. The improvement
was measured over the baseline TD WER of 23.46% for Spk07 and 47.81% for Spk08. Both
speakers showed similar trends, achieving a 30-35% of improvement. This improvement was quite
remarkable as it only made use of lexical adaptation. As it was seen in Table 7.6, lexical adaptation
favored speakers with a larger number of mispronunciations, as they were those who requested more
lexical variability in their SD dictionaries.

The results in terms of marginal improvement can be seen in Table 7.8. These values were not
so steady in their growing, as it happened in the case in Section 7.1.1 with the acoustic adaptation.
From this Table, also could be seen how the marginal improvement after the 5 session was minimal
(5% or less), what indicated that the number of sessions for adaptation used for the rest of speakers
was sufficient for this task to understand he performance of the proposed methods.

Table 7.8: Relative marginal improvements for different amount of lexical adaptation data
Speaker 1 Sess. 2 Sess. 3 Sess. 4 Sess. 5 Sess. 6 Sess. 7 Sess.
Spk07 - 37.84% 13.56% -2.73% 14.79% 3.74% 3.48%
Spk08 - 46.81% 21.53% -2.65% 23.88% 5.08% 3.16%

From these results, it could be seen how lexical adaptation could provide a major improvement
in the long-term to these two speakers, who had an important prevalence of pronunciation
mistakes.

7.3 Mixed Acoustic-Lexical Adaptation
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Figure 7.6: Acoustic-lexical adaptation frameworks

Finally, the combination of acoustic and lexical adaptation was evaluated [Saz et al., 2009c]
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to understand the possibilities that both approaches could provide when working jointly. This
supposed the use of the three types of acoustic SD models trained in Section 7.1 with the data-
driven SD lexicons obtained by APD in Section 7.2, as seen in Figure 7.6.

In the first case of acoustic models adapted to the baseform transcription and lexicon expanded
to the APD outcome, the results in Table 7.9 for phone and sub-phone models (as word models do
not accept lexical adaptation) showed a similar performance to the case of only acoustic adaptation
in Table 7.1, although a certain loss in gain was observed for the average results obtained with the
combined approach.

Table 7.9: WER in ASR with acoustic adaptation to baseforms and lexical adaptation
Speaker word phone sub-phone Speaker word phone sub-phone
Spk01 - 2.63% 2.63% Spk02 - 12.72% 12.72%
Spk03 - 3.95% 3.07% Spk04 - 4.39% 2.63%
Spk05 - 46.05% 43.42% Spk06 - 2.63% 2.19%
Spk07 - 11.40% 10.09% Spk08 - 27.63% 29.39%
Spk09 - 9.65% 7.02% Spk10 - 17.11% 16.23%
Spk11 - 3.51% 1.75% Spk12 - 30.26% 28.51%
Spk13 - 62.28% 63.16% Spk14 - 6.58% 6.14%
AV G - 17.20% 16.35%

Posteriorly, the results with acoustic models only trained with those units labeled as correct
by the human experts and lexicons expanded with the help of the APD are shown in Table 7.10,
improving the results in Table 7.2. The results with this approach did not have a significant
difference with those recently shown in which the acoustic models were trained to the baseform
transcription and lexical adaptation was further included. This showed up, as the initial results
with only acoustic adaptation, that there was not much difference in limiting the amount of
adaptation data as the units were correctly selected.

Table 7.10: WER in ASR with acoustic adaptation to human experts and lexical adaptation
Speaker word phone sub-phone Speaker word phone sub-phone
Spk01 - 2.63% 2.63% Spk02 - 13.60% 13.60%
Spk03 - 3.95% 2.63% Spk04 - 4.39% 2.63%
Spk05 - 46.05% 46.05% Spk06 - 2.63% 2.19%
Spk07 - 12.72% 10.96% Spk08 - 31.58% 30.26%
Spk09 - 12.72% 9.21% Spk10 - 15.79% 18.86%
Spk11 - 3.51% 2.63% Spk12 - 33.77% 30.70%
Spk13 - 59.65% 63.60% Spk14 - 5.70% 6.14%
AV G - 17.76% 17.29%

Finally, the results with acoustic models trained with the transcriptions as obtained by the
APD system and the lexicons expanded with the same APD transcriptions are shown in Table
7.11, improving those of Table 7.3. These results were the ones that achieved a bigger improvement
from including the lexical adaptation compared to the two previous ones.

As it will furtherer explained in the next Section, the lexical adaptation proposed was matching
totally in this case the transcriptions that the acoustic models learned in adaptation. In this case,
hence, lexical adaptation was providing the acoustic models a way to match the utterances from
the speaker that the baseform transcriptions could not provide initially.



7.4 Discussion on the Joint Use of Acoustic and Lexical Adaptation 91

Table 7.11: WER for ASR with acoustic adaptation to APD and lexical adaptation
Speaker word phone sub-phone Speaker word phone sub-phone
Spk01 - 7.46% 8.33% Spk02 - 15.79% 17.74%
Spk03 - 9.21% 18.86% Spk04 - 4.82% 2.19%
Spk05 - 51.75% 52.63% Spk06 - 6.14% 5.70%
Spk07 - 17.54% 19.74% Spk08 - 36.40% 34.65%
Spk09 - 13.16% 10.53% Spk10 - 24.56% 27.63%
Spk11 - 8.33% 3.95% Spk12 - 56.14% 42.54%
Spk13 - 61.84% 63.60% Spk14 - 13.45% 10.09%
AV G - 23.33% 22.71%

7.4 Discussion on the Joint Use of Acoustic and Lexical
Adaptation

Several frameworks for acoustic and/or lexical speaker adaptation have been presented. This
Section aims to bring together all the results achieved to provide in a quick glimpse a comparison
among the performances of all of them. With this comparison, the interrelations between acoustic
and lexical adaptation were considered and studied.

The relative improvements achieved by all the proposed methods for phone and sub-phone
models with respect to the TD baseline results in Section 4.3 (31.96% for phone models and
28.20% for sub-phone models) are presented in Table 7.12. In horizontal, the different possibilities
in acoustic adaptation are presented (from the SI models to the three frameworks evaluated);
and, in vertical, the two possibilities for lexical adaptation (no adaptation and data-driven) are
reviewed.

Table 7.12: Relative improvements achieved by the different proposed methods
Acoustic adaptation

No adaptation Baseform Human APD
Lexical adapt. Phone Sub-ph. Phone Sub-ph. Phone Sub-ph. Phone Sub-ph.

No adapt. - - 48.75% 45.07% 41.68% 37.91% 7.48% -0.89%
APD 17.08% 13.69% 46.18% 42.02% 44.43% 38.69% 27.23% 19.47%

First point of study was the improvement that lexical adaptation alone provided (17% and
14% for phone and sub-phone units respectively). This improvement could be considered quite
remarkable as the lexical variants were obtained in a fully automated way, and the acoustic
modeling (which was kept unaltered in this case) has a major impact in the performance of all
ASR systems.

Another element of interest was to see how the use of lexical adaptation improved the results
achieved by the acoustic models trained with the human labels and the APD transcription, but it
resulted in a loss of performance when acoustic models were adapted to the baseform transcriptions.
The cause for this could be explained in terms of the match/mismatch between acoustic and lexical
adaptation, and it pointed out the need of matching carefully both approaches to obtain the best
results out of them.

The bigger impact of the lexical adaptation, anyways, occurred when the acoustic models were
retrained according to the same APD transcriptions that were included as new lexical variants in
the vocabulary. In this case, the match between acoustic and lexical adaptation was total and,
although the absolute performance compared to other methods was lower, it pointed out that a
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full matching between both elements (acoustic and lexical) could boost the ASR performance if a
better detection of mispronunciations would have been used.



Chapter 8

Confidence Measuring for Detection
of Mispronunciations

But that was not all. Travelers who ventured into that wild
country found themselves assailed, it was said, by countless terrors
which would make even the stoutest hearts to tremble.

-Jan Potocki, The Manuscript Found in Saragossa

At this point, it has been seen how the acoustic and lexical distortion in the disordered speech
has produced a dramatic effect in the loss of performance of the baseline ASR system. Adaptation
strategies at both acoustic and lexical levels have been tested to avoid these effects, with the
interrelations between both of them studied. From these experiments, it was seen how the correct
knowledge of the phonetic mispronunciations made by the speakers was necessary for a correct
acoustic-lexical modeling. The automatic detection of these mispronunciations is, hence, necessary
for this task and, furthermore, for the development of automated CALL tools, which was set as
another of the goals of this thesis.

This Chapter focuses on scoring methods for assessing the speech quality from the impaired
speakers and detecting their phonetic mispronunciations. The ground-truth reference for the
detection of these mispronunciations is the human labeling seen in Chapter 3. The different
techniques will be oriented to avoid the effects of speaker variability in the PV system via score
normalization and speaker adaptation.

The Chapter is organized as follows: Section 8.1 will introduce the problem of phoneme
verification and how it resembles the traditional speaker verification problem. Section 8.2 will
describe the baseline system for extracting the log-likelihood scored for each phoneme in the
corpus and will analyze its features and the influence of all the sources of variability in them.
Section 8.3 will study different score normalization techniques: Traditional methods like Test
Normalization (T-norm) or Zero normalization (Z-norm) and techniques based on phonetic N-
Best lists. Moreover, Section 8.4 will present the results with a set of SD retrained models for the
PV task. Finally, Section 8.5 will make a comparative analysis of the results in terms of EER of
all the proposed techniques.

8.1 The Pronunciation Verification Task

The PV task presents some parallelisms to the speaker verification task as it can be seen in Figure
8.1. These similarities were seen as the basis to apply similar approaches than those of speaker
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verification into the PV problem.
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Figure 8.1: Resemblances between speaker verification and pronunciation verification

In speaker verification, the trial utterance (or a segment of speech obtained from speaker
segmentation) is hypothesized to have been uttered by an speaker i from a group of M speakers.
The most popular approaches for speaker verification use GMM-based models to calculate the
likelihood of the input signal to the speaker model, with these speaker models having been
previously trained with a sufficient number of utterances by each speaker. This score is then
compared to the score obtained by a Universal Background Model (UBM) trained from a
sufficiently large number of speakers. Impostor models, trained specifically for the rest of speakers
j = 1...N with j 6= i are also used in different techniques to improve the performance of the system.

In phoneme verification, the trial utterance is hypothesized to be a sequence of phonemes and
phoneme segmentation is used to detect phoneme boundaries in the utterance. Once a certain
segment has been separated and hypothesized to have been generated by the phoneme n from
the group of N phonemes, the score obtained by this model is compared to a UBM trained by
all phonemes, to a garbage model of the phoneme n or to all the rest of phonemes (m = 1...N
with m 6= n) to detect whether that segment really corresponds to the proposed phoneme. As
phoneme models have to deal with coarticulation and temporal variances in the signal, which are
usually neglected in the speaker model in text independent speaker verification, HMM are used
(as in ASR) instead of GMM.

8.1.1 Sources of variability

The basis of all speaker verification systems is to separate the different speech features that each
possible speaker has as part of the speaker variability existing in a group of different speakers. The
main deal of research up to date in speaker verification has been the elimination of those sources
of variability in the speech signal that can hide these speaker features, mainly channel and session
variability. In the same way, PV will suffer from the problem of those sources of variability in
the speech signal different from the phoneme variability. As it is shown graphically in Figure 8.2,
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speaker variability and channel variability will have the same effect on the performance of PV than
channel and session variability in speaker verification.
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Figure 8.2: Sources of variability in speaker verification and phoneme verification

Different techniques have been proposed in the literature to avoid channel variability in speaker
verification tasks:

Score normalization techniques are used to reduce the effect of the channel in the
speaker’s score. Cohort normalization, T-norm and Z-norm are the most usual of them
[Auckenthaler et al., 2000]. While T-norm normalizes to the scores of the competing speakers in
the same test signal, erasing hence the effect of channel in the normalized score, Z-norm normalizes
to the scores of the target speaker model in different impostor signals, requiring a previous training
phase.

Retraining of models [Kenny et al., 2003] consists in the training of several speaker models for
all the possible channel conditions. This technique is effective as it separates different channel
effects in different models. The speaker test signal is, then, evaluated with the speaker model that
matches the channel conditions of the input signal. Drawbacks of this method are that sufficient
data are necessary from the speaker in all channel conditions to train separate models and that it
is necessary to know a priori the channel condition of the test signal or to have a robust estimator
of it, because the use of channel mismatched models can have a dramatic effect in the performance
of the system.

More complicated techniques like Joint Factor Analysis [Kenny et al., 2006] aim to separate
speaker and channel variability by training separately speaker models in all channel conditions
(eigenvoices) and channel models with speech from all speakers (eigenchannels). In the test signal,
the effects of the speaker and the channel are separated via a factor analysis, allowing to evaluate
the speaker model on solely the speaker space.

Once it has been argued how the PV task shares similar conditions with the speaker verification
task, it was straightforward to think that some of the techniques applied in speaker verification
could be used by PV. More exactly, score normalization and model retraining were studied and
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analyzed in different situations and conditions for the proposed task.

8.2 Experimental Framework and Score Characterization

8.2.1 Score extraction system

The baseline score extraction system for the experimental framework followed the diagram in
Figure 8.3. A Viterbi based forced alignment set in an automated way the estimated phoneme
boundaries within the input utterance. The log-likelihood score obtained by the model of the
target baseform phoneme for each segment was calculated and finally, compared with a threshold
to make a decision of accepting or rejecting the pronunciation as correct or incorrect and provide
the evaluation decision.

Figure 8.3: Baseline score extraction system for PV

The log-likelihood score was obtained in Equation 8.1 as the logarithm value of the likelihood
probability of the segment of speech x being generated by the model of phoneme i (λi) averaged
by the total number of frames (Ni) assigned to the given speech segment.

LL(i) =
log(P (x|λi))

Ni
(8.1)

The likelihood probability of the speech segment and the model was calculated for the Nsi

frames of the segment of speech x as the probability of each frame (tn with n = 1...Nsi) over the
GMM (g with g = 1...Gs) of Gs Gaussians that defined the current state (s with s = 1...S) of
the phoneme HMM of S states, as in Equation 8.2. The unit and the state within the unit were
obtained in the forced alignment phase in Figure 8.3.

P (x|λi) =
S∑
s=1

(
Nsi∑
n=1

(
Gs∑
g=1

(p(g)p(tn|g))) (8.2)

To restrict the wide dynamic range that the log-likelihood scores could present (in the interval
[−∞,+∞]) and have a more controllable range for the setting of the threshold, the sigmoid function
in Equation 8.3 was used to compress the results to the interval [−1,+1].

LLSigmoid(i) = 2 ∗ (
1

1 + e−LL(i)
)− 1 (8.3)

8.2.2 Experimental framework and performance measure

The experimental framework for the PV task was exactly the same that for the ASR experiments
in Sections 4 and 7, in terms of the design of the acoustic models (number of units and states
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and Gaussians per unit), lexical models (transcription of the words in the vocabulary to acoustic
units) and feature extraction system (dimensionality of the feature vectors, etc). Sub-phonetic
context dependent models were used in the Viterbi forced alignment, as the results in ASR showed
their good performance to detect segments of speech. Phoneme models were used instead in the
scoring system because of their generalization of coarticulation boundaries, which provided certain
independence with the scores of the neighboring phonemes.

The performance of all the proposed systems was made in terms of the detection curves and
EER values. The calculated log-likelihood scores went through the threshold-based detection
system and all possible thresholds in the sigmoid function interval were evaluated. For each
threshold value the FAR and FRR were obtained, with FAR the rate of phonemes labeled as
mispronounced (substituted or deleted) that were accepted as correct by the decision system and
FRR the rate of phoneme labeled as correct that were not accepted by the decision system.

The detection curves have been widely used in detection problems and plot both values (FAR
and FRR) for all possible thresholds in a continuous line; while the EER has been widely accepted
as a comparative measure of performance of these systems indicating the value of FAR and FRR
for the threshold in which FAR = FRR.

8.2.3 Baseline results and analysis of scores

All the 3,192 signals in the corpus of disordered speech were fed to the baseline PV system proposed
previously, resulting in the evaluation of 16,351 phonemes (13,472 correct phonemes and 2,880
mispronounced phonemes according to the human experts). The TI and TD models used in the
ASR experiments in Chapter 4 were tested also in this task to determine whether there could be
any influence of the task and domain in the results. Results are showed in Figure 8.4(a) for both
models, with an EER of 43.84% for the TI models and 44.80% for the TD models.

(a) Detection curves for TI and TD models (b) Score histograms for correct and mispronounced
phonemes

Figure 8.4: Detection curves and score histograms for the baseline system

The results showed an extremely poor performance of the proposed scores, close to the worst
possible scenario of 50% with very badly behaved detection curves, showing the extreme influence
of the different sources of variability in the signal. This effect was corroborated by the normalized
histograms of the log-likelihood scores before the sigmoid function for correct and mispronounced
phonemes in the TD case shown in Figure 8.4(b). Both histograms presented very little separability
and a deep confusion between both types of phonemes appeared at the score level.
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8.3 Score Normalization

Once seen the effect of the different sources of variability in the baseline results of the PV task,
the study of possible techniques to avoid this effect started with the use of different normalization
techniques: Starting from traditional techniques in speaker verification like T-norm and Z-norm,
normalization techniques adapted to the special characteristics of the PV task were proposed
[Saz et al., 2009e], which in the end will finish resembling traditional approaches in this task. The
normalization block is introduced in the detection scheme explained in previous Section as seen in
Figure 8.5, after the score calculation and prior to the sigmoid function and threshold decision.

Figure 8.5: Score extraction system for PV with score normalization

8.3.1 T-norm and Z-norm evaluation

T-norm [Auckenthaler et al., 2000] is a well known technique for restraining variability in speaker
verification systems. It is based on the Gaussian properties of the scores achieved by different
speakers over a same speech segment. The basis of T-norm for a given speech segment, whose
target speaker is p and the log-likelihood score achieved by that speaker is LL(p), is to calculate
all the log-likelihood scores on the utterance for a large number of impostor speakers and their
mean (µutterance) and standard deviation values (σutterance) for, posteriorly, perform a Gaussian
normalization like in Equation 8.4.

LLT−norm(p) =
LL(p)− µutterance

σutterance
(8.4)

For the proposed task of PV, some aspects of T-norm had to be changed to adequate it to the
task. In PV, the Gaussian statistics (µutterance and σutterance) are calculated from the log-likelihood
scores of all the competing phonemes on the phoneme segment. T-norm in speaker verification
usually relies on a sufficiently large number of impostor speakers to correctly calculate µ and σ
for a given speaker segment. In the new PV task, it was not possible to count on more competing
phonemes apart from those of the language: 24 as the number of phoneme units was 25.

The evaluation of the T-norm in the PV task can be seen in terms of the detection curves in
Figure 8.6(a), achieving a 22.80% of EER. It was seen how T-norm kept its good properties to
erase sources of variability from the speaker verification task to the phoneme verification task, and
achieved a major improvement over the poor non-normalized results in previous Section.

Z-norm proposes another alternative to the elimination of variability in these detection tasks.
It performs a previous training phase where it calculates the statistics (µspeaker and σspeaker) of
the log-likelihood scores of a given speaker model through a sufficiently large number of segments
from other speakers. With these statistics, the Z-norm of the log-likelihood of a speech segment,
hypothesized to belong to speaker p, is calculated as in Equation 8.5.
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LLZ−norm(p) =
LL(p)− µspeaker

σspeaker
(8.5)

(a) T-norm (b) Z-norm

Figure 8.6: Detection curve for T-norm and Z-norm

Again, in the PV task, the elements of the Z-norm had to be redesigned. In the training phase
of the Z-norm parameters, each speech segment corresponding canonically to a certain phoneme
was evaluated for all the competitors. Finally, each phoneme obtained its µ and σ as the Gaussian
properties of all these values. Once again, there was a limit in this technique in the PV task, because
each phoneme will only evaluate 24 possible different competitors, while in speaker verification it
is aimed to face as many impostor segments as possible.

The experimental framework for the evaluation of Z-norm supposed the realization of a training
phase to calculate µ and σ for all the 25 phonemes. This training was made over the 13,224 signals
of speech from the unimpaired speakers. The evaluation of the Z-norm in the PV task can be seen
in terms of the detection curves in Figure 8.6(b), achieving a 44.31% of EER. With these results
in hand, Z-norm did not suppose any improvement over the system without score normalization,
showing a major complication in the translation of this technique directly to PV.

8.3.2 N-best based normalization and Goodness Of Pronunciation

While T-norm was seen as successful in removing speaker variability from the disordered speech
to better detect phonetic mispronunciations, there were some issues about it that did not make it
fit totally within the specific PV task.

T-norm hypothesizes Gaussian statistics in the distribution of the scores obtained by a
sufficiently large number of impostor speakers and, hence, models this distribution with the mean
µ and standard deviation σ. These values are used for the Gaussian normalization in Equation
8.4, that measures the deviation between the target speaker score from the mean, in terms of
the standard deviation. However, this Gaussian assumption could not be assured in the PV task
because the number of impostors in the PV task was much more reduced that in speaker verification
(only the 24 remaining phonemes), leading to a lack of independence between the scores of the
different impostors, as phonemes with similar features (vowels, consonants, or phonemes sharing
point or mode of articulation) will likely obtain closer scores.

With these assumptions, a normalization which made a better use of the scores achieved by
the small number of competing phonemes was proposed. This type of normalizations, resembling
cohort normalization [Rosenberg et al., 1992], required computing the log-likelihood scores for all
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the competing phonemes (N − 1, as the total number of phonemes is N) in the same segment of
speech that the canonical unit i (LL(i)): LL(n) for n = 1...N with n 6= i.

Once all the scores of the competing units were calculated, several techniques could be applied
to use them in normalization of the score of the baseform phoneme. Two of them were studied in
this work: A GOP-like normalization and a 1-best normalization.

The GOP-like normalization applied the same framework as proposed for the calculation of
GOP [Witt and Young, 1997, Witt and Young, 2000], which is a very well known technique for
phoneme-level verification. In this case, the normalized log-likelihood was computed as in Equation
8.6, subtracting the log value of the sum of the scores for all the competing phonemes. The only
difference that this normalization approach had with GOP was that the averaging by the number
of frames is computed inside the log-likelihood instead of for the whole posterior.

LLGOPnorm(p) = LL(p)− LL(
1
N

N∑
n=1

(P (s|λn))) (8.6)

Traditional approaches to GOP approximate the calculation of the sum of all the scores of the
competing phoneme to the score of the phoneme with the maximum score [Witt and Young, 2000].
This approximation, although popular, is quite gross as it is expected that several phonemes might
have comparable values of scores, thus, limiting the mathematical application of the approximation.

However, with the proposed normalization approach, any approximation to the second factor
in Equation 8.6 is plausible in a same way to the already mentioned cohort normalization. Hence,
it was also evaluated a 1-best normalization where the log-score of the best competing phoneme
(i.e. l with LL(l)) was directly normalizing the log-score of the baseform phoneme as in Equation
8.7.

LL1−best(p) = LL(p)− LL(l) (8.7)

This approximation limited the number of calculations required for the score normalization,
as some phonemes could be pruned before computing their final log-score value and, furthermore,
it provided directly an alternative phoneme as the best phoneme in the N-best list of alternate
phonemes.

(a) Full detection curve (b) Detail of the EER zone

Figure 8.7: Detection curve for N-best based normalizations

Both normalization proposals achieved the detection curves shown in Figure 8.7, with a 22.01%
of EER for the 1-best based normalization and 21.44% for the GOP-like normalization. Both
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techniques improved T-norm and showed fine properties in their detection curves and EER.
Furthermore, several proposals could raise from the N-best list as different combinations of the
scores from the competing phonemes could be used according to different phonetic properties of
the unit for evaluation.

8.4 Speaker Adaptation

As explained in Section 8.1, retraining of the speaker models to different channel conditions is also
an effective way of erasing channel variability in the speaker verification task. In a similar way,
the retraining of speaker adapted models was tested in PV to improve the results of the previous
Section.

These adaptation experiments were performed following the same framework that the speaker
adaptation experiments done for ASR in Chapter 7, trying to investigate the same effects in
amount and phonetic accuracy of the data. Furthermore, the normalization techniques studied in
the previous Section were tested to study their performance with SD models.

(a) Full detection curve (b) Detail of the EER zone

Figure 8.8: Detection curves for speaker adapted models to the baseline transcription

The first adaptation strategy carried out was to retrain the models according to the baseline
transcription, using the same models than in the first approach in Section 7.1. The detection
curves with the 3 normalization techniques can be seen in Figure 8.8. T-norm achieved a 21.29% of
EER, while the 1-best based normalization achieved 19.17% EER and the GOP-like normalization
achieved a 18.87% EER.

Second approach was to use the outcome of the APD system presented in Chapter 4 to obtain
a new set of transcriptions as in the acoustic adaptation of models for ASR in Section 7.1. The
detection curves for the 3 normalization techniques can be seen in Figure 8.9. T-norm achieved
a 20.46% of EER, while the 1-best based normalization achieved 19.55% EER and the GOP
normalization a 19.48% EER.

Posteriorly, the SD models trained following the outcome of the experts’ labeling, explained in
Section 7.1, were also used for this same PV task. The detection curves in Figure 8.10 showed a
18.16% EER for the T-norm; and a 15.63% EER for the 1-best based normalization and 15.71%
for the GOP-like normalization.

In all cases, the results outperformed the EER values achieved with the SI models in the
previous Section. As it will be seen in the discussion of results, the PV task was seen as very
sensitive to the accuracy of the pronunciation in the data used for the retraining of models.
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(a) Full detection curve (b) Detail of the EER zone

Figure 8.9: Detection curves for speaker adapted models to the APD transcription

(a) Full detection curve (b) Detail of the EER zone

Figure 8.10: Detection curves for speaker adapted models to the experts’ labels

8.5 Comparison of Techniques

Once presented the results for all the score normalization techniques proposed altogether with
all the possibilities for speaker adaptation of the acoustic models, this Section gathers all these
results for a better interpretation of all of them. Table 8.1 presents all the values of EER from the
Chapter.

As it could be seen, GOP normalization and the proposed 1-best normalization showed an
improvement of up to 14% over T-norm, with both approaches showing no significant different
in their results. Proposals on how to use more phonemes in the N-best list according to some
rules might achieve better results than these two proposals, as GOP might be using information
from irrelevant phonemes and the 1-best case might be limited for neglecting a large number of
competitors.

An interesting result from this experiment was to observe how the SD model trained with
only that data which was considered lexically accurate by the labelers outperformed the SD model
trained from all the data considering the baseform transcription by a 14-18% for all normalization
techniques. These results were compared to the performance of both models in ASR in Section
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7.1, where the model trained with all the data outperformed the model trained with only correct
data. Models trained for PV require more precision in the separation of the phoneme variability
between correct and incorrect data. In this case, the use of mispronunciations in the training phase
was seriously producing a loss in the quality of these models.

Table 8.1: EER values for the normalization techniques and speaker adaptation
Acoustic adaptation

Normalization No adaptation Baseform Human labels APD
T-norm 22.80% 21.29% 18.16% 20.46%
GOP 21.44% 18.87% 15.71% 19.48%
1-best 22.01% 19.17% 15.63% 19.55%

8.5.1 2-pass system

Once seen that the use of mispronounced phoneme units for the retraining of the models in PV
degraded the performance of the system, compared to the “Wizard of Oz” system which only used
for retraining the units considered as correct by the human experts, it was decided to study the
possibility of developing a system that used this feature without the use of human help.

A preliminary unsupervised system for achieving the best possible performance was, hence,
studied by means of a 2-pass system. The scheme of the system, in Figure 8.11, used as seed the
TD models, and performed a PV step with these models and the system with the 1-best based
normalization. The decision made over the phonemes in the first step was used in the re-training
phase where only the data considered as correct by the PV was fed to the MAP algorithm. These
new models were used in the second pass of the PV system to obtain the definitive scores and
make the final decision of correctness or not of each phoneme for evaluation.

Figure 8.11: Scheme of the 2-pass unsupervised PV system

This 2-pass system was very sensitive to the precise tuning in which the first PV system was
configured; and for that, three operating points where chosen and studied for this system: The
first one was the EER point (threshold in -0.2), the second one is the point with only 10% of false
acceptance (threshold at 0.37 and approximately 40% of false rejections) and the third one was the
point with 10% of false rejections (threshold at -0.64 and approximately 40% of false acceptances).
Working points situated in the extremes of the detection curve (thresholds above 0.5 or below
-0.7) would lead to the situations of no adaptation or adaptation with all the data (correct and
mispronounced phonemes) that are already known in columns 1 and 2 of Table 8.1.

The three detection curves achieved by the three working points are plotted in Figure 8.12 (full
curve in 8.12(a) and zoomed around the EER area in 8.12(b)). The EER for the three working
points are 18.91%, 19.38% and 18.82% for the EER, 10% false acceptance and 10% false rejection
respectively.
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(a) Full detection curve (b) Detail of the EER zone

Figure 8.12: Detection curves for 2-pass PV system

It was seen how the best operation points for the first PV phase in the 2-pass system were
those who tried to use more data, achieving a 14-15% of improvement over the SI system and
a 1.5% of improvement over the SD 1-pass system that uses all data for re-training. This gain
had no significance to outperform the system that used all units without considering whether they
were correct or not, and it was still far from the “Wizard of Oz” system that achieved a 15.63%
EER by retraining only with the phonemes considered correct by the human labelers. The reasons
for this was that the system was working in the trade-off point between two requirements in the
adaptation. In one hand, it required the most possible amount of data, as it was seen how it was
sensitive to this subject, while requiring the most accurate possible data.

Furthermore, phonemes incorrectly verified in the first stage would most likely be those who
were closer to the border between the spaces of the correct and incorrect phonemes; becoming
the most pernicious in the second phase, due to the higher confusion among them. Hence,
discriminative training or large margin techniques might show a usefulness to provide an enhanced
unsupervised retraining of models for the PV task.



Chapter 9

Unsupervised On-line Systems for
ASR of the Speech Handicapped

I made him just and right,
Sufficient to have stood, though free to fall

-John Milton, Paradise Lost

Chapter 7 has introduced supervised techniques for acoustic-lexical adaptation. They required
to know the word prompted to the user and/or the outcome of the labeling process to know which
parts of the input signal matched the canonical transcription of the word. On the other hand, a
framework for the detection of phonetic mispronunciations has been presented in Chapter 8 with
promising results.

The base of unsupervised speaker adaptation is to feed the outcome of an ASR system as
transcription to the adaptation algorithm with the input speech signal. The use of a confidence
measure is requested to avoid feeding incorrectly recognized utterances or parts of utterances that
may corrupt the output model.

Once unsupervised adaptation has been studied, on-line personalization will arise as the next
step in the study of frameworks for providing adaptive ASR technology for special users. In this
case, constant retraining is performed as the speaker continues using the ASR system, instead of
limiting the adaptation to the initial frames of interaction. With these on-line approaches, re-
adaptation can be achieved as the speakers change the acoustic-lexical properties of their speech,
due to improvements in their language or to a worsening in their diagnosis.

The Chapter is organized as follows: Section 9.1 will introduce the problem of unsupervised
adaptation and the baseline results when no confidence measuring is performed over the
transcriptions fed to the adaptation algorithm. Section 9.2 will introduce all the strategies taken
for providing unsupervised adaptation and Section 9.3 will present and try to solve the problems
associated to on-line unsupervised adaptation.

9.1 Proposal and Baseline of Unsupervised Adaptation

As mentioned previously, the objective of an unsupervised adaptive system is to train new SD
models with a set of input signals whose transcription is initially unknown. The reason for the
evaluation of these unsupervised frameworks arose in the Introduction in Chapter 1 due to the
impossibility to reliably count on enrollment phases when working with young handicapped users.
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With these limitations, the proposed system had to adapt itself automatically using the same data
of the ASR interaction.

To provide of comparability between all the supervised adaptation frameworks presented in
Chapter 7 and the results in this Chapter, the strategies for adaptation were made similarly to
those of the previous Chapters. Hence, 3 of the 4 sessions were considered for re-training in 4
leave-one-out experiments, where the achieved models were tested over the remaining session. The
only information taken from the training data were the input speech frames as no knowledge on
the uttered word or the labeled mispronunciations was used.

The baseline for unsupervised adaptation was the simple framework in Figure 9.1. The training
signals were fed to the initial TD ASR system (the same that in Chapter 4), which provided a
word transcription of each signal. All transcriptions were used to re-train the new model which
was used with the remaining test signals to achieve the final results.

Figure 9.1: Simple unsupervised adaptation framework

The results for the test signals in the proposed framework can be seen in Table 9.1 for the three
possible acoustic units (words, phones and sub-phones). The first ASR decoding phase with the
training signals was performed with the same type of units that the final SD ASR experiments.

Table 9.1: WER in the simple unsupervised adaptation framework
Speaker word phone sub-phone Speaker word phone sub-phone
Spk01 4.82% 4.82% 5.26% Spk02 15.79% 14.91% 18.42%
Spk03 3.95% 3.07% 2.19% Spk04 2.63% 2.19% 2.19%
Spk05 63.16% 56.14% 51.75% Spk06 1.75% 2.63% 1.75%
Spk07 20.18% 21.93% 19.30% Spk08 42.11% 42.11% 43.42%
Spk09 16.23% 14.04% 14.91% Spk10 19.74% 29.82% 26.32%
Spk11 5.70% 7.02% 7.89% Spk12 53.51% 58.33% 56.14%
Spk13 78.95% 73.25% 79.82% Spk14 13.60% 9.21% 10.53%
AV G 24.44% 24.25% 24.28%

The average WERs in Table 9.1 were around 24% for all units, which supposed a relative
improvement with respect to the TD baseline results (Table 4.5 in Section 4.3) of 14-20%. The
results showed the special difficulty of the unsupervised task in the comparison with the 12-15%
WERs achieved in Section 7.1 when the prompted word was known (supervised case).

9.1.1 Lexical unsupervised adaptation

Lexical adaptation was also evaluated in an unsupervised framework. The steps that were taken
for this were as shown in Figure 9.2, where the adaptation data was fed at the same time to
the SI-TD ASR system to the SI-TD APD. ASR obtained the proposed word transcription for
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each utterance, while APD provided the transcription of the utterance in phone/sub-phone units.
Posteriorly, the decoded word and the transcription were matched and added to the new SD lexicon
for each speaker.

Figure 9.2: Simple unsupervised adaptation framework

The leave-one-out experiments were replicated here with 3 sessions for adaptation and 1 session
for testing and obtaining the final results.

The results achieved by all the speakers are shown in Table 9.2. A noticeable and significant
decrease of performance was observed with respect to the baseline TD results (from 28-31% to
31-34% WER). However, this increase in WER is fully justified by the direct use of the output
of the ASR system into the new lexicons. When a recognition mistake is done in the preliminary
recognition phase, this error was propagating to the evaluation phase through its inclusion in the
lexicon.

Table 9.2: WER in the simple unsupervised lexical adaptation framework
Speaker word phone sub-phone Speaker word phone sub-phone
Spk01 - 13.60% 11.43% Spk02 - 27.63% 21.49%
Spk03 - 20.18% 9.21% Spk04 - 4.39% 3.07%
Spk05 - 64.91% 63.60% Spk06 - 10.96% 5.70%
Spk07 - 33.33% 32.89% Spk08 - 56.14% 46.93%
Spk09 - 26.32% 21.93% Spk10 - 38.16% 38.16%
Spk11 - 14.91% 9.21% Spk12 - 73.68% 70.61%
Spk13 - 75.88% 83.33% Spk14 - 25.44% 19.74%
AV G - 34.68% 31.24%

Hence, for lexical adaptation, even much more than for acoustic adaptation; the use of a
confidence measure was requested to limit the influence of ASR inaccuracies into the performance
of the system. All this process was performed and will be shown in Section 9.2.

9.1.2 Effect on the unsupervised results of the initial ASR mistakes

A study was made to understand how different levels of misrecognition in the first ASR decoding
phase affected the final performance of the simple proposed unsupervised system. Figure 9.3
presents the scatterplots that related the WER for all the speakers in the word-unit supervised
results in Section 4.3 and the WER in the word-unit unsupervised results recently shown, both
against the WER of the word-unit baseline TD results.
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(a) Supervised system (b) Unsupervised system

Figure 9.3: Relations between WER in the first and second phase

Figure 9.3(a) represents the scatterplot of WERs in the supervised system vs the WERs of the
SI-TD system, with their regression line (y = 0.64x − 3.6868). Although the regression was not
significantly linear, as r was only 0.90, it was possible to see how they related and their trends.

On the contrary, Figure 9.3(b) shows the same scatterplot in the unsupervised case. The
regression line in this case was y = 1.05x − 2.71, with r reaching 0.99, showing the bad
characteristics of this system, because the slope of the line was above 1, which meant that in
the upper zone of the regression line, the WER of the unsupervised SD models were greater
than the WER of the SI-TD baseline system. And this was actually happening for the speakers
with highest WER (Spk05, Spk12 and Spk13), whose results got degraded with the unsupervised
adaptation.

The ideal situation would be one in which the WER after the adaptation was constant,
independently of the personal characteristics of the speakers and, hence, independent too of the
WER of the speaker with SI models. In the unsupervised case, the dependency between SI and SD
recognition experiments is greater, as mistakes in the initial ASR propagate through the retraining
of models. The following research had to be oriented to limit these inaccuracies in the adaptation
data which was fed to the unsupervised system, as the way to improve their performance.

9.2 Unsupervised Adaptation based on Confidence Measures

A more precise unsupervised adaptation system that could overcome the effect of misrecognitions
in the initial decoding phase of the training data was proposed like in Figure 9.4. This system
made use of a confidence measuring block to post-process the output transcription and decide
whether the decoded word had enough confidence or not to be used for adaptation or to extract
those parts of the utterance that could have higher confidence.

It was decided that, instead of rejecting utterances at the word level, the confidence measuring
was made at the phoneme level, because this could provide an enhanced selection for two reasons:

• On one hand, parts of the input signal could be correctly associated to a certain phoneme,
even if the utterance had been misrecognized.

• On the other hand, even in the case of an ASR success, it might happen that some phonemes
were mispronounced by the speakers, as the human labelers had evaluated.
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Figure 9.4: Unsupervised adaptation framework based on confidence measuring

The proposed system made use of the confidence measure system proposed in Chapter 8, which
showed a fine performance in the task of PV. Although the task was different, because it was not
deciding the suitability of the utterance to the sequence of input phonemes, the similarities made
this proposal useful: In the new task, the system had to decide which parts of the utterance were
really belonging to the sequence of phonemes of the word proposed by the initial ASR decoding
system.

The results of this system are shown on Table 9.3. A very important feature of this system was
the operating point in which the confidence measuring was working to accept or reject phonemes.
Table 9.3 presents the results for a threshold of 0, which was seen to be a point close to the EER
in Chapter 8 when using the 1-best score normalization technique.

Table 9.3: WER in the confidence measure-based unsupervised adaptation framework
Speaker word phone sub-phone Speaker word phone sub-phone
Spk01 - 6.58% 4.39% Spk02 - 18.86% 19.74%
Spk03 - 4.39% 3.07% Spk04 - 3.07% 1.75%
Spk05 - 55.26% 53.95% Spk06 - 3.07% 1.75%
Spk07 - 23.25% 22.81% Spk08 - 43.86% 45.61%
Spk09 - 15.79% 17.11% Spk10 - 33.33% 27.63%
Spk11 - 7.89% 7.46% Spk12 - 65.35% 64.47%
Spk13 - 74.12% 78.95% Spk14 - 11.84% 12.28%
AV G - 26.19% 25.78%

The results showed a loss of performance with respect to the unsupervised adaptation which
used all the data for adaptation, without distinguishing correct from incorrect phonemes. The
effect of data sparsity was present again at this point of the work, so it was decided to evaluate
how different thresholds to accept or reject the phonemes in the recognized words affected the
results.

Figure 9.5 presents graphically these results for phone and sub-phone units: The possible
thresholds for the decision ranged from -1 to +1, as these were the limits of the sigmoid function
used. A threshold of -1 supposed accepting all the phonemes, and the results are those of Table
9.1 in Section 9.1; while a threshold of +1 supposed rejecting all the phonemes, i.e. the baseline
results with SI-TD models. The rest of the values produced a set of results that grew nearly
monotonically from the lower confidence values to the greater. Whatever effect could have had the
effect of using more accurate data for adaptation did seem to be overwhelmed by the fact that less
data was available for adaptation, as the threshold was becoming more strict to reject phonemes,
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thus, reducing the amount of adaptation data.

Figure 9.5: Unsupervised adaptation framework WER for different confidence thresholds values

Again, the effect of data sparsity was limiting the possibilities of providing a more accurate
modeling of correct units when performing adaptation techniques to disordered speech. Although
fast adaptation algorithms exist to avoid the problematic of sparse data, they are based on using
different units to retrain a given unit, so they would be using more phonetically inaccurate data to
the new HMM estimation, limiting the knowledge in how this data affected the final performance.

9.2.1 Lexical unsupervised adaptation based on confidence measures

A possibility to use confidence measure was furtherer evaluated via the framework shown in Figure
9.6. This framework proposed the rejection of possible recognition mistakes of the first phase via
the phoneme-level PV system already used previously. The translation of the phone labels provided
by the PV system to word labels followed a simple ruled based in the number of phonemes whose
normalized score was lower than a threshold set to 0.

More precisely, when more than a 25% of the phonemes had been rejected considering that
threshold, the word was rejected and it was not included with the corresponding APD transcription
into the new SD lexicon.

With this technique, the number of lexical variants in the vocabulary was reduced to only
those who were more accurate to the possible real pronunciation of the speaker. The results for
all the speakers are presented in Table 9.4; a certain improvement was achieved over the lexical
unsupervised adaptation presented in Section 9.1.1, but it still obtained worse performance than
the baseline SI-TD results (3-7% worse relative performance).

Some other thresholds for the rejection of misrecognized words, according to their phone-
level results in the confidence measure proposed, were evaluated, but they did not lead to any
improvement over the shown results neither over the initial baseline. In any case, unsupervised
lexical adaptation seemed possible for the proposed task.
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Figure 9.6: Unsupervised lexical adaptation framework with word rejection

However, it could be argued whether the proposal for confidence measuring-based unsupervised
lexical adaptation was correct or not; and, even more, if it was really a plausible method in any case.
The interest in lexical adaptation was to learn new pronunciations of a given word. Unfortunately,
if a word got correctly recognized, but it corresponded to a different pronunciation, the confidence
measure system would reject the word for considering it as incorrectly recognized, as there was
no way for the system to distinguish incorrectly recognized words from correctly recognized words
pronounced as lexical variants.

Table 9.4: WER in the unsupervised lexical adaptation framework with word rejection
Speaker word phone sub-phone Speaker word phone sub-phone
Spk01 - 11.40% 10.53% Spk02 - 23.25% 24.56%
Spk03 - 19.74% 8.77% Spk04 - 3.95% 3.07%
Spk05 - 62.28% 58.33% Spk06 - 9.65% 5.26%
Spk07 - 32.02% 27.63% Spk08 - 46.05% 44.30%
Spk09 - 24.12% 22.81% Spk10 - 36.40% 31.58%
Spk11 - 17.54% 11.84% Spk12 - 74.56% 70.18%
Spk13 - 80.70% 80.70% Spk14 - 21.49% 19.74%
AV G - 33.08% 29.95%

The problem of ambiguity in the recognition of this disordered speech arose, hence, stronger
than ever; as it was seen than in most of the cases the output of the ASR system would be more
accurate to the real pronunciation of the user than the way in which the speaker pronounced the
word according to the baseform transcription of the prompted word.

This ambiguity was more problematic in lexical adaptation because, as mentioned before, there
was no way for the automated system to discern between a correctly recognized word with a bad
pronunciation from the user and a incorrectly recognized word whose pronunciation by the speaker
was closer to this word than to the prompted one.
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9.3 On-line Personalization of ASR Systems

After reviewing and evaluating the possibilities for supervised adaptation in Chapter 7 and
unsupervised adaptation in previous Sections of this Chapter; this Section will make a proposal
for an on-line unsupervised personalization system for ASR-based systems for the handicapped.

ASRInput speech

Confidence 
measuring

Adaptation

transcriptions

models

labels

Buffer

Figure 9.7: On-line personalization framework for ASR

Figure 9.8: Experimental framework for on-line personalization

The proposed system followed the diagram in Figure 9.7. The user’s input speech entered the
ASR system to decode the oral utterance. A buffer stored each input speech signal, each decoded
word provided by the ASR system and the phonetic labels provided by the confidence measuring
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system. When it was decided that enough data had been obtained for adaptation, the adaptation
algorithm was fed on the contents of the buffer and applied the unsupervised adaptation shown in
the previous section, obtaining a new SD model for ASR. After each adaptation, the buffer was
emptied and refilled again with the new input data for further adaptation.

To simulate this situation with the available data, it was decided to perform little steps of
adaptation with each session available from the speakers. Hence, the final process of work was as
shown in Figure 9.8 where for each speaker Spk, Session i was initially recognized, evaluated with
the PV system and models retrained for the recognition of Session j where the same process went
on towards Session k and Session l. The total number of experiments was 24 per speaker, which
was the number of ways in which 4 elements could be combined in a list of 4 without repetitions
(4!). The final outputs were the averaged WERs after the first, second, third and fourth stages
(iterations) of the process.

Experiments were run only over the sub-phone units, which had provided the best performance
besides word units on the previous experiments. The results can be seen per speaker and each step
of the iterative adaptive procedure in Table 9.5. The results after the first recognition step were
the same as in the baseline TD results, as no adaptation had been carried out at this point. The
subsequent phases of adaptation were providing an overall relative improvement of 5.43%, 8.58%
and 11.56% over the SI results.

Table 9.5: WER of the on-line personalization system
Spk It 1 It 2 It 3 It 4 Spk It 1 It 2 It 3 It 4
Spk01 10.09% 5.99% 4.90% 4.24% Spk02 20.18% 19.74% 19.08% 18.79%
Spk03 5.70% 4.82% 3.65% 3.07% Spk04 3.51% 2.49% 2.19% 2.19%
Spk05 56.14% 54.53% 53.95% 53.22% Spk06 3.07% 1.75% 1.90% 1.75%
Spk07 25.44% 24.85% 22.22% 19.52% Spk08 43.86% 44.83% 45.98% 46.56%
Spk09 22.81% 18.57% 15.94% 14.40% Spk10 32.46% 31.43% 30.56% 29.46%
Spk11 9.21% 7.89% 7.60% 6.29% Spk12 63.60% 63.89% 60.67% 58.04%
Spk13 80.26% 79.82% 80.19% 81.07% Spk14 18.42% 12.72% 12.06% 10.53%
AV G 28.20% 26.67% 25.78% 24.94% -

The WER in the final session (24.94%) improved the results in Table 9.3 which used the same
framework for unsupervised adaptation with confidence measuring in an off-line format. In the
previous case, 3 sessions were gathered to perform one single adaptation for the final session; on
the contrary to the on-line situation, which performed small adaptation steps, and still got a better
improvement. The on-line framework showed that constant retraining of models can be useful to
provide bigger reductions in WER, despite the problem of data sparsity.

At this point, it was seen as important to make a deeper analysis of the improvement achieved
separately for each speaker. If the proposed system was aimed to provide improvement in the
recognition rates of an ASR system to be used by a disabled person, it was important to know
which improvement could be expected depending on the characteristics of the target user.

For that reason, Table 9.6 shows the values of improvement achieved over the baseline results
in each iteration of the on-line system for all speakers.

There were 8 speakers who achieved improvements with a high significance (over 20%) which
were speakers Spk01, Spk03, Spk04, Spk06, Spk07, Spk09, Spk11 and Spk14. Other 4 speakers
achieved improvements below 10%: Spk02, Spk05, Spk10 and Spk12; and, finally, two speakers
(Spk08 and Spk13) had a negative performance of the personalization system. Again, the
relationship with the WER of the initial recognition phase was clear, as the speakers with higher
improvements were those whose baseline ASR results were around 20% of WER or lower. On the
other hand, speakers with an initial recognition accuracy of 30 to 80% got minimum improvements
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within the personalization framework.

Table 9.6: Improvements of the on-line personalization system
Spk It 1 It 2 It 3 It 4 Spk It 1 It 2 It 3 It 4
Spk01 - 40.63% 51.44% 57.98% Spk02 - 2.18% 5.45% 6.89%
Spk03 - 15.44% 35.96% 46.14% Spk04 - 29.06% 37.61% 37.61%
Spk05 - 2.87% 3.90% 5.20% Spk06 - 43.00% 38.11% 43.00%
Spk07 - 2.32% 12.66% 23.27% Spk08 - -2.21% -4.82% -6.16%
Spk09 - 18.59% 30.12% 36.87% Spk10 - 3.17% 5.85% 9.24%
Spk11 - 14.33% 17.48% 31.70% Spk12 - -0.46% 4.61% 8.74%
Spk13 - 0.55% 0.09% -1.01% Spk14 - 30.94% 34.53% 42.84%
AV G - 5.43% 8.58% 11.56% -

An open question that these experiments left was the performance with more data for
continuing the iterative on-line procedure described in this Section, as it was expected that more
new data would keep reducing the final WER for the impaired speakers, because the marginal
improvements kept growing up from session to session.

From all this, it came clear that unsupervised techniques have to be applied preferentially to
speakers whose disorders do not degrade largely the performance of the ASR systems, while users
with heavier disorders should face a supervised enrollment phase, nevertheless the difficulty it may
suppose for them.



Chapter 10

Development of Speech-based
Applications for the Handicapped

If someone makes a movie and no one sees it,
does the movie exist or not?

-Paul Auster, Book of Illusions

This Chapter presents all the real-world applications that have been developed during the
realization of this thesis. One of the main motivations for this thesis was to transduce the
theoretical and experimental results of the thesis to the development of applications that could
improve the quality of life of a part of the handicapped community. These developments
fructified in two types of tools: Development of speech-based tools for environment control for the
handicapped and development of CALL tools with special focus on the handicapped community.
These tools are the fruit of the work of the whole team at the VIVOLAB group in the I3A,
other research groups at the University of Zaragoza and different institutions for the schooling and
assistance of the handicapped. This Chapter will also be a recognition for all their effort.

The Chapter is organized as follows: Section 10.1 will introduce three different approaches
for the control of different environment elements by people with impairments via speech and
voice-based interfaces; while Section 10.2 will review the development of CASLT tools within the
“Comunica” framework, including “PreLingua”, “Vocaliza” and “Cuéntame”. Finally, Section
10.3 will introduce the attempt in L2 learning tools with the development of “VocalizaL2” and an
experience with this tool.

10.1 Speech-based Interfaces for the Handicapped

During the review of the stat-of-the-art in speech-based applications for the handicapped in
Chapter 2, it was seen how the creation of interfaces adapted for handicapped people to operate
with those elements whose physical difficulties would not allow them to use normally is a major
field in this area of speech research. The Vocal Joystick [Harada et al., 2008] or the STARDUST
and VIVOCA projects [Hawley et al., 2003, Creer et al., 2010] have been two successful examples
of these developments, among others.

Three different elements for environment control were researched during the realization of this
thesis. The first one was the introduction of a speech-based control system for an automatized
wheelchair [Alcubierre et al., 2005]; the second one was the voice-based emulation of keyboard and
mouse events by severely handicapped individuals [Saz et al., 2009a, Saz et al., 2009b]; and finally
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the inclusion of an ASR system in a virtual mouse element [González, 2009]. The framework
of collaboration in which these actions were made, the technical characteristics of these control
elements and the conclusions of the works are presented in the next sections.

10.1.1 Speech control of an automatized wheelchair

The development of sensor-based navigation systems for robots [Mı́nguez and Montano, 2005] has
been applied during the latest years by the Robotics and Real Time Group of the I3A, led by
Prof. Luis Montano and Dr. Luis Montesano and Dr. Javier Mı́nguez. One of the applications in
which these systems have been used was a robotic wheelchair [Mı́nguez et al., 2006] able to detect
obstacles with the help of a laser beam. This knowledge of the environment enabled the system
to generate a safe route from the origin point to the destination point defined by the user.

A major line of research within the Robotics Group was the interest in possible interface
systems for the control of this automatized wheelchair, developing different possibilities like touch
screens, Brain-Computer Interface (BCI) [Iturriate et al., 2009] or speech-based systems, which
are the subject of this Section.

The work carried out for the speech control of this wheelchair [Alcubierre, 2005] supposed the
integration of the state-of-the-art ASR system used in the experimental results of this thesis into
the control system of the wheelchair. For this purpose, there was to pay special attention to
the Central Processing Unit (CPU) limitations imposed by the functioning of the laser detector,
that blocked the CPU during most of its cycle to ensure the correct detection of the obstacles.
The system was designed for the recognition of isolated commands via the rule-based grammar in
Figure 10.1 in which an activation word (‘Dusila’) was used to indicate the ASR that the following
commands were directed to the wheelchair. The commands within the grammar were related to
the spatial directions in which the wheelchair could move (‘arriba’-‘up’, ‘abajo’-‘down’, ‘izquierda’-
‘left’, ‘derecha’-‘right’, ‘cerca’-‘close’, ‘medio’-‘medium’ and ‘lejos’-‘far’); general commands like
‘para’-‘stop’, ‘anda’-‘walk’, ‘inicia’-‘start’ and ‘termina’-‘finish’ indicated the system when to start
or stop the movement.

Figure 10.1: Grammar for the speech control of the automated wheelchair

The evaluation of this speech-based interface was carried out with a test subject, student with
tetraplegia from the CPEE “Alborada” and was controlled by members of the CPEE “Alborada”
and the Robotics group. A screenshot of a video shot during the tests (courtesy of Javier Mı́nguez)
shows in Figure 10.2 the student in the wheelchair followed by Javier Mı́nguez and César Canaĺıs
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from the CPEE “Alborada”, while trying to make his way through the facilities in the University
of Zaragoza.

Figure 10.2: Evaluation of the speech-controlled automatized wheelchair

The results were satisfactory, but it was shown the difficulty that supposed the recognition of
the disordered speech of the test subject. An added difficulty were the developmental disorders of
the subject, who suffered of usual time-space disorientations when uttering the commands to the
system as he could not relate the map shown on the screen of the computer as a representation of
the evaluation scenario where he was placed.

Unfortunately, the early stage in which this thesis was at the time of the experiments did not
enable the use of the proposed techniques for personalization, and only the baseline system was
tested, which could not provide the best recognition results possible as the work during these years
has shown.

10.1.2 Voice-triggered mouse and keyboard events

The control of different computer elements like the keyboard or the mouse can suppose a serious
barrier for those people who suffer an affection over the fine motor system like people affected
by cerebral palsy, as key or mouse strokes require a good control of the nervous system. The
development of elements that can substitute these devices is of major interest for those who work
for the handicapped community.

For many years, devices based on mechanical aids have been used for simulating keyboard or
mouse events. Big-sized buttons that are handled by the user with different parts of the body
like head, elbow or knee can be connected to the computer or directly to the mouse to trigger
these computers events. However, these situations can be uncomfortable for the users due to the
continuous repetitions of movements that the user has to do; or can not provide enough robustness
as the rate of false activations raises with the involuntary or spastic movements of the user.

This situation led to the interest of the staff of Confederación Española de Federaciones
y Asociaciones de Atención a las Personas con Parálisis y Afines (Spanish Confederation of
Federations and Associations for the Assistance to People with Palsy and Related Handicaps)



118 Chapter 10. Development of Speech-based Applications for the Handicapped

(ASPACE)-Huesca for the development of an emulator of mouse and/or keyboard events controlled
by voice or speech. The work was made within the collaboration framework between Coordinadora
de Asociaciones de Personas con Discapacidad (Coordinating Committee of Associations of
Handicapped People) (CADIS)-Huesca and the University of Zaragoza, funded by different
institutions like the Diputación Provicial de Huesca (Provincial Council of Huesca) (DPH), the
Instituto Aragonés de Servicios Sociales (Aragonese Institute for Social Services) (IASS) and the
Caja de Ahorros de la Inmaculada (CAI). Several coordination meetings were made to define
the settings and requirements of the application; which was given the name of “MouseClick” or
“VozClick” [Saz et al., 2009a, Saz et al., 2009b].

The application processes the input audio signal captured by a microphone and applies an
energy-based Voice Activity Detection (VAD) over it to determine when to trigger the keyboard
or mouse event. The application was development for the Windows Operating System (OS) and
presents an interface as shown in Figure 10.3. From this interface, the user or the person assisting
the user can configure all the elements within the application: the energy threshold, the duration
threshold and the sonority threshold.

Figure 10.3: “VozClick” main window

The application monitors the input speech signal and looks for a speech pulse whose energy
overpasses the defined energy threshold. When the pulse finishes it evaluates if the duration of the
pulse has been in between the limits decided by the user (to avoid the activation with extremely
short or extremely long emissions) and triggers the desired computer event (mouse stroke or key
stroke). An extra threshold can be set to filter emission according to their sonority; this way,
a user can decide to emit only voiced speech utterances (vowels or similar) or voiceless emisions
(breathing or fricatives).

Example 10.1.1 An example on how “VozClick” reacts to different input entrances is shown in
Figure 10.4. In Figure 10.4(a), the input energy for each speech frame is plotted, altogether with
the energy threshold; Figure 10.4(b) shows the frame sonority value, which measures how sonorant
the frame is according to the same speech processing methods followed in Chapter 5; and finally,
in Figure 10.4(c), it is plotted the binary output of the energy thresholding and the trigger of the
mouse event, as a binary signal too.

Four voice events were captured in the example signal. The first one was shorter that the
minimum duration set to trigger the mouse event, while fourth one was longer than the maximum
duration set to trigger the mouse event; hence, no one of them produced any output. The third
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voice event had the desired duration, but it did not match the sonority feature which was set to
look only for sonorant parts of speech; hence, it was discarded too. Only the second voice event
had the desired duration and sonority value to trigger the mouse event (black line in the bottom
plot).

(a) Energy

(b) Sonority

(c) Output

Figure 10.4: Energy, duration and sonority thresholds on “VozClick”

The application was intended for the use with other software elements like slides, whose
movement could be handled by speech or for complementing virtual emulators like a virtual
keyboard or virtual mouse. The final evaluation was made with a Virtual Mouse (“Ratón virtual”)
device developed by the group led by Prof. Joaqúın Ezpeleta of the Department of Computer
Science and Systems Engineering of the University of Zaragoza in collaboration with the CPEE
“Alborada” [Bergua, 2005, Bergua et al., 2006]. Figure 10.5 shows the evaluation experiment
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carried out during the media presentation of “VozClick” in Huesca (Spain). The test subject
(a woman with spastic cerebral palsy) was able to emulate the mouse handling via speech, opening
Windows applications or navigating the Internet.

This first subject and two more test individuals from ASPACE-Huesca with spastic cerebral
palsy were testing the application during several months. First subject showed up a great ability
with the voice interface and increased her efficiency with lower effort in the use of a virtual keyboard
device (Click’n’Type) for the writing of documents in a Microsoft Word environment.

Figure 10.5: Evaluation of “VozClick” with the “Ratón virtual”

Further tests meant also the inclusion of new features in the application: Some of them affecting
the interface of the application like a “Minimization” option that sends the application to the
Windows tray to avoid the application window appearing constantly on screen and disturbing other
elements; and some others affecting the audio processing within the application like the use of an
spectral subtraction algorithm like Minimum Mean-Square Error Log-Spectral Amplitude (MMSE-
LSA) [Ephrain and Malah, 1985] to reduce the input noise captured by the application due to
different sources like electronic devices or environment noise. This presence of noise, especially
electronic noise from the own computer, limits the possibilities of the application as the user has
to raise the volume of speech to overcome this background noise level.

10.1.3 Speech control of virtual mouse

The final implementation oriented to applications for the handicapped was the inclusion of the
state-of-the-art ASR system used in this thesis as an interface in the virtual mouse device (“Ratón
Virtual”, mentioned previously) generated by Prof. Joaqúın Ezpeleta of the Department of
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Computer Science and Systems Engineering of the University of Zaragoza in collaboration with
the CPEE “Alborada” [Bergua, 2005, Bergua et al., 2006].

The latest work in this line of research supposed the creation of the “MICE” environment for
introducing new drivers in the control of the mouse device [González, 2009]. One of the possibilities
that was considered was the inclusion of an speech interface based on the baseline ASR system
presented in this thesis. The environment provided the tools in Java Native Interface (JNI) to
communicate the ASR libraries in C with the virtual mouse device in Java.

This work is currently ongoing and is requiring an initial evaluation of the performance of the
system and the tuning of the baseline system towards the final inclusion of the tools that can
provide an adaptation of the system to the user, as this thesis has showed that this is strongly
necessary when developing speech systems for the handicapped with possible speech impairments.

The demand for this kind of devices is high, as it can really provide enhanced communication
to severely handicapped individuals, so this opening line of work would strongly count with the
help of institutions like the CPEE “Alborada” or ASPACE-Huesca.

10.2 CASLT Tools - “Comunica”

“Comunica” appeared as the joint effort from the VIVOLAB speech group at the I3A and
the therapists, educators and staff of the CPEE “Alborada”, trying to bring together the
experimental research in speech technologies with the development of real-world CASLT tools
[Rodŕıguez et al., 2008a, Saz et al., 2008b, Saz et al., 2009h, Rodŕıguez et al., 2009]. It aimed to
cover the full process of language acquisition, from the phonatory skills to the requirements of the
functional language, through phonological acquisition.

10.2.1 “PreLingua”

“PreLingua” is an application for the stimulation and training of basic phonatory skills in infants
or handicapped persons with severe voice pathologies. The application was developed by William
Ricardo Rodŕıguez within “Comunica” [Rodŕıguez et al., 2007, Rodŕıguez et al., 2008b]. Its basis
are speech processing to extract acoustic features like intensity, fundamental frequency or formants.

Figure 10.6: “PreLingua” main window
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The interface of the application is based on the main window shown in Figure 10.6; in this
window all the activities of the game are gathered in categories and can be accessed directly with
just one mouse click.

The activities were organized in a pyramidal structure from the more basic categories to the
more complex elements of voice:

(a) Voice activity (b) Intensity

(c) Respiration (d) Pitch

Figure 10.7: Activities in “PreLingua”

The bottom of the pyramid is occupied by the voice-activity detection activities. These activities
were intended for the stimulation of the speech production in infants with different disabilities (i.e.
hearing disabilities). As the patient utters any sound, the screen shows an image moving or
changing shape like it can be seen in Figure 10.7(a).

Next step in the pyramid are the intensity activities. Further than just distinguish between
presence or absence of sound, these activities stimulate the sense of volume or sound intensity
associated to the patient’s oral production. Figure 10.7(b) shows one of these intensity activities,
where a character advances in a circuit or labyrinth as the patient produces and oral input above
a certain intensity level.

The further step in the application are respiration activities. A correct control of breathing
and airflow is requested for the correct production of speech with a correct and sustained volume.
The respiration activities like in Figure 10.7(c) simulate a blowpipe or windmills that are activated
by the intensity of the patient’s voice, but only in the presence of unvoiced segments of speech;
this is, segments where fundamental frequency or pitch is not detected.

Final step of voicing stimulation in the pyramid are the pitch activities like Figure 10.7(d) to
help the patient to modulate and control the fundamental frequency of the speech production. A
steady pitch production is a measurement of good voice quality and the activities aim to provide
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feedback to the patient by means of a character that navigates up and down the screen according
to the pitch value of the patient’s voice.

In the top of the pyramid, the vocalization activity helps the student utter the first full vocalic
sounds with the help of a representation of the Spanish formant map where the user has to match
the vowels production to the standard values plotted in the application. An important work was
done in this area to make this activity robust to children’ speech, as high-pitched individuals
produce errors in the formant detection. Moreover, children present formant values different from
the standard values of formants in adults as their vocal tracts are still growing, so the normalization
of the formant values is required in this case [Rodŕıguez and Lleida, 2009].

10.2.2 “Vocaliza”

“Vocaliza” was the first CASLT tool developed within “Comunica”, in a work carried out
mainly by Carlos Vaquero [Vaquero, 2006]. “Vocaliza” [Vaquero et al., 2006, Vaquero et al., 2007,
Vaquero et al., 2008b, Vaquero et al., 2008a] is a CAPT tool that also trains the semantic and
syntax levels of language as well as the phonological level.

The main window in “Vocaliza” is seen in Figure 10.8 and allows to access directly to all
functionalities of the game, including: Creation and management of user profiles, introduction of
new activities, enrollment phase and the 4 designed activities.

Figure 10.8: “Vocaliza” main window

The four activities designed for “Vocaliza” focused on the training of the speech of the student
by providing an audio-visual feedback of the speech quality of the student’s speech.

Pronunciation activities like in Figure 10.9(a) present a word to the user, awaiting for the
utterance of that word by the student. The system runs ASR over the student’s input utterance to
decode whether the speaker is pronouncing the prompted word and posteriorly runs a word-based
UV system to give a mark to the student’s pronunciation.

Semantic activities like the one seen in Figure 10.9(b) give the student a riddle game, with a
question and three possible answers, and the student has to orally answer the riddle. The system
runs ASR over the student’s utterance aiming to recognize the correct answer to the riddle. When
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the correct answer is given, a mark is provided to the user relating to the number of trials that
the student has done to pronounce the correct word.

Syntax activities like in Figure 10.9(c) present a sentence to the user, awaiting for the utterance
of that sentence by the student. After ASR recognizes the prompted sentence from the user, the
UV system provides a mark about the overall quality of the student’s pronunciation.

Evocation activities like the one presented in Figure 10.9(d) await for a word uttered from the
speaker to present the word on screen. When the ASR system decodes one of the words in the
vocabulary, it presents it in the screen. Evocation can help to stimulate children’s oral language
by the cause-effect stimulus created with the apparition of the mentioned image.

(a) Pronunciation (b) Semantic

(c) Syntax (d) Evocation

Figure 10.9: Activities in “Vocaliza”

An important point in the application is the use of AAC technologies. Tentative users of
the application might be children with different impairments, including sensory impairments that
would limit their possibilities of interaction with the software application. For this reason, the
presentation of the activities and the feedback provided after each activity are based on three
different elements: Image, text and audio.

Images are the basis of the AAC systems. In “Vocaliza”, they are the center of the all interaction
of the student with the tool. In Figure 10.9, it can be seen as images appear in all the presentations
of the activities, providing all children, who might suffer different development disorders, an easy
way to understand what is asked from them. Audio reinforces the correct pronunciation of the
presented word or sentence; with the use of audio, an extra stimuli can be provided to different
users, while it can be removed for the hearing impaired ones. One step further, the audio can be
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synthesized via the Lernout & Hauspie TTS3000 or can be recorded directly from the therapist’s
speech. The selection of the audio reinforcement (synthesized or pre-recorded) is very important
and can be decided by the therapist according to the needs of each user, as it has seen widely
seen how different users require different types of audio prompting [Saz et al., 2010a]. Finally, text
can provide an extra stimuli to many users, while it can also be removed for children with vision
impairments or lecture difficulties.

The technologies embedded in “Vocaliza” are ASR to decode the utterance from the speaker,
UV to provide a confidence measure once the correct answer has been decoded and MAP speaker
adaptation to create acoustic models adapted to the speaker speech.

The ability of “Vocaliza” to provide a coherent feedback to the user is based on the properties
of the ASR within the application to correctly recognize or reject the utterance according to the
quality of the pronunciation. As it was shown in Section 4.6, the recognition rate of the ASR
system decreases heavily as the speaker produced more mispronunciations in the utterance. In
these cases, “Vocaliza” keeps forcing the speaker to utter again the word or sentence until it is
more accurately pronounced by the student and is recognized in the ASR. The quality measuring
system is based on a UV algorithm based in [Lleida and Rose, 2000] where two different models,
one trained from unimpaired speech and one from impaired speech are used to calculate a measure
of this quality. Finally, speaker adaptation via MAP helps create SD acoustic models as it has
been shown that they help to increase the recognition accuracy in ASR systems and the detection
accuracy in PV and UV algorithms.

10.2.3 “Cuéntame”

“Cuéntame” was developed within “Comunica” by Antonio Escart́ın [Escart́ın, 2008] and aims to
stimulate the functionalities of language in individuals with language impairments. The language
levels trained by “Cuéntame” are the next step in language production and relate to the capabilities
of the student to use language to describe things, or interact with the environment.

Figure 10.10: “Cuéntame” main window
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As in all the applications in “Comunica”, the main window of “Cuéntame” in Figure 10.10
allows the access with a single mouse click to all the functionalities of the application: user
configuration and activities.

Three activities were designed for “Cuéntame”, aiming to cover three aspects of the functional
language.

(a) Question answering (b) Descriptive

(c) Interactive

Figure 10.11: Activities in “Cuéntame”

Question answering activities like in Figure 10.11(a) present an open-answer question to the
student who has to answer with a whole sentence. An ASR system is run to decode the input
utterance, seeking for a set of keywords that define how accurately the student has approached to
the full correct answer.

Descriptive activities like the one presented in Figure 10.11(b) stimulate the student to utter
whole sentences describing the object appearing on screen according to some aspects (color, shape,
etc) predefined by the therapist. The ASR system again looks for the keywords that mark the
approximation to a predefined full correct sentence that describes the object.

Interactive activities like in Figure 10.11(c) present the student with an scenario and a goal to
accomplish and the student has to navigate orally through different stages and actions to finish
the proposed goal. The student has to match pairs of ‘action-object’ that are recognized by the
ASR system and reacts to the proposed action of the student.
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The technologies embedded in “Cuéntame” are ASR to decode the oral utterance from the
speaker, semantic-syntax analysis to infer the possible correct sentences that the speaker can utter
and UV to discard OOV words. The main feature that distinct “Cuéntame” from a purely CAPT
tool like “Vocaliza” is the fact that “Cuéntame” motivates the student to utter full meaningful
sentences, instead of just isolated words or prompted sentences. The difficulty of the language
modeling, as the therapist can include as many activities as desired who might vary largely from
each other, made that the ASR runs a keyword spotting on several words that mark the correctness
of the uttered sentences (noun, verb, pronouns, adjectives, etc) to decide whether the student has
approximate to the correct full answer. Furthermore, treatment of OOV words is made via this
keyword spotting that rejects all words not included in the vocabulary of the activity and an extra
UV to discard any of these words that may have been recognized as an in-vocabulary word.

10.2.4 Other tools: “ReFoCas”

One of the main features of “Comunica” has been the continuous communication with users and
therapists who used the applications to know their opinions about the tools, their problems (if
existed any) with them and their ideas for further improvements or developments.

From this feedback, the idea of providing an automated tool for the phonological register of
students in different education institutions appeared by proposal of a group of speech therapists
(Belén Gómez, Rebeca Sampedro, Sandra del Ŕıo, Ana Maŕıa Escáriz and Ana Isabel Costa) from
different schools from A Coruña and Pontevedra (Spain).

Figure 10.12: “ReFoCas” main window

This was the origin of “ReFoCas” and its Galician translation “ReFoGal”. The tools included
a set of words defined by the therapist to assess the ability of the students in different phonological
contexts (singles phonemes, consonant clusters and vocalic groups). The development of the tool
meant using the enrollment phase embedded in “Vocaliza” to capture the utterances from the
student and creating an interface that allowed the therapist to review each utterance as many
times as needed prior to evaluate the quality of the pronunciation. With the complete evaluation
of all the utterances, a report is created in a printable form for a posterior use by the therapist.
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The main interface of “ReFoCas” is presented in Figure 10.12, where the three stages of the
phonological register can be seen: “Grabar Registro” (Record Register) presents the prompts of
the different words chosen and performs the recording process of the selected words; “Evaluar
Registro” (Evaluate Register) allows the therapist to review the recorded utterances and evaluate
the different phonemes or parts of speech desired; finally, “Ver Informe” (See Report) shows the
automatically generated report in a printable format.

This tool did not make use of any speech technology like ASR or PV, as at this point the tool
only intended to be an interface for the process of manually labeling the student’s speech. However,
it aimed to fulfill a need of many speech therapists and it helped to open the range of collaborations
with education institutions in “Comunica”. Furthermore, this initial translation of the interface in
“Vocaliza” to a language different that Spanish, Galician, can be the beginning of the development
of novel tools in other languages. In the future, novel possibilities for semi-automated phonological
registers could be developed, where the tool could make an initial evaluation of the word or
phonemes to be reassured or corrected by the therapist.

10.3 L2 Tools - “VocalizaL2”

The three tools defined initially in “Comunica” were designed, as mentioned, to cover all aspects
of language acquisition in children with possible learning difficulties or language delays. As further
possibilities for the development of new tools arose, some of them were carried out in joint work
with different persons and institutions.

Figure 10.13: Feedback provided in “VocalizaL2”

“VocalizaL2” was developed as an expansion to “Vocaliza”. It used the same interface options
than “Vocaliza” in terms of user interaction, AAC technologies and user profiles, but providing
a different feedback than the original application. While “Vocaliza” provided a simple word-level
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or sentence-level verification outcome of the speech abilities of the user in the different activities,
“VocalizaL2” used the normalization method for detection of phonetic mispronunciations presented
in Chapter 8 to provide a feedback on the phonetic skills of the user. This feedback is provided
as seen in Figure 10.13 where each phoneme of the word is shown within a 3-colour scale (green:
correct, yellow: average, red: poor) according to the final score achieved by the phoneme after
the normalization in the PV algorithm. A word-level feedback is provided as in “Vocaliza” as an
average of the marks given to all the phonemes in the word.

Due to its extended ability to provide phonetic feedback, the application was initially oriented to
L2 learning [Rodŕıguez, 2008, Saz et al., 2010b], as L2 users require an improved phonetic feedback
as this new tool could provide. To evaluate the pedagogical and technical possibilities of the
application, it was tested in a real-world experience within a multilingual environment at the
Spanish classes taught by Victoria Rodŕıguez in the Vienna International School (VIS) in Vienna
(Austria).

10.3.1 Experience with “VocalizaL2”

The experience was carried out during a period of 5 non-consecutive weeks, where a 45-minute
session with the application was run weekly. During each session, every student could practice
with the application for a time of approximately 10 minutes in one of the 2 computers in which
the application was installed. The experimental group of students was composed of 12 students
in their 6th grade of education (11 years old). In this grade, students were starting the learning
of their third language, so all of them were beginners in Spanish. In the group there were 8 boys
and 4 girls and the distribution in terms of the mother tongue of every student was as seen in
Figure 10.14. Mother tongue and the interlingua that students were using to interact with the
new language (classes were taught on English) may have an important role in the understanding
of how different students reacted to different pronunciation learning issues.

Figure 10.14: Mother tongue distribution in the experimental group

The set of words was chosen according to the vocabulary studied by the children in the classes
and divided among the 5 sessions. Ten words were finally chosen for each session, and each student
pronounced 2 times each word. Session 5 had a different approach and was designed as a gameplay
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in which students were divided in teams and they pronounced alternatively the words; only 7 words
were, hence, programmed for this session. The words in the sessions were:

• Session 1 (Food): beber, bocadillo, botella, carne, cereales, cerezas, chocolate, galletas,
hamburguesa, helado.

• Session 2 (Daily routine): andar, bañarse, cocinar, dormir, ducharse, escribir, jugar, llorar,
pegar, trabajar.

• Session 3 (Animals): araña, ardilla, burro, cerdo, conejo, foca, gallina, mariposa, pájaro,
rinoceronte.

• Session 4 (At home): armario, cocina, cuadro, bañera, escalera, frigoŕıfico, sillón, ventana,
espejo, libreŕıa.

• Session 5 (Neighborhood): acera, ambulancia, balcón, calle, calzada, farola, papelera.

The application offered the possibility of giving pictorial, auditive and written prompts to the
user. The three options were chosen during sessions 1,2,3 and 5. In session 4, the written prompt
was omitted to observe how students dealt with only auditive prompting.

The experience proposed in the experiment had two different aspects to evaluate. On one
hand, the pedagogical results of using a computer-based tool for L2 learning in the proposed
environment; and, on the other hand, the evaluation of the tool and its ability to correctly verify
the pronunciation of the users.

The opinions of the students with the application were collected afterwards each session by
their teacher. Students were aware, despite their short age, that the application was providing an
evaluation coherent with the effort and interest they put on their pronunciation; so they strongly
tried to improve in different trials and sessions. They evaluated positively the interface and felt
really motivated to have more classes with the application, although they also pointed out some
weak points like the lack of naturalness of the synthetic voice that provided the audio prompt and
the sometimes odd evaluation results given by the tool (possibly due to the presence of noises or
disfluences).

Considering the different possibilities provided by the application to L2 teachers, the teacher
realized that session 4 without the written prompt was more challenging for students, as they had
to rely only on the audio prompt, which could be more interesting for advanced students. Moreover,
session 5 was seen positively by all students and teacher, as gameplay activities provided an extra
motivation to young learners.

The initial approach of the experience was to make an evaluation of the performance of the tool
reviewing the evaluation results given by the tool to all speakers. Unfortunately, no labeled data
was available from the speakers and the short number of sessions made difficult a more precise study
of the results. Hence, the performance evaluation was made studying the log-likelihood scores that
the application assigned to each utterance and that were kept stored within the application. Three
points of relevant interest were studied: Evaluation in different trials of the same word, trend of
the evaluation through different sessions, and specific results for different phonemes and words
[Saz et al., 2009f].

Two different trials of every word were programmed in the sessions. Average results obtained
by the students in the first and second trials of every word are provided on Figure 10.15(a). A
review on the results separating both trials showed that the evaluation marks given on the second
trial were higher than in the first trial. This was consistent with the fact reported by the teacher
that students put a bigger effort in the second trial after they got the evaluation of the first trial;
furthermore re-prompting for the second trial reinforced the correct pronunciation of the word in
the students and helped them to improve their pronunciation.
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(a) Evaluation in different trials (b) Evaluation in different sessions
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(d) Evaluation for different words

Figure 10.15: Evaluation results in the “VocalizaL2” experience

Also, the average results obtained by the students in each session are shown in Figure 10.15(b).
These results showed an important improvement in the evaluation obtained from session 1 to
session 2, followed by a lesser improvement in session 3 and a reduction in the results in session 4.
Improvement from session 1 to session 2 could be explained by the fact that the children got used
to they way in which application worked and they understood it better, putting more effort in
their pronunciation. Results in session 4 (slightly worse than previous session), might corroborate
the fact pointed out by children and teacher that uttering words without the written prompt was
harder for students.

Finally, a study of the performance of the ability of all speakers to pronounce different words
and phonemes was performed. The average log-likelihood results for all the 25 units used (23
phonemes plus allophones [j] and [w]) for all speakers and sessions are shown on Figure 10.15(c).
Lack of labeled data diminished the ability to extract conclusions, but trends were similar to the
trends of mispronunciations in young Spanish children in the natural process of language acquisition
[Bosch-Galcerán, 2004]. Students achieved higher marks on vowels, while special phonemes like
/tS/, /L/ or /J/ received lower marks. Also noticeable was the significant worst results achieved
in the glides /j/ and /w/ compared to the corresponding vowels /i/ and /u/; even if the sound
is similar, it is usually noticed how glides in diphthongs are more difficult to pronounce than the
vowels for young Spanish children [Bosch-Galcerán, 2004].

A study over the results given to a set of words was also made, the 10 words studied were the
words in session 3 as it was the session in which the students were more used to the application.
The average results for all speakers with these words are shown on Figure 10.15(d). Again, lack
of labeled data made unable a comparative study, but some trends could be observed that again
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agreed with theories of phonetic acquisition in Spanish. Words burro (SAMPA: /burro/), ardilla
(SAMPA: /ardiLa/), cerdo (SAMPA: /Terdo/) and rinoceronte (SAMPA: /rrinoTeronte/)
were the worst pronounced by the students, which was consistent with the fact that these words
contained the vibrant phonemes /rr/ and /r/, which is usually a difficult feature for learners of
Spanish, especially in the case of /r/ in coda position.

Further work arose as result of this experimental work. In terms of user interface, a major effort
should be done to adapt the application environment to an interface more suitable for possible
adults learners, as this population is very willing too for the use of L2 tools. A more natural
synthetic voice would be required to make the tool more useful, as the audio reinforcement was
seen as very relevant and attractive for tentative users of L2 technology, who may see their learning
possibilities reduced with a poor TTS voice.



Chapter 11

Discussion

Tiger got to hunt
Bird got to fly
Man got to sit and wonder: “Why, why, why?”
Tiger got to sleep
Bird got to land
Man got to tell him he understand

The Books of Bokonon c. 81

-Kurt Vonegut, Cat’s Cradle

11.1 Introduction

Although several elements have already been discussed in their respective Chapters of this thesis,
this Chapter wants to raise up the discussion in some elements which require an eagle-eye view over
different Chapters altogether or that may be of special relevance for the objectives and procedure
of the thesis. With all this, there will be three discussion points which will relate to the three main
aspects that this work has tried to cover:

• The understanding of the origin of the speakers’ disorders will come from the knowledge
acquired in the analyses in Chapters 5 and 6; with Section 11.2 analyzing all the hypotheses
and how the acoustic and lexical aspects of these disorders have influenced a baseline speech-
based system like the ASR in Chapter 4.

• The different issues that affect the designing of personalization strategies to avoid the
pernicious influence of these disorders will be discussed in Section 11.3. Special attention
will be paid to how two different tasks like ASR and PV shown in Chapters 7 and 8
react to the personalization techniques in the presence of severe mispronunciations and
acoustic degradation in the speakers, with a final remark on its influence in the proposal
for unsupervised systems in Chapter 9.

• Finally, Section 11.4 will point out whether it is possible or not to translate directly all this
theoretic knowledge to the development of aids for the handicapped in Chapter 10. This
discussion wants to focus on how different actors (developers, users, public agencies) have to
work and collaborate together to fulfill these objectives.
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11.2 Origins and Relevance of the Studied Speech Disorders

One of the points where more effort has been put during this thesis has been the acquisition and
analysis of a full corpus containing disordered speech from a total of 14 young speakers. This
corpus has been the basis for all the experiments carried out during this thesis and it is hoped that
more research can be conducted over this corpus or future expansions of it.

Since the very beginning, it was understood that it was not useful to perform any kind of
experimental framework without trying to understand, at least minimally, the affections of the
speakers’ impairments in their speech and their origin. For that reason, a lot of literature review in
the early stages of this thesis’ work was carried out in the areas of speech impairments, phonetics
and phonological acquisition by young learners. This provided some clues on what was to be
expected from this speech and justified the perceptual lexical labeling carried out by the set of
human experts, as in the end it was seen that it was at the lexical level where the speakers
confronted more difficulties.

The dramatic effect of this disordered speech on the shown ASR results, for instance in the TI
and TD cases in Chapter 4, has shown how these disorders produced a major loss of performance
in these systems.

This effect of the speakers’ disorders over their speech could be separated in two causes:
Acoustic degradation and lexical degradation:

• Acoustic degradation appears in those cases where the speaker presented a certain
articulatory difficulty which blurred, distorted, or degraded the correct pronunciation of
a phoneme or sound. It happens, as explained in the Introduction, as the consequence of
morphological impairments or neurological impairments that limit the motor abilities of the
patient, including the phonatory/articulatory organs. The measurement of this acoustic loss
of quality was made in Chapter 5.

• Lexical degradation appears in those cases where the speaker produced a different phoneme
instead of the expected phoneme or sound. The origins of lexical degradation can be many:
Articulatory difficulties lead to the change of some of the articulatory properties of the
phoneme, or the speaker has a difficulty to distinguish phonologically the sounds at the
cognitive level. The characterization of this lexical variants was performed in Chapter 6.

This discussion will consider a simplification, assuming that both effects are fully separable in
the speakers; this is, the processes that lead to acoustic degradation (i.e. dysarthria) are totally
different to the processes that lead to a perceptible lexical degradation (i.e. acquisition delays).
Although it is understood that all these factors, and many others introducing more variability, are
in the end intermingled; this approximation is necessary to reduce the complexity of the discussion.

With this separation, Figure 4.10 makes sense in how it tried to fully separate the influence
of the acoustic and lexical variability caused by these disorders in the ASR results. The large
difference between the results in the 52.29% of words who did not contain any lexical mistake (as
indicated by the human experts) and the 47.71% of the words who did indeed contain lexical
inaccuracies (9.1% vs 49.24%) marked the higher prevalence of the lexical disorders over the
acoustic disorders in these speakers. This was coherent with the impairments of the speakers,
where cognitive disorders (Down’s syndrome in many cases) were suffered by most of the speakers
and this is rather associated to lexical difficulties than to acoustic difficulties, as the functional
modules of language are more affected than the morphological generators of speech, although some
of the speakers suffered degrees of dysarthria or dysphemia.

These impressions and results were assured with the acoustic and lexical analysis of the 14
speakers’ speech carried out in Chapters 5 and 6 respectively. The acoustic degradation in their
speech, although noticeable and measurable, was not so high as to produce a total confusion in
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the analyzed features. On the contrary, the study of the lexical properties in the corpus brought
many more elements for discussion, especially in their implications with the process of language
acquisition in these speakers.

It is for this reason that lexical adaptation has managed to show some impressive results with
that subset of speakers who obtained a medium-high WER results in the SI results. For these
cases, speakers Spk02, Spk07, Spk08, Spk09, Spk10, Spk12, Spk13 and Spk14, the improvement
caused by lexical adaptation was up to 30-40%. These were also the results seen during the study
in Section 7.2.1 with Speakers Spk07 and Spk08 on the amount of adaptation data for lexical
adaptation. These speakers, who are suffering a big deal of lexical variability in their speech are,
hence, taking advantage of the new SD lexicons. The drawback is, unfortunately, that speakers
with lower disorders and less lexical impact, are obtaining smaller improvements or even losses
for incorporating the new lexical variants. Hence, a selection method of lexical variants could be
necessary before incorporating them directly in the new SD dictionary.

One of the implications of this prevalence of the lexical disorders in the speech used for research
in this thesis is that the results arising from it can only be considered for similar speakers with
similar disorders. The combined approaches that make use of acoustic and lexical adaptation
might not work with similar performance in speakers with a bigger influence of acoustic disorders
in their speech (the case of patients with cerebral palsy and dysarthria). The same affects to the
effectiveness of the PV algorithms developed in this thesis, which have shown a decent performance
to detect lexical mispronunciations, but it was not researched how the acoustic variability induced
in the speech signals by the speakers’ disorders will affect this performance, or how this deal of
algorithms would be reliable as a measure of speech quality in lexically correct speech.

11.3 Issues on Personalization of Speech Systems for the
Handicapped

The bigger effort of the thesis has been, as seen, the study of several issues and schemes for
providing an improved recognition performance through speaker adaptation and personalization.
All these issues can be categorized for analysis in 3 different categories: acoustic vs lexical analysis
in two different tasks, ASR and PV; and, approximations to the unsupervised on-line situation.

11.3.1 Acoustic vs lexical adaptation for ASR

One of the major interest points that this thesis has faced regarding adaptation techniques has
been the joint use of acoustic and lexical adaptation. Table 7.1 showed how the use of a standard
acoustic adaptation technique where the baseform transcriptions were fed to the MAP framework
lead to an improvement of around 49%; while on Table 7.10, it was seen that the combination of
an acoustic adaptation which only adapted to the lexically accurate data and lexical adaptation
achieved an improvement of 45%. Although the approaches are different, the results are similar;
but this can be argued to occur because they are two nearly-optimal approaches.

Example 11.3.1 An example of how different types of adaptation can work in the presence of
disordered speech can be illustrated by Figure 11.1. This example shows two utterances of the
word ‘árbol’ by Speaker Spk05 from the disordered speech corpus. The experts accorded that in
both utterances the sounds [r] and [l] had been deleted from the speaker’s pronunciation, reducing
the baseform transcription [arbol] to [abo].

In the purely acoustic adaptation, the MAP algorithm uses a Viterbi forced alignment to
decode the phoneme boundaries as shown in the upper left signal, and each segment is used for
adapting the corresponding unit. In this case, phonemes [r] and [l] have been deleted from the
actual pronunciation, and are given a small set of frames who are not corresponding to the units [r]
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or [l] as the canonic transcription says. The training of these units will be incorrect from the point
of view of the baseform units; but, in the test signal (bottom left signal), the process of reduction
was the same, so the matching between training and testing utterances in the speaker will allow
this adaptation to achieve fine performance.

On the right side, acoustic-lexical adaptation is aware of these phonetic reductions and segments
the train signal (upper right signal) according to the real transcription [abo], providing a correct
adaptation for all units. In the testing phase, the system is set to decode both transcriptions:
baseform [arbol] and learned [abo]. As the test signal (bottom right signal) also contains [abo];
the models trained can fit the test input frames and the decoding is correct for the sequence [abo],
which is associated to the word ‘árbol’.

Acoustic Adaptation Acoustic and Lexical Adaptation

Train: [arbol]

Test: [arbol]

Train: [abo]

Test: [arbol] or [abo]

Figure 11.1: Acoustic vs acoustic-lexical personalization in ASR

The case for study in Example 11.3.1 indicates how acoustic and acoustic-lexical adaptations
are reaching the same output (the recognition of the second utterance of ‘árbol’ from the training of
the first utterance of ‘árbol’) by two different ways. In the acoustic approach, the mispronunciations
are learned by introducing the variability they provide in the acoustic models; and in the
acoustic-lexical approach, the acoustic models are maintained from correct pronunciations and
the variability of mispronunciations is introduced in the new lexicon for testing.

11.3.2 Acoustic vs lexical adaptation for PV

The same adaptation techniques used for ASR were tested for the PV task. In this case, the
results achieved had different implications than those of ASR: The models trained only with
lexically accurate data outperformed the models trained with the baseform transcription in the
detection curves and EER in Section 8.4 (15% vs 19%). In this new task, these models are providing
such different performances because they are actually doing different things when it comes to the
evaluation.
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Example 11.3.2 Similarly to Example 11.3.1, this example can show the differences between
considering the lexical mistakes of the user in adaptation frameworks for PV with the help of
Figure 11.2. This example shows once again the two utterances of the word ‘árbol’ by Speaker
Spk05 from the disordered speech corpus, again with deletions in the sounds [r] and [l].

Using the acoustic adaptation based on the baseform transcription, the forced alingment again
decodes the phoneme boundaries in the upper left signal with the inaccurate phonemes [r] and [l],
that have been deleted from the actual pronunciation, being used to re-train the corresponding
units. In this task, the test signal (bottom left signal) has to be evaluated to detect the incorrectness
of phonemes [r] and [l], process whose difficulty is a priori increased by the fact that similar
inaccuracies have been used in the train phase.

On the right side, the adaptation that is aware of these lexical inaccuracies segments the train
signal (upper right signal) according to the real transcription [abo], providing a correct adaptation
for all units. In the testing phase, the system is set to detect the mispronunciations of [r] and [l]
starting from the baseform transcription [arbol] of the test signal (bottom right signal). In this
case, the models for [r] and [l] do not match the incorrect segments shown on the signal and the
score can be presumed to be lower, improving the detection accuracy.

Acoustic Adaptation Acoustic and Lexical Adaptation

Train: [arbol]

Test: [arbol], rejection of [r] and [l]

Train: [abo]

Test: [arbol], rejection of [r] and [l]

Figure 11.2: Acoustic vs acoustic-lexical personalization in PV

This is giving the clue that the model which only adapts to lexically correct data is more
accurate and precise from the acoustic point of view, and that could in certain experiments of
ASR provide some gains who were not observed in the current task and domain.

One of the discussions that this thesis has left unclosed is whether these lexical inaccuracies
might, at a given moment, produce a degradation also in the performance of the SD acoustic
models for ASR as it has been seen in PV. It is believed, after all the experiments made, that
this may happen; so the proposal of this thesis is to separate in all cases the influences of the
acoustic and lexical degradation in the speech to avoid these possible side effects in the retraining
of acoustic models.
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11.3.3 Issues on unsupervised adaptation

Finally, the last task in the thesis has been the translation of the different adaptive techniques to
an unsupervised framework, where no preliminary information was known about the input signals
for adaptation.

The major difficulty in this task has been the low rates in recognition achieved by the baseline
systems, due to the heavy disorders of the speakers, which limited the possibilities of providing
a reliable estimation of the transcriptions of the input data to the adaptation algorithms. These
limitations, that supposed an average improvement of only 14-22% over the TD models, could not
be avoided by the use of a confidence measuring system to reject those phonemes which did not
match the real pronunciation of the speaker.

The limited size of the test data has been in this case relevant to difficult this work in
unsupervised systems, as the models were suffering problems of undertraining as the amount
of speech that was accepted by the confidence measure became smaller. This was ratified by the
analyses on the influence of the amount of adaptation data in Chapter 7, which showed how the
adaptation systems where working in a point still sensitive to the amount of data (only a maximum
of 3 sessions for adaptation from each speaker).

However, the results in the proposed on-line personalization framework were promising, as it
achieved up to 12% in relative improvement to the baseline, even considering the sparsity of the
data which was faced during the successive operations in which the system was working. It is
believed that more iterations of the on-line personalization system introduced in Chapter 9 with
more data on each iteration might end up obtaining larger improvements.

Several proposals for fixing the problem of data sparsity have been proposed in the literature,
including MLLR approaches [Siohan et al., 2000, Chen et al., 2000, Tang and Rose, 2007]. As
MLLR, most of them create regression classes which incorporate data from different units to
increase the data which is actually used to retrain a given unit. However, it was decided to not use
these techniques massively during this thesis, because in all cases, it was intended to keep control
on what was being adapted for each unit. With these techniques, not only lexically correct and
incorrect versions of a given unit were used to retrain that unit, but also correct and incorrect
pronunciations of similar units, increasing the variability of each unit. These approaches would
be especially problematic when retraining models for PV, because it would diminish their ability
to distinguish correct from incorrect units. For all those reasons, MAP has been extensively used
during this thesis, despite the problematic of data sparsity, because it allowed to know at every
time what was being fed for the retraining in all cases.

In the end, when a real ASR system is to be deployed as part of an aiding device for a real
user, some other factors apart from the purely technological have to be considered to achieve a
success in the task. They are mostly two:

• Decide whether a user is really a tentative user of speech technology or not. A good example of
this is Speaker Spk13, who never achieved a WER lower than 58% (Table 7.1 in Section 7.1).
With this rates, no speech-based system is going to work reliable for her, so other possible
interaction methods should be designed for her. This decision can be made upon her rates
of mispronunciation, where she can hardly pronounce correctly a 45% of the phonemes. In
a similar case is Spk05, although his results are still improvable, as he shows improvements
with the different techniques evaluated. The decision also has to be influenced by the physical
characteristics of the user, as the speech process sometimes can be more tiring and demanding
than other physical movements or control.

• A correct selection of the vocabulary, as the results achieved in this thesis have been obtained
with a small-medium vocabulary of 57 words with special phonological difficulties. In a real
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situation, smaller vocabularies which are especially chosen for each speaker according to their
characteristics would boost the results for all of them.

11.4 Translation of the Research Work into the Deployment of
Real Applications

Finally, the last element for discussion are the implications that the work carried out within this
thesis has had and will have for the development of applications in the real world that can effectively
provide a better quality of life for a part of the handicapped community.

Regarding how this thesis has influenced the development of tools during these latest years, it
was seen in Chapter 10 that the knowledge achieved in ASR of disordered speech and PV of lexical
mispronunciations has had a capital role in the development of the CAPT tools in ”Comunica”:
“Vocaliza” and “VocalizaL2”. Further theoretical research [Rodŕıguez and Lleida, 2009] has also
been relevant for the development of other tools like “PreLingua”; showing how, in many cases,
it is possible to translate the work and experiments in the laboratory to produce an effect in the
world outside the lab.

The experience gained during these years has shown that the effort in creating these novel
tools can not be fully effective if the work in the laboratories and in the outside world were to
be dissociated. Although theoretically, the process flows from the laboratory to the real world as
in Figure 11.3(a); the feedback that educators, therapists and assistants can provide in the early
stages of development supposes a very necessary information that can lead to changes in the way
in which scientist and technicians can affront their research as in Figure 11.3(b). The development
of “Comunica” would have never been the same if the opinions of the therapists had not been
considered.

(a) One-way framework

(b) Two-way framework

Figure 11.3: Frameworks of collaboration academia-institutions

Another key point is to find a situation of agreement between the objectives of the two
elements implicated in this work (academia/industry and assistance institutions). If laboratories
and industry try to fulfill only their research objectives and translate directly that knowledge to
the institutions like in Figure 11.3(a), the work will never be so fruitful as if there is a two-channel
communication as in Figure 11.3(b) where the institutions can correct the ideas of the academia
according to their own needs and requirements, as long as they also help to fulfill the research
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objectives of the academia.

11.4.1 The role of public agencies

One of the major points of discussion during these years has been the special implication that public
institutions need to put in this effort to advance further in the accomplishment of the objectives.
As it was well pointed out in [Cucchiarini et al., 2008a], governments and public agencies have to
play the biggest role in the development of these aids, because following the criteria of industrial
benefits, they are far away from being profitable unless a high price is set. This is due to the
fact that the handicapped population represents a small percentage of the global population and
furtherer due to the high variability of each individual’s handicap and the big requirements for
personal adaptation that each aiding tool requires for its final deployment.

Figure 11.4 pretends to be a representation of what it is understood from the experience of these
years as the optimum framework for the development of aiding tools for the handicapped: The
public agencies are the umbrella that covers the joint work that academia, industry and assistance
institutions face during the complex process of development of these tools.

Academia Institutions

Industry

Public agencies

Figure 11.4: Optimum framework of collaboration

With this proposed framework, public agencies can stimulate the apparition of novel research
efforts in this area with the cooperation of the different institutions who can benefit from that work.
When sufficient experience has been gained, it is possible then to move to the industry to propose
the possibilities of transmitting the acquired knowledge to the society via novel developments of
software or hardware. The economical difficulties that this might suppose could be covered then by
the public agencies again, as their way of investing in policies for the improvement of the quality
of life of their disabled individuals.

A case in this direction which was witnessed during the work in this thesis has been
the development of a set of more than 3500 pictographs in the Portal Aragonés de la
Comunicación Aumentativa y Alternativa (Aragonese Portal for the Augmentative and Alternative
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Communication) (ARASAAC) portal1. Pictographs are a basic tool in AAC elements
[Beukelman and Mirenda, 1998], as they allow for non-verbal communication to individuals with
language disabilities. The creation of a set of these pictographs can be time demanding for a
graphic designer, and so, commercial pictographs for this purpose tend to be expensive in many
cases.

In the case of ARASAAC, a public agency like the Centro Aragonés de Tecnoloǵıas de la
Educación (Aragonese Center for Technologies in Education) (CATEDU) appointed part of the
staff of the CPEE “Alborada” to work in collaboration with a graphic designer in the creation of
this novel set of pictographs which could be distributed under a Creative Commons (CC) license.
The CATEDU provided the fundings to pay the extensive work of the designer, who followed the
instructions of the specialists in the CPEE “Alborada” to create the pictographs according to the
needs of the special users of these AAC elements.

Nowadays, ARASAAC is a reference in the world of AAC and has become a major resource
for all elements requiring AAC elements, including the CASLT tools in “Comunica”. “Vocaliza”,
for instance, includes in its download a set of 500 words ready to be trained within the application
which incorporate their pictographs from the ARASAAC resources.

11.4.2 The experience of “Comunica”

“Comunica” has tried to be an effective way of fulfilling the development of state-of-the-art tools for
CASLT while achieving the objectives which are usually the hardest to reach within the academia:
the successful collaboration and feedback with institutions and users. For this reason, a lot of
effort has been put in the distribution of the tools and the communication with the end users.
This relationship has been based in the website of “Comunica”2 and in all the possibilities that
this offers to developers and users.

The different elements of interaction have been many through the site, and a small summary
of them since the launching of the site in February 2008 is in Table 11.1. The most remarkable
outcome is the number of registered users (around 5000) from all over the world; this is indicating
approximately the number of potential users of the tools, as the simple registry (providing an
e-mail address) is required for downloading the tools.

Table 11.1: “Comunica” statistics (as recorded by October 23rd, 2009)
Element Data

Website date of start February 1st, 2008
Registered users 5,201

Answers in the Frequently Asked Questions 30
Testimonials 11

Mails exchanged 216
Bulletins sent 9

Reviews collected 34

This direct communication with the end users fructified in many improvements over the tools,
fixing bugs or adding new capabilities, and in the development of the latest tools in “Comunica”:
“ReFoCas” and “ReFoGal”, presented in Section 10.2.4. The idea for these tools came directly
from a group of users in different educative centers in Spain and; after a discussion with the
development team, it lead to this novel tool for the easing of the process of evaluating phonological
registers in young students.

1http://www.catedu.es/arasaac
2http://www.vocaliza.es
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More statistics have been collected from the website; for instance, the number of unique
visitors since the 22nd week of 2008 is shown on Figure 11.5. Average number of visitors per
week is 346 with the larger peaks in Week 12 of 2009 (895 visitors) and Week 33 of 2009 (1464
visitors) coinciding with the apparition of “Comunica” in Aragón Radio, the radio network of the
Corporación Aragonesa de Radio y Televisión (Aragonese Corporation of Radio and Television)
(CARTV), and the presentation in the 8th Iberoamerican Conference in Informatics and Special
Education [Rodŕıguez et al., 2009], respectively.
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Figure 11.5: Visitors to the “Comunica” website (as by the 23rd of September of 2009)

Other notable appearances in the media, with the help it supposed to the visibility of the
tools, have been the presentation of “VozClick” in Huesca (Spain) through different notes in local
newspapers and radio networks. The launching of “Vocaliza” also supposed its appearance in
the television network of the CARTV and in local newspaper as the author of its work, Carlos
Vaquero, was given different awards for his undergrad thesis, including the special award of the
Caṕıtulo Español de la Sociedad de la Educación del IEEE (Spanish Area of the IEEE Education
Society) (CESEI).

The wide dissemination of “Comunica” has supposed that many of the current users are in
Latin America. These tools have had an special impact in the whole community of therapists in
these countries, where several of the therapists have contacted the developers to congratulate their
work and propose new ideas and visions.

As it was stated in Chapter 1, all this research work only makes sense if it is intended to be
useful for a potential user. The research work, hence, carried out in this thesis and in the whole
VIVOLAB group has been as successful for its research results which have lead to many different
scientific publications as for the gates that it has opened to the communication with all these
individuals, potential users of this technology.
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Conclusion

All the above shown accusations against me are based on truth

Josef Švejk

-Jaroslav Hašek, The Good Soldier Švejk: and His Fortunes in the World War

The last Chapter of this thesis is oriented to be a short summary of the work done during these
years, while pointing out the future lines of research that this thesis has left opened. This whole
work has to be framed within the ongoing interest of the community of speech researchers for the
development of algorithms and tools for improving the quality of life of handicapped individuals;
and, more precisely, within the effort started in parallel to this thesis in collaboration with different
institutions.

Section 12.1 will summarize the key of points of the thesis, providing a quick approach to all
the main points of interest, while Section 12.2 will point out how this work has fulfilled or not the
objectives set at the beginning of the thesis. Finally, Section 12.3 will indicate which are thought
to be the most interesting areas for future research opened by this thesis.

12.1 Brief Summary of the Thesis Work

Once the end of this thesis has been reached, it is necessary to provide a comprehensive view that
covers all the work carried out in it, summarizing all its relevant achievements. This way, all the
major results through the thesis can be evaluated at a glimpse:

• First, a fully functional corpus for research has been acquired, gathering speech from young
speakers suffering a wide range of speech disorders; altogether with a set of age-matched
peers. The whole corpus, with more than 2 hours of disordered speech and more than 8
hours of speech from unimpaired individuals contains, hence, sufficient amount of data to
be useful and significant for speech research. This corpus has been post-processed to obtain
a perceptual labeling of the lexical mispronunciations made by the impaired speakers with
a high consistency between the humans, making it reliable to serve as ground truth for the
development of automated mispronunciation detection algorithms. Both the corpus and the
human labels are freely available for research purposes to any group interested in it, as long
as the requirements of privacy of the speakers are maintained. The sharing of corpora and
resources in this area of research is expected to boost the interest of the different research
groups and individuals.
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• Acoustically, a certain decrease in the quality properties of this speech has been observed and
measured. Only vowels underwent this analysis, as consonants would require an articulatory
analysis which was not possible only from the acoustic signals. The major effects of
degradation appeared in the formant map of the speakers, whose separability was lowered
among main vowels like /a/, /e/ and /o/ around 20% or more; and also in the durational cue
of these vowels, which become extremely variant in their production, leading to an unsteady
production of speech. Furthermore, the ability of these speakers to produce a distinction in
terms of intensity between stressed and unstressed vowels is totally reduced; indicating the
existence of phonatory inabilities in their speech. Anyways, in general terms the speakers
did seem to control suprasegmental features consistently.

• It has been from the lexical point of view where the disorders of the speakers have offered
more interpretations and possibilities for analysis. The development impairments of most
of the speakers have supposed a delay in their language abilities which has made their
speech closer to small preliterate children, as proved by the comparison of the patterns
of mispronunciations between both types of groups (disordered speech in this thesis and
children in [Bosch-Galcerán, 2004]). The lexical inaccuracies of this group of speakers has
been measured as especially large in vibrants and laterals (up to 50% of mispronunciations);
but the main effect appeared in the study of the influence of the syllabic context; where it
was seen that diphthongs, codas and consonant clusters provoked a significant increase in
the mispronunciations of the speakers. This study should be complemented with previous
knowledge in the areas of neurolinguistics and psycholinguistics to better understand whether
it is a pure delay in language acquisition or a problem in the general capabilities of the
speakers.

• The influence of these separated effects (acoustic and lexical disorders) has lead to a dramatic
loss of performance in the baseline ASR system (from 2-3% of WER with the unimpaired
speakers to 40% with their impaired peers). The use of speaker adaptation, with acoustic
and lexical approaches, has been evaluated leading to very promising results (nearly 50%
of improvement with SD acoustic models and SD lexicon). One of the more remarkable
results has been the understanding of how acoustic and lexical adaptation can, when merged
properly, overcome the initial limitations of each other. Lexically, only data-driven methods
were seen as possible for these speakers, as each speaker was following an independent way
of producing mispronunciations from the whole set of lexical variabilities that the impaired
speech group was offering.

• The need of an automated detection of mispronunciations has led to the study on how
to avoid speaker variability in PV methods. Score normalization and speaker adaptation
frameworks have been proposed to work in this task of detecting lexical mistakes according
to the labels assigned by the human experts. The results have been particularly promising
in this area, leading to very interesting collaborative work [Yin et al., 2008, Yin et al., 2009],
and achieving a performance that can be considered as state-of-the-art for the proposed task.
The study on how the proposed methods are related and help to reformulate traditional
techniques like GOP as an score normalization technique has been an interesting result too,
as it opened the gate for more research in new combination of techniques. Furthermore, the
thesis has studied how adapting the acoustic models used in the confidence measure system
can led to an improved performance, but a certain attention has to be paid to the fact that
mispronunciations existing in the training data can lead to a loss of accuracy in the models
and a loss of performance in the overall PV system.

• Unsupervised personalization systems have been studied and evaluated. Their results have
not reached the results that supervised techniques could predict, because there was a heavy



12.2 Fulfillment of Goals and Objectives 145

effect regarding the low accuracy results on the preliminary recognition phase over the
adaptation data. It has been also seen how the sparsity of the available data has limited
the possibilities of the proposed unsupervised techniques, because reducing the number of
phonemes used in adaptation via the confidence measure system lead to a non-sufficient
amount of data in the adaptation framework. Finally, a fully on-line system has been
proposed based on ASR, PV as confidence measure and MAP adaptation to perform
personalization of the systems as the user interacts with it in several steps. In the end,
different approaches have been evaluated, but the need of further work has been required to
improve and support the work carried out in this area in the thesis.

• Finally, all the experimental research in this thesis has gone parallel to the work for the
development of tools for aiding impairment. The collaboration with different institutions
for education and for assistance of the handicapped has been fruitful and the knowledge
transferred from them has supposed the first stages of development of oral control devices
and a big effort with “Comunica” and its tools for CASLT in different linguistic levels. The
discussion in Section 11.4 has presented the different elements that can report “Comunica”
as a case of success in the creation of novel semi-automated tools for speech therapy.

12.2 Fulfillment of Goals and Objectives

Reviewing the set of objectives proposed for this thesis in Section 1.4, they were divided in
research objectives and development objectives. The evaluation of the grade of completion of
these objectives will be made, hence, following the same criteria of separation.

12.2.1 Research objectives

The three set of research objectives have been accomplished in different degrees:

• The acquisition of the corpus was the first goal of the work; it was a prerequisite for the
completion of this thesis, as the evaluation of the developed algorithms needed a benchmark
for testing; and unfortunately, no one of the available resources studied could completely
fulfilled them. This objective has been fully accomplished with the acquisition of the
“Alborada-I3A” corpus: This corpus contains sufficient data for obtaining significant enough
results as it was the outcome of this thesis. Furthermore, the acoustic and lexical analyses of
this corpus, which were not set initially as objectives, have been carried out extensively and
have had a major relevance in the work as it may help to understand the sources of errors
in the speech technology-based systems.

• Regarding all the proposed objectives in adaptation and personalization techniques, the
goal of obtaining knowledge in the influence of acoustic and lexical speaker adaptation
in the performance of ASR systems has been achieved to a deep level. The proposals of
different frameworks for acoustic adaptation have been useful to understand how the diverse
transcriptions affect the results in the recognition system. Furthermore, the data-driven
lexical adaptation proposed in this work, based on APD, has shown very interesting results
for adapting to the special lexical variability of these users; with the interaction between
acoustic and lexical adaptation frameworks as a very interesting outcome of this thesis.
Unfortunately, the proposals for unsupervised adaptation still have not achieved a results
close to the better possible scenario with supervised data. Although these unsupervised
results significantly overcome the baseline system, this is the point of this thesis where more
work should be set in the future, specially in the development of real-world applications.
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• Finally, the objective of deriving an automated method for the detection of mispronunciations
by speakers with special lexicon needs has been fully achieved with the proposal made in this
thesis. The parallelism with the speaker verification task has shown to fit perfectly the PV
task and its special characteristics, proposing techniques for score normalization and speaker
adaptation which have been adapted successfully to the task. In the end, the results have
been satisfactory and ready to be used into CAPT tools like “VocalizaL2”.

12.2.2 Development objectives

Regarding the development of real-world applications for handicapped aid, which was set as another
different group of objectives at the beginning of the thesis, the grade of completion of them has
been diverse too during these years.

• The possible development of oral command control interfaces for the handicapped has been
fulfilled only in preliminary attempts like the oral control of the robotized wheelchair or
the VAD control of mouse and other computer elements. The late development of the
unsupervised adaptation algorithms has not allowed for their introduction in any application
which can be ready at the date of today. However, all the acquired knowledge will be useful
for the possible development of oral-controlled interaction elements.

• On the contrary, the development of CALL tools, with special interest for the handicapped
has fulfilled and even overpassed the expectancies. All the work in “Comunica”, closely
related to this thesis, has fructified in the development of several tools (“PreLingua”,
“Vocaliza”, “Cuéntame”, “VocalizaL2”, “ReFoCas”) which make and extensive use of speech
technologies to provide language teaching abilities to handicapped or foreign users: ASR,
speaker adaptation or PV. The tools have been evaluated in several environments and a
big effort has been put in the development of appropriate interaction interfaces suitable for
the target users via AAC elements. As it was shown in the discussion in Chapter 11, the
communication and feedback from users through the website has been massive and really
encouraging about the actual state of development and future possibilities in this area.

12.3 Future Lines of Work

The future lines of research that this thesis has opened are mainly the completion of some of
the subjects that have been covered but not completely fulfilled in the work these years. Also,
the discussion of the results of this thesis has pointed out some new proposals for work in the
short-term future.

• Although some studies have been carried out, it has been seen in the review of the
objectives in previous Section that unsupervised techniques for adaptation have been the
main objective that this thesis could not fulfill completely. The approaches evaluated in this
thesis have been successful in providing a certain improvement over the baseline systems,
but no improvement could actually be obtained over the initial framework for unsupervised
adaptation. The natural limitations of the confidence measure proposed here, although a
15% WER was achieved, and the problem of data sparsity have reduced the possibilities of
the proposed approaches. Once this thesis has help to understand how acoustic and lexical
variants influence the recognition of this speech, future works might use several MLLR-based
techniques proposed for fast adaptation which were not evaluated in this thesis to maintain
control of the adaptation data used to retrain each unit. With these techniques solving the
problem of data sparsity, performance might be boosted easily in the ASR task.
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• Regarding PV techniques, during this thesis it was shown how distinguishing between
lexically correct and incorrect units in the adaptation phase helped to provide better
evaluation performance. One of the future works has to be directed to achieve this improved
performance in an unsupervised way; this is, without the a priori knowledge provided by
the human experts. Other possibilities might include the use of garbage models which
gather the knowledge on lexically incorrect units to be used in UV-like scheme like in
[Lleida and Rose, 2000]. This extra anti-units or garbage units might be useful to provide
an enhanced separability between correct and incorrect phonemes in a utterance.

• An interesting possibility would be the evaluation of the proposed frameworks for speaker
adaptation and confidence measuring in different corpora that might incorporate a different
relationship between acoustic and lexical disorders in their speech. Works with dysarthric
speech like the UADatabase [Kim et al., 2008] might be, among others, an interesting
testbench for these new set of studies and evaluation. The comparison between both types
of speech (dysarthric speech vs acquisition delayed speech) would provide a very interesting
discussion on the differences in how to deal with these two both types of disordered speech,
as the use of acoustic and lexical adaptation might be different in new domains.

• New possibilities for developing oral-based command control tools have arisen at the end of
this thesis. The possibility of including an adaptable ASR system in the “Ratón Virtual”
[Bergua, 2005] framework is now possible with the new driver control system included in
this device [González, 2009]. The main work in this case should be directed to include
personalization techniques that allowed every user of the device to interact with an enhanced
performance with the system. The close framework of collaboration with institutions like
the CPEE “Alborada” and ASPACE-Huesca has to encourage this work, as they count with
tentative users of this technology who might serve as test users of the novel tools.

• Involving “Comunica”, it is expected to go on with the improvement of the existing tools,
once all facets of language have been covered with the present tools. A major effort has to
be carried out to make the tools more accessible to all the community of speech therapists or
handicapped individuals, including the development of the tools for other Operative Systems
like MacOS or Linux or the development of Internet-based versions of the tools. The next
step, once all the current tools have faced their current improvements, are the highest levels
of language to be worked with reading tutors or text-based tools which aim to improve the
grammatical abilities of the students, as well as their vocabulary and syntax. It is expected
that more research groups can get involved in this framework to collaborate in these future
lines of work or to handle possible translations of the tools to different languages.
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Appendix A

Review of Spanish Phonetics

España y yo somos aśı, señora

Eduardo Marquina, En Flandes se ha puesto el sol

This Appendix aims to provide to those readers that might be unaccustomed to the Spanish
phonetics with a brief description of the sounds and allophones of the Spanish language. Although
the phonetic system of Spanish can be seen as much simpler than other languages of its environment
which contain a larger number of phonemes and sounds (for instance, English); the massive use of
phonetic references and instances in the thesis makes necessary this Appendix.

The Sections of this Appendix provide the whole list of Spanish phonemes, their corresponding
allophones and their SAMPA and IPA transcriptions in Section A.1 and describe the most usual
phonetic reductions in peninsular Spanish in Section A.2.

A.1 Set of Spanish Phonemes and Allophones

Castilian Spanish is traditionally described in 24 phonemes and a set of 51 sounds or allophones,
where allophones are realizations of a same phoneme with different articulatory features. To ease
the reading of this Appendix, phonemes will be gathered according to the usual distinction of
manner of articulation.

A.1.1 Vowels

Spanish contains 5 vowels (/a/, /e/, /i/, /o/ and /u/). Their description is as follows (summarized
in Table A.1):

/a/

Three allophones define the pronunciation of the vowel /a/.

• [a] is the central low vowel. It appears in all contexts for /a/ except for the other two
allophones.

• [A] is the posterior low vowel allophone appearing in the following contexts:

– Before a vowel /u/, either if they form a diphthong or a hiatus.

– Before the vowel /o/.
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– Before the consonant /x/.

– In all syllables finishing in consonants.

• [ã] is the nasalized central vowel appearing in between nasal consonants or after a nasal
consonant at the end of syllable.

/e/

Three allophones define the pronunciation of the vowel /e/.

• [e] is the front medium vowel. It appears in all contexts for /e/ except for the other allophones.

• [E] is the front low vowel allophone appearing the following contexts:

– In contact with [r] except when the syllable is finished in any of these consonants ([d],
[m], [n], [s] or [T]).

– Before the consonant /x/.

– When forming a closing diphthong with /i/.

• [ẽ] is the nasalized central vowel appearing in between nasal consonants or after a nasal
consonant at the end of syllable.

/i/

Six allophones define the pronunciation of the vowel /i/.

• [i] is the front high vowel. It appears in all contexts for /i/ except for the other allophones.

• [ifl] is the front medium-high allophone appearing in syllable finished in consonant, before or
after [r] and before [x].

• [̃ı] is the nasalized front high vowel appearing in between nasal consonants or after a nasal
consonant at the end of syllable.

• [̃ifl] is the nasalized front medium-high vowel appearing in between nasal consonants or after
a nasal consonant at the end of syllable.

• [j] is the front glide appearing before or after another vowel creating a diphthong or tripthong.

• [̃] is the nasalized front glide appearing in between nasal consonants or after a nasal consonant
at the end of syllable.

/o/

Four allophones define the pronunciation of the vowel /o/.

• [o] is the labialised posterior medium vowel. It appears in all contexts for /o/ except for the
other allophones.

• [O] is the labialised posterior medium-low allophone appearing in the following contexts:

– In contact with [r].

– Before the consonant [x].

– In closing diphthong with i.
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– In a syllable finished by any consonant.

– In a tonic position between a preceding [a] and a following [r] or [l].

• [õ] is the nasalized labialised posterior medium allophone appearing in between nasal
consonants or after a nasal consonant at the end of syllable.

• [Õ] is the nasalized labialised posterior medium-low allophone appearing in between nasal
consonants or after a nasal consonant at the end of syllable.

Table A.1: Spanish Phonemes (Vowels)
Phonemes Allophones

IPA SAMPA IPA SAMPA Examples
/a/ /a/ [a] [a] casa

[A] [A] jaula; tao; a jo; arbol
[ã] [a˜] mano; campana

/e/ /e/ [e] [e] carame lo; carencia; escoba
[E] [E] careta; tejado; pe ine; puerta
[ẽ] [e˜] menos; empezar

/i/ /i/ [i] [i] mariposa
[ifl] [I] lapiz; perrito; irritar; hi jo
[̃ı] [i˜] ni ño
[̃ifl] [I˜] mintió; Rin; indio
[j] [j] indio; ovoide
[̃] [j˜] Tania

/o/ /o/ [o] [o] globo
[O] [O] perro; ojo; hoy; arbol; mataor
[õ] [o˜] mono; ontoloǵıa
[Õ] [O˜] ron; monte

/u/ /u/ [u] [u] ducha
[ufl] [U] ruta; agu ja; turno
[ũ] [u˜] munición
[ũfl] [U˜] mundo; rumba; untar
[w] [w] pueblo
[w̃] [w˜] tenue

/u/

Six allophones define the pronunciation of the vowel /u/.

• [u] is the labialised posterior high vowel. It appears in all contexts for /u/ except for the
other allophones.

• [ufl] is the labialised posterior medium-high allophone appearing in syllable finished in
consonant, before or after [r] and before [x].

• [ũ] is the nasalized labialised posterior high allophone appearing in between nasal consonants
or after a nasal consonant at the end of syllable.

• [ũfl] is the nasalized labialised posterior medium-high allophone appearing in between nasal
consonants or after a nasal consonant at the end of syllable.
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• [w] is the posterior glide appearing before or after another vowel creating a dypthong.

• [w̃] is the nasalized posterior glide appearing in between nasal consonants or after a nasal
consonant at the end of syllable.

A.1.2 Plosive Consonants

There are 6 plosive consonants in Spanish (summarized in Table A.2):

/p/

One allophone defines the pronunciation of the plosive consonant /p/.

• [p] is the bilabial unvoiced plosive consonant. It appears in all contexts.

/b/

Two allophones define the pronunciation of the plosive consonant /b/.

• [b] is the bilabial voiced plosive consonant. It appears in the following contexts:

– In the beginning of word after a pause.

– In the inning of a group, after a nasal.

• [B
fl
] is the bilabial voiced approximant consonant, appearing in all cases except in the ones

defined for [b].

/t/

Two allophones define the pronunciation of the plosive consonant /t/.

• [t”] is the dento-alveolar unvoiced plosive consonant. It appears in all cases except in the
defined for other allophones.

• [t”
ff
] is a interdental voiced plosive consonant, appearing after a [T].

/d/

Two allophones define the pronunciation of the plosive consonant /d/.

• [d”] is the dento-alveolar voiced plosive consonant. It appears in the following contexts:

– In the beginning of word after a pause.

– Before or after /n/ or /l/.

• [ąfl] is the interdental voiced plosive consonant, appearing in all cases except the ones defined
for the previous allophone.

/k/

One allophone defines the pronunciation of the plosive consonant /k/.

• [k] is the velar unvoiced plosive consonant. It appears in all cases.
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/g/

Two allophones define the pronunciation of the plosive consonant /g/.

• [g] is the velar voiced plosive consonant. It appears in the following contexts:

– In the beginning of word after a pause.

– Before or after a nasal.

• [G
fl
] is the velar voiced approximant consonant, appearing in all cases except the ones defined

for the previous allophone.

/J
fl
/

Two allophones define the pronunciation of the approximant consonant /J
fl
/.

• [J
fl
] is the palatal voiced approximant consonant. It appears in all cases except the ones defined

for the other allophone.

• [
>
éj] is the palatal voiced africate consonant. It appears at the beginning of syllable,
immediately after /n/ or /l/.

Table A.2: Spanish Phonemes (Plosives)
Phonemes Allophones

IPA SAMPA IPA SAMPA Examples
/p/ /p/ [p] [p] pueblo
/b/ /b/ [b] [b] boca; ambos

[B
fl
] [B] globo

/t/ /t/ [t”] [t] tren
[t”
ff
] [ts] actuar

/d/ /d/ [d”] [d] dedo; ind io; molde
[ąfl] [D] dedo

/k/ /k/ [k] [k] casa; queso; k ilo
/g/ /g/ [g] [g] gorro; ing lés

[G
fl
] [G] agua

/J
fl
/ /j\/; /jj/ [J

fl
] [j\]; [jj] playa

[
>
éj] [J\]; [JJ] cónyge

A.1.3 Nasal Consonants

There are 3 nasal consonants in Spanish (summarized in Table A.3):

/m/

One allophone defines the pronunciation of the nasal consonant /m/.

• [m] is the bilabial voiced nasal consonant. It appears in all cases of ‘m’ and with ‘n’ before
a bilabial consonant.
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/n/

One allophone defines the pronunciation of the nasal consonant /n/.

• [n] is the alveolar voiced nasal plosive consonant. It appears in all cases.

/ñ/

One allophone defines the pronunciation of the nasal consonant /ñ/.

• [ñ] is the palatal voiced nasal plosive consonant. It appears in all cases of ‘ñ’ and with ‘n’
before a palatal.

Table A.3: Spanish Phonemes (Nasals)
Phonemes Allophones

IPA SAMPA IPA SAMPA Examples
/m/ /m/ [m] [m] moto; envio
/n/ /n/ [n] [n] n iño
/ñ/ /J/ [ñ] [J] niño; ancho

A.1.4 Fricative Consonants

There are 5 fricative consonants in Spanish (summarized in Table A.4):

/f/

One allophone defines the pronunciation of the fricative consonant /f/.

• [f] is the labiodental unvoiced fricative consonant. It appears in all cases.

/T/

Two allophones define the pronunciation of the fricative consonant /T/.

• [T] is the interdental unvoiced fricative consonant. It appears in all cases, except in the ones
defined for other allophones.

• [T
ˇ
] is the interdental voicing unvoiced fricative consonant. It appears at the end of a syllable

in contact with a voiced consonant.

/s/

Two allophones define the pronunciation of the fricative consonant /s/.

• [s] is the alveolar unvoiced fricative consonant. It appears in all cases, except in the ones
defined for other allophones.

• [s
ˇ
] is the interdental voicing unvoiced fricative consonant. It appears at the end of a syllable

before another consonant.
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/
>
Ù/

One allophone describes the pronunciation of the fricative consonant /
>
Ù/.

• [
>
Ù] is the prepalatal unvoiced africate consonant. It appears in all cases.

/x/

One allophone defines the pronunciation of the fricative consonant /x/.

• [x] is the velar unvoiced fricative consonant. It appears in all cases.

Table A.4: Spanish Phonemes (Fricatives)
Phonemes Allophones

IPA SAMPA IPA SAMPA Examples
/f/ /f/ [f] [f] f uma
/T/ /T/ [T] [T] caza; caceŕıa

[T
ˇ
] [T <] hazme

/s/ /s/ [n] [n] silla
[s
ˇ
] [z] asma

/
>
Ù/ /tS/ [

>
Ù] [tS] ducha

/x/ /x/ [x] [x] oj o

A.1.5 Lateral Consonants

There are 2 lateral consonants in Spanish (summarized in Table A.5):

Table A.5: Spanish Phonemes (Laterals)
Phonemes Allophones

IPA SAMPA IPA SAMPA Examples
/l/ /l/ [l] [l] luna, caramelo, almena

[lff] [l A] alzar
[l”] [l d] alto; molde
[l
¯
] [l j] colcha

/L/ /L/ [L] [L] llave

/l/

Four allophones define the pronunciation of the lateral consonant /l/.

• [l] is the alveolar voiced lateral consonant. It appears in all cases except the defined for the
other allophones.

• [lff] is the interdental voiced lateral consonant. It appears before [T].

• [l”] is the dental voiced lateral consonant. It appears before [t] and [d].

• [l
¯
] is the palatalized voiced lateral consonant. It appears before [tS], [JJ], [L] and [J].
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/L/

One allophone defines the pronunciation of the lateral consonant /L/.

• [L] is the palatal lateral consonant. It appears in all cases.

A.1.6 Taps and Flaps

There are 2 taps in Spanish (summarized in Table A.6):

/R/

One allophone defines the pronunciation of the tap /R/.

• [R] is the alveolar tap. It appears in all cases.

/r/

One allophone defines the pronunciation of the flap /r/.

• [r] is the alveolar flap. It appears in all cases.

Table A.6: Spanish Phonemes (Taps and flaps)
Phonemes Allophones

IPA SAMPA IPA SAMPA Examples
/R/ /4/; /r/ [R] [4]; [r] caramelo; puerta; preso
/r/ /r/; /rr/ [r] [r]; [rr] ratón; gorro

A.2 Common Reductions: “Yéısmo”

Phonetic reductions are common in all languages as part of the process in which languages, as
living beings, are involved in. In the case of peninsular Castilian Spanish, the two most prominent
are the ‘ceceo’ or ‘seseo’ and the ‘yéısmo’ or ‘lléısmo”.

The ‘ceceo’ or ‘seseo’ is a common reduction in Spanish from the Andalusian region in which
the interdental fricative phoneme /T/ (/T/) is pronounced as the alveolar fricative /s/ ([s]). This
reduction is also fully extended in Latin America and is one of the most distinguishable features of
the Latin American dialects of Spanish in comparison to the standard peninsular Castilian Spanish.
As mentioned before, the ‘ceceo’ is very extended in the Andalusian region and also affects some
parts of the Valencian community and Galicia for transferences with their own regional languages
(Valencia catalan and Galician).

The ‘yéısmo or lléısmo is a fully extended reduction in peninsular Spanish in
which the approximant palatal /J

fl
/ ([jj]) is pronounced as the palatal lateral /L/ ([L])

[Calero-Vaquera and Calvillo-Jurado, 1992]. The yéısmo started mainly in urban areas, but
nowadays has largely transferred to the whole Spain (urban or rural) except in old individuals from
the rural context, which still keep the distinction. Furthermore, this reduction is also quite usual
in Latin America, except in the southern part of the continent (Argentina, Chile or Paraguay),
where two different phonemes are still subsisting, although they might have changed some of their
features.
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There are many more reductions and phonological processes that affect the Spanish language.
Many of them define different dialects of Latin American Spanish; while others appear in Spain in
certain areas as transference with other peninsular languages. This small Section only intended to
show those two reductions affecting peninsular Spanish, not related to other languages, and which
may have an impact in the work of this thesis (i.e. yéısmo).



158 Chapter A. Review of Spanish Phonetics



Appendix B

Review on Adaptation Algorithms

I’ve studied now Philosophy And Jurisprudence, Medicine
And even, alas! Theology,
From end to end, with labor keen;
And here, poor fool! with all my lore I stand, no wiser than before

-Johann Wolfgang von Goethe, Faust

This Appendix brings a brief review of the two most popular algorithms for the re-training of
acoustic SD models: Maximum A Posteriori (MAP) and Maximum Likelihood Linear Regression
(MLLR). As an extensive use of speaker adaptation techniques has been made in this work, this
review describes the main features of both algorithms, providing the actual implementation used
in the experiments carried out in this thesis.

The Appendix is organized through two sections, where Section B.1 will review the MAP
algorithm and Section B.2 will review the MLLR approach.

B.1 Maximum A Posteriori (MAP) Adaptation

The MAP approach for adjusting the parameters of a multi-parameter acoustic model in ASR was
proposed in [Gauvain and Lee, 1994]. It aims to obtain a new set of the parameters in the HMM,
having an initial set of them which adjust themselves quite reasonable to the correct speech model
and a set of adaptation data enough to estimate new model parameters. In the end, it aims to
maximize the posterior probability of the model θ to the available data x, as in Equation B.1.

θMAP = arg max
θ
g(θ|x) = arg max

θ
f(x|θ)g(θ) (B.1)

After an EM procedure [Dempster et al., 1977], the final re-estimation formulas are as seen
in Equations B.2, B.3, B.4, B.5 and B.6 for the means, standard deviations, weights, transition
probabilities and initial probabilities respectively.

m̂jk =
τmjkµ

m
jk +

∑T
t=1(cjktxt)

τmjk +
∑T

t=1(cjkt)
(B.2)

σ̂jk =
Uγjk + Sγjk + τmjk(µmjk − m̂jk)(µmjk − m̂jk)T

αγjk − p− 1 + cjk
(B.3)
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ŵjk =
γjk − 1 +

∑T
t=1(cjkt)∑K

k=1(γjk − 1 +
∑T

t=1 cjkt)
(B.4)

âij =
ηij − 1 +

∑T
t=1(ξijt)∑J

j=1(ηij − 1 +
∑T

t=1(ξijt))
(B.5)

Π̂i =
ηi − 1 + γi0∑N

i=1(ηi − 1 + γi0)
(B.6)

The parameters µmjk, U
γ
jk, γjk and ηi are the a priori values of the mean of the Gaussian k in

the state j of the current unit, the variance of the Gaussian j in the state k, of the weight of the
Gaussian k in the state j and the initial weight of the unit i, respectively. On the other side, cjkt,
Sγjk and ξijt are the probability of the frame t in Gaussian j of the state k, the averaged variance
of the frames in the new adaptation data, and the number of time the Gaussian j is the most
probable for the frames in the state, respectively.

The set of parameters τmjk defines the weighting between the a priori data (initial model θ)
and the a posteriori data (samples x) for the re-training of the Gaussian k of the state j in the
unit m. The lower the value of τ , the more predominance of the new data in the new model,
which can lead to a poor modeling when little data is used. On the contrary, high τ leads to a
very low impact of the new data, resulting in a very little shifting of the new model with respect
to the old parameters. For this work, τ was set as a constant value for all the parameters to be
reestimated and was selected heuristically in the initial experiments carried out in different tasks
[Saz et al., 2006b, Justo et al., 2008].

Algorithm B.1: Iterative MAP approach
ReadAPrioriModel(m);
foreach Iteration a do

CalculateAPrioriParameters(µmjk,U
γ
jk,γjk,ηi);

foreach Input Signal n do
ForcedAlignment(n);
foreach Frame t in n assigned to unit i and state j do

foreach Gaussian k in j do
CalculateParameters(cjkt,S

γ
jk,ξijt);

end
end

end
foreach Unit i in m do

foreach State j in i do
foreach Gaussian k in j do

ReestimateParameters(m̂jk,σ̂jk,ŵjk,âij ,Π̂i);
end

end
end

end

The final implementation of the MAP approach in the thesis was based in an iterative
framework as seen in Algorithm B.1 to achieve convergence as the models are approximating
to the adaptation data. In each iteration, the input signals were aligned to the recalculated model
and all the required elements for the new parameters reestimation was made. Finally, the new
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models parameters were obtained according to the formulas previously presented in Equations B.2
to B.6.

B.2 Maximum Likelihood Linear Regression (MLLR) Adaptation

The MLLR approach for adjusting the parameters of an acoustic model in ASR was proposed in
[Legetter and Woodland, 1995]. It performs the adaptation through a set of regression matrices,
which shift and rotate the a priori models towards the new parameters defined by the re-training
data.

One of the main possibilities that MLLR opens is to tie a set of these matrices, so that different
acoustic units can take all the data from all of them to improve the accuracy of the regression
made over the input parameters. The selection of which units to tie can be made according to the
similarity of the units in terms of KLD or FR of their distributions or by a priori knowledge like
point or manner of articulation of the units to tie.

As argued in the main parts of the thesis, this feature of MLLR was never used in the
experimental sections, because one of the targets of the thesis was to understand how phonetic
mispronunciations in the speakers might produce a variation in the results in ASR. Using regression
classes means that information from different units is used to retrain a given unit; this feature
supposes that the knowledge of the accuracy or mistakes in the pronunciation is diluted with the
information of other units.

Algorithm B.2: MLLR approach
if RegressionClasses then

ReadRegressionClasses;
end
else

DefineRegressionClasses;
end
ReadAPrioriModel(m);
foreach Input Signal n do

ForcedAlignment(n);
foreach Frame t in n assigned to unit i and state j do

StoreData;
end

end
foreach RegressionClass s do

foreach State j in i do
foreach Gaussian k in j do

Calculate(G);
Calculate(Z);
CalculateRegressionMatrices(Ws);
PerformRegression(Ws,µmj );

end
end

end

Anyways, it was evaluated if MLLR could be used without tying any units (hence, using a
regression class for each single unit), but results showed up to be similar to the ones with MAP,
because both are providing a similar adaptation, as they have enough data from each context to
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perform adaptation. For this reason, MLLR was not used extensively in the thesis and the review
on MLLR is provided more briefly than in the case of MAP.

In the formulation of MLLR, a regression matrix Ws is calculated with the adaptation data
through two sub-matrices G and Z as in Equation B.7 to apply the linear regression over the a
priori means of the model of all Gaussians of all the states in each regression class, as in Equation
B.8.

W̄s = G−1Z (B.7)

m̂j = W̄sµ
m
j (B.8)

For all the reasons previously mentioned, MLLR and variations of it have been used successfully
in tasks for fast and reliable adaptation in case of sparsity of adaptation data.

The algorithm applied for the implementation of MLLR adaptation is depicted in Algorithm
B.2.



Appendix C

Confusion Matrices for the Impaired
Speakers

Life’s but a walking shadow, a poor player
That struts and frets his hour upon the stage
And then is heard no more: it is a tale
Told by an idiot, full of sound and fury,
Signifying nothing.

-William Shakespeare, The tragedy of Macbeth

This Appendix provides the confusion matrices among the 57 words in the RFI for the 14
impaired speakers in the “Alborada-I3A” corpus. The matrices are the outcome of the ASR
experiments with SI-TD models carried out in Section 4.3 and aim to show which words in the
vocabulary can present a major difficulty for each speaker according to their acoustic and lexical
disabilities. The Appendix is organized in the only Section C.1 which will show the matrices for
all the speakers.

C.1 Confusion Matrices in the TD experiments

The confusion matrices for all speakers separately are shown all through Figures C.1 to C.3. These
matrices were obtained from the word-unit TD ASR results in Section 4.3. and represent in the
vertical axis the words as uttered by the speakers from the numbers 1 to 57 corresponding to
their alphabetical order in the RFI as shown in Table 3.3 in Section 3.4. On the other side, the
horizontal axis represents the word decoded by the ASR system with the same order as in the
vertical axis.

Despite the lack of significance of the exact values within the confusion matrices (as there were
only 4 repetitions of each word from each speaker), several trends could be studied. Speakers Spk01,
Spk03, Spk04, Spk06 and Spk11 presented a nearly diagonal confusion matrix, corresponding to
the low WER results that they achieved. On the contrary, speakers Spk05, Spk12 and Spk13
presented a fully blurred confusion matrix, due to their severe speech disorders and their effect on
the ASR accuracy.

Although to obtain trends was difficult from the matrices, it was remarkable to see how Speakers
Spk12 and Spk13 presented vertical patterns in their confusion matrices, indicating that some
words were appearing very often as output of the ASR system instead of the actual uttered words:
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This was the case with words 10 (dedo), 31 (pala) or 51 (taza) for Spk13 or words 8 and 10 (clavo
and dedo), 17 (globo) or 28 and 29 (moto and niño) for Spk12. In nearly all cases this were 2-
syllable words, following a CV CV structure and including at least one plosive consonant (in many
cases two). All of this could be related to the possible reduction of the words as pronounced by
the speakers to this phonetically simple words which would lead to the ASR errors.

These matrices showed, up to some point, the problem of ambiguity in the recognition of
the speech from these users. These ambiguity would make some of the recognition mistakes
irrecoverable, as the actual pronunciation of the user might be closer to the word decoded in
the ASR than to the word prompted to the user (which is the ground truth of the ASR). A full
phonetic labeling of the words would allow for a deeper study on the issue of ambiguity and obtain
a WER over the actual pronunciation of the speakers. The cost and time demanded by a full
experts’ labeling limited this possibility for this thesis, but is left as a future possibility over the
“Alborada-I3A” corpus.

(a) Speaker Spk01 (b) Speaker Spk02

(c) Speaker Spk03 (d) Speaker Spk04

Figure C.1: Confusion matrices in the TD-ASR results: Speakers Spk01 to Spk04
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(a) Speaker Spk05 (b) Speaker Spk06

(c) Speaker Spk07 (d) Speaker Spk08

(e) Speaker Spk09 (f) Speaker Spk10

Figure C.2: Confusion matrices in the TD-ASR results: Speakers Spk05 to Spk10



166 Chapter C. Confusion Matrices for the Impaired Speakers

(a) Speaker Spk11 (b) Speaker Spk12

(c) Speaker Spk13 (d) Speaker Spk14

Figure C.3: Confusion matrices in the TD-ASR results: Speakers Spk11 to Spk14
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y de Sistemas, University of Zaragoza, Zaragoza, Spain. Dirigido por J. Mı́nguez y L. Montesano
(Ponente L. Montano).

[Alcubierre et al., 2005] Alcubierre, J.-M., Mı́nguez, J., Montesano, L., Montano, L., Saz, O.,
and Lleida, E. (2005). Silla de ruedas inteligente controlada por voz. In Proceedings of the
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tableros de comunicación en el ámbito de la educación especial [recurso electrónico]. Proyecto
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de las tecnoloǵıas del habla al desarrollo del prelenguaje y el lenguaje. In Proceedings of the 2007
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of Maximum A Posteriori adaptation for Automatic Speech Recognition of pathological speech.
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