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Any intelligent fool can make things bigger,

more complex, and more violent.

It takes a touch of genius – and a lot of courage

– to move in the opposite direction.

Albert Einstein
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Abstract

The increasing need for secure authentication systems has motivated

recent interest in effective algorithms for Speaker Verification (SV). Such

need for high-performance algorithms, capable of delivering low error

rates, has opened various research branches.

In this research, we propose to investigate, from a discriminative

point of view, a set of methodologies to improve the performance of

the actual state of the art of the Speaker Verification systems. In a

first approach, we investigate the optimization of the training hyper-

parameters to explicitly consider the tradeoff between false rejections

and false acceptances. This objective can be achieved by maximizing

the area under the Receiver Operating Characteristic (ROC) curve. We

believe that the enhancement of the parameters should not be limited

to a single operating point, and that a more robust strategy is to

optimize the parameters according to the maximization of the area

under the curve (AUC). We study how to optimize the parameters using

a mathematical characterization of the area under the ROC curve based

on the Wilcoxon Mann Whitney (WMW) statistic, and the solution

using the generalized probabilistic descent (GPD) algorithm. Moreover,

we analyze the effect and improvements in the performance metrics such

as detection error tradeoff curve (DET), the equal error rate (EER), and

the minimum value of the detection cost function (minDCF).

On a second approach, we investigate the speech signal as a

combination of attributes that contain information of the speaker,

channel and noise. Conventional speaker verification systems train a

single generic model for all cases, and handle all variations of these

attributes either by factor analysis, or by not considering the variations

explicitly. We propose a new methodology to partition the data

space according to these attributes and train separate models for each

partition. The partitions may be obtained according to any chosen

attribute. In this research, we will show how to effectively train the
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models for each partition in a discriminative way to maximize the

separation among them.

Moreover, the design of algorithms –robust to noisy conditions–

plays a key role that allows SV systems to operate successfully in real

conditions. We propose to extend our current methodologies to alleviate

the effect of noise in such conditions. For our first approach, in a

situation where noise is present, the point of operation may not be

a single point, or it may be shifted in an unpredictable manner. We will

show how our methodology of maximizing the area under the ROC curve

can be more robust than the conventional classifiers even when the noise

effect is not explicitly considered. Besides, the noise may be present at

different signal to noise ratios (SNRs) that can degrade the performance

of the system. Hence, we consider an effective decomposition of the

speech signals that can handle the different signal attributes such as

SNR, noise and channel type. We believe that instead of addressing the

problem with just a unified model, a decomposition that partitions the

signal space based on special attributes can provide better estimation.

Those attributes can represent different channel or noisy conditions.

We have analyzed the potential of these methodologies that can

improve the performance of the state of the art systems by reducing not

only the error, but also by controlling the operating points and alleviate

the noise effects.



Resumen

La creciente necesidad de sistemas de autenticación seguros ha

motivado el interés de algoŕıtmos efectivos de Verificación de Hablante

(VH). Dicha necesidad de algoŕıtmos de alto rendimiento, capaces de

obtener tasas de error bajas, ha abierto varias ramas de investigación.

En este trabajo proponemos investigar, desde un punto de

vista discriminativo, un conjunto de metodoloǵıas para mejorar el

desempeño del estado del arte de los sistemas de VH. En un primer

enfoque investigamos la optimización de los hiper-parámetros para

expĺıcitamente considerar el compromiso entre los errores de falsa

aceptación y falso rechazo. El objetivo de la optimización se puede

lograr maximizando el área bajo la curva conocida como ROC (Receiver

Operating Characteristic) por sus siglas en inglés. Creemos que esta

optimización de los parámetros no debe de estar limitada solo a un

punto de operación y una estrateǵıa más robusta es optimizar los

parámetros para incrementar el área bajo la curva, AUC (Area Under

the Curve por sus siglas en inglés) de modo que todos los puntos sean

maximizados. Estudiaremos cómo optimizar los parámetros utilizando

la representación matemática del área bajo la curva ROC basada en la

estad́ıstica de Wilcoxon Mann Whitney (WMW) y el cálculo adecuado

empleando el algoŕıtmo de descendente probabiĺıstico generalizado.

Además, analizamos el efecto y mejoras en métricas como la curva

detection error tradeoff (DET), el error conocido como Equal Error Rate

(EER) y el valor mı́nimo de la función de detección de costo, minimum

value of the detection cost function (minDCF) todos ellos por sus siglas

en inglés.

En un segundo enfoque, investigamos la señal de voz como una

combinación de atributos que contienen información del hablante,

del canal y el ruido. Los sistemas de verificación convencionales

entrenan modelos únicos genéricos para todos los casos, y manejan las

variaciones de estos atributos ya sea usando análisis de factores o no
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considerando esas variaciones de manera expĺıcita. Proponemos una

nueva metodoloǵıa para particionar el espacio de los datos de acuerdo a

estas carcteŕısticas y entrenar modelos por separado para cada partición.

Las particiones se pueden obtener de acuerdo a cada atributo. En esta

investigación mostraremos como entrenar efectivamente los modelos de

manera discriminativa para maximizar la separación entre ellos.

Además, el diseño de algoŕıtimos robustos a las condiciones de

ruido juegan un papel clave que permite a los sistemas de VH operar

en condiciones reales. Proponemos extender nuestras metodoloǵıas

para mitigar los efectos del ruido en esas condiciones. Para nuestro

primer enfoque, en una situación donde el ruido se encuentre presente,

el punto de operación puede no ser solo un punto, o puede existir

un corrimiento de forma impredecible. Mostraremos como nuestra

metodoloǵıa de maximización del área bajo la curva ROC es más robusta

que la usada por clasificadores convencionales incluso cuando el ruido no

está expĺıcitamente considerado. Además, podemos encontrar ruido a

diferentes relación señal a ruido (SNR) que puede degradar el desempeño

del sistema. Aśı, es factible considerar una descomposición eficiente de

las señales de voz que tome en cuenta los diferentes atributos como son

SNR, el ruido y el tipo de canal. Consideramos que en lugar de abordar

el problema con un modelo unificado, una descomposición en particiones

del espacio de caracteŕısticas basado en atributos especiales puede

proporcionar mejores resultados. Esos atributos pueden representar

diferentes canales y condiciones de ruido.

Hemos analizado el potencial de estas metodoloǵıas que permiten

mejorar el desempeño del estado del arte de los sistemas reduciendo el

error, y por otra parte controlar los puntos de operación y mitigar los

efectos del ruido.
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Chapter 1

Introduction

To see a world in a grain of sand,

And a heaven in a wild flower,

Hold infinity in the palm of your hand,

And eternity in an hour.

- William Blake Auguries of Innocence

Over the last decade, advances in communication technology have leaded the research

community efforts to focus more and more on secure and remote transactions over the

networks [4]. User authentication has attracted major attention because of the emphasis on

security issues. The first idea was to use passwords and rely on the users that these passwords

would not be shared and kept secure [5, 6]. However, passwords can be stolen, shared

or even forgotten. The necessity of authentication systems that can obtain information

from human characteristics (biometrics) was a good solution [6]. At first, research on

biometrics concentrated on fingerprint, face recognition, iris recognition, DNA and speaker

authentication, among others. Nowadays, the trend is to make a fusion of them to reach

the best performance.

From the variety of biometric signals that can be used for authentication, speech shows

several advantages. First, it is the most natural source of human communication; the

users do not need any extra device to produce speech. Second, the acquisition of the

signal can be performed using well-known non-sophisticated equipment like the telephone

and internet network devices (common forms of information transfer). Moreover, speech

opens the possibility to perform remote transactions over those networks. Lastly, the study

in areas such as speech recognition and lately in speaker recognition had consolidated the

understanding of speech.

Other more sophisticated applications include forensics, surveillance and speaker

personalization, all of them related to information security. In forensics, the main idea is to
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identify a suspect given a speech sample [7]. In surveillance, the networks are monitored so

that a big amount of data from several speakers is available. The challenge is to locate a

target speaker within that collection [8]. The newest devices, such as smart phones, rely also

on speaker recognition in their applications. The speaker personalization of the software

results in a more efficient operation of the device [9].

From all of them, authentication is the most representative example of speaker

recognition. It has attracted major attention due to the continuous increase of users

connected to the networks. Speaker recognition arose in the last three decades [10, 11]

as a solution to provide security. Speaker recognition is usually divided into two subtopics:

speaker identification and speaker verification. In speaker identification the target user is

distinguished from a set of possible users. In speaker verification the identity of a user is

accepted or rejected by analyzing a claimed identity and a speech phrase. Both fields share

in essence the same principles.

From these two, we will study Speaker Verification (SV), which main objective is to

accept or reject a prospect user with the lowest error. The speaker verification traditional

schemes are based on statistical hypothesis testing, where we establish two hypothesis: a

null hypothesis Hs (accepts the speaker as legitimate) and the alternative hypothesis Hs̄

(rejects him or her) [12, 13]. Their relation is expressed as a ratio between likelihoods with

respect to two models: target and imposter. The output ratio is then tagged as accepted

or rejected user.

Two types of error commonly occur: false acceptances (FA) – incorrect decision due to

accept a speaker who is not actually the target speaker, and false rejections (FR) – incorrect

rejection of target speakers. Ideally, the probability of both types of errors must be zero;

in practice, the two occur and are considered in the system design. A trade-off between

them is established so that both errors are reduced. The probability of false acceptance

can be reduced at the cost of increasing false rejection. Thus, for any given system, the

operating point can be manipulated to obtain a desired ratio between false acceptances and

false rejections. The entire range of possible operating points is characterized mainly by the

Operating Receiver Characteristic (ROC) curve and detection error tradeoff (DET) curve.

This thesis shows how to reduce these errors using a discriminative optimization approach

from two different perspectives. First, we present a complete strategy so that the reduction

of every operating point at the ROC and the DET curve are improved. Moreover, we

extend our findings to the noisy condition case. Second, we searched for more specific ways

to describe the speaker space based on certain attribute. We built contiguous region models

that characterized a specific attribute. These region models are an aid to construct more

specific target models. The discriminative optimization enhances those models and improves

the results of the state of the art architectures. This strategy is also extended to the noisy

condition case. Finally, averaging both methodologies improves the current results.
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1.1 Thesis Motivation and Scope

The success of traditional SV systems lies in computing the adequate models that can clearly

classify a target speaker from an impostor. The more suited these models are to specific

scenarios or target speakers, the best results we can obtain [12, 13, 14, 15]. The maximum

likelihood (ML) approaches using generative modeling [12, 13] and lately factor analysis

[14, 15] represented a huge improvement in the systems performance. Generative modeling

relies on maximizing the likelihood of a model to a current set of data. However, reduction

of the false acceptance and false rejection errors is not taken as a primary objective but as

an effect of an accurate modeling of the target speakers.

Discriminative training approaches, first employed in speech recognition [16, 17, 18, 19],

proposed an alternative solution that included the reduction of the error by considering

imposter samples in the optimization of the models. Just a few studies are found in the

bibliography [20, 21, 22, 23], probably because the need of high performance computation.

But nowadays, with the advances in technology, the computation is not longer and issue

and the experimentation is feasible.

One of the schemes that fit the SV theory is the minimum classification approach. Its

main goal is to minimize the empirical classification error regardless the distribution of

the data [16, 17, 24]. Hence, we considered it to be the backbone of our research and the

motivation to extend its potential to SV. In this sense, the algorithm must focus on the error

reduction. Moreover, the algorithm must be designed in a way that it can obtain competitive

results as the ones produced by traditional approaches. Lastly, we observed that traditional

methods usually measure the improvements on a single operating point, called Equal Error

Rate (EER), that acts as a summary of the full range of possible outcomes. In our case, the

motivation is to find a methodology to reduce the error at every operating point.

Finally, the challenge nowadays is how to make the systems robust enough to different

kinds of scenarios (including different environments, and noisy conditions). Hence, the

motivation of this study is to deal with those scenarios and build a robust system based on

discriminative training.

1.2 Thesis Statement

This thesis develops a discriminative model optimization to improve the performance of

traditional SV systems. Two perspectives were explored separately and finally merged to

obtain a more robust architecture.

In a first study, we propose a discriminative training paradigm that explicitly learns the

model parameters to optimize the entire ROC curve. The solution we propose is to maximize

the AUC; this naturally also optimizes the performance at every operating point on the ROC
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curve. Moreover, the effect is also observed in the performance metrics such as the DET

curve and the minDCF. To obtain an analytical solution, we use the well known Wilcoxon

Mann Whitney (WMW) statistic as an equivalent to the AUC [25, 26] quantification.

In a second study, we analyze the complexity of the SV task. Then we propose an

alternative approach to consider an effective decomposition of the speech signal space.

Instead of addressing the problem with just a unified model (one model that can represent all

possible data), a decomposition that partitions the signal space based on special attributes

of the training data provides a better estimation. This thesis proposes to break down a

general model into sub-region specific models. Each submodel is trained discriminatively

for specificity purposes. Hence, the new optimized models are more robust and specific to

the region they represent (a set of sub-models can represent, for example, channel, noise and

speaker main attributes). To obtain each target submodel, the system employs non-target

examples which are likely to be confused with that target attribute. We showed that by

using this procedure, the error rate is reduced. Both techniques were examined also under

noisy conditions, improving the baseline systems.

Finally, we propose a hierarchical architecture that incorporates both approaches. At

first the system generates an attribute tree that decides the sub-region attributes per level.

Then, the models for each level are discriminatively optimized using the AUC under the

ROC curve. This approach is also naturally extended to noisy conditions scenarios, where

the specificity of the optimized models improve the performance of the system in terms of

the complete DET curve, the EER and the minDCF.

1.3 Objectives and Methodology

This section describes the objectives of this thesis. The main objectives are stated in the

scientific and development objectives. The former shows the scientific knowledge acquired

by using the discriminative approach under different conditions. The latter include the

technical infrastructure needed and the software developed for this purpose. Finally, a

special section dedicated to the methodology shows the steps followed in the analysis of the

problem.

1.3.1 Scientific objectives

The first general objective is to explore the state of the art of speaker verification systems.

We analyze two branches: the training process to optimize the target speaker models and

the performance of such systems under noisy conditions. The training of the models include

several flavors: the generative, discriminative and hybrid modeling. From them, we study

their outstanding components that lead to improvements in both clean and noisy conditions.
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A second general objective is to propose a procedure to improve the current systems

by using a discriminative methodology. The first approach is to show that by optimizing

the area under the ROC curve the errors at any operating point can be reduced. This

is achieved by proposing an analytical solution that includes the WMW statistic and the

gradient descent. A second approach is to refine the sub-spaces of the entire speaker space

in order to obtain a set of sub-region specific models. According to this approach, the

objective is to demonstrate that by breaking up the speech signal into specific attributes –

like channel, SNR or even special characteristics of a set of speakers – we can compute more

accurate speaker models that result in a reduction of the errors.

A third objective is to tackle the challenge of speaker verification under noisy conditions

with our previous methodologies. For our first approach, the goal is to demonstrate that

optimizing the area under the ROC curve improves the performance even if noise is present.

The same applies for our second method in which we can treat the noise as a special attribute

and decompose the space according to specific signal to noise ratios.

1.3.2 Development objectives

The main objective is the construction of a system from scratch that can give us the expertise

on each part and the possible improvements that may be applied, see Figure 1.1. The current

system is composed of two main parts, enrollment and verification. The first step of both

stages is to convert speech into a vector representation known as feature extraction. Then,

in the enrollment, the system trains the models for the target speakers and for impostors.

The verification tests those models using non-tagged speech. The score is the final numerical

outcome. Depending on its value, the non-tagged speech is accepted or rejected.

At the beginning, each part of this scheme was built from scratch, afterwards, we also

used software provided by other universities, and modified it to fit our requirements.1

Speech signal of 
a target speaker Front-end Speaker 

Modeling

Speech signal 
unknown speaker Front-end

Claimed identity Models

Scoring  &  Decision Accept / Reject 

Models

ENROLLMENT:

VERIFICATION:

Figure 1.1: Simple Architecture of a Speaker Verification System

1JFA and i-vectors software provided by [27] and the voice activity detection [28]).
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Our main contribution in this sense is to focus on the adequate speaker modeling. The

objective is then to develop the discriminative AUC and ensemble optimization algorithms

that can be included in further SV designs.

1.3.3 Methodological procedure

The methodology to follow is shown in Figure 1.2. The first step in this methodology is

to explore the traditional modeling approaches in SV, so we can have the knowledge of the

state of the art. The results at this stage give us a baseline system. Afterwards, we designed

a discriminative optimization to be included in the current solutions: factor analysis and

minimum verification error. From this optimization two branches emerged: the AUC under

the ROC curve and the Ensemble approach. At first, we modified the baseline methods,

Joint Factor Analysis (JFA) and the Minimum Verification Error (MVE), to follow either

the AUC under the ROC curve or the Ensemble approach. Then we merged both ideas to

fulfill the final goal of working under clean and noisy conditions.

Speech Signal

MAP

MVE

JFA

AUC 
optimizationEnsemble

Speaker Verification
Traditional approaches

Noisy conditions

JFA

MVE

JFA

MVE

Figure 1.2: Scheme of the methodology followed by this thesis
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1.4 Organization

In this section, we provide the organization of this thesis, so that the reader can choose the

topic of interest. The first chapters detailed the state of the art systems. We emphasized

the modeling and the optimization procedure. The next chapters describe and analyze our

two approaches (Ensemble and AUC) and give the mathematical formalism of both of them.

The final chapters show the results of our findings, give conclusions and open discussion for

future research.

1.4.1 Classical Speaker Verification System

In this chapter, we present a brief introduction of the state of the art systems. We describe

the components of the traditional SV systems and some of its variations. We describe the

front-end, generative and discriminative modeling, the scoring and decision making.

1.4.2 Speaker Modeling

This chapter provides the intuition of how the modeling is performed in detail. First, we

explain the hypothesis testing theory as the background of a simple classifier. We define

what are the elements needed to have a functional classifier. Then, we describe in depth

techniques such as maximum a posteriori, factor analysis and minimum verification error.

1.4.3 Robustness in Speaker Verification

This part is dedicated to algorithms that deal with noisy conditions. We first give some

examples of the algorithms for speech recognition and then focus on Speaker Verification.

Besides, the chapter shows how the distorted signal affects every part of the SV system.

1.4.4 Experimental Framework

In this chapter, we present the experimental setup used along this research. We give exact

details of the databases employed and a brief description. Moreover, we show baseline results

according to the setup and the classical approach.

1.4.5 Optimization of the area under the ROC curve

This chapter shows the first of our approaches which updates the model parameters by

optimizing the area under the ROC curve. We give the mathematical formalism and we

show how the method optimizes the parameters for each of the operating points along
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the curve. The approach is also extended to noisy conditions. Finally, we present the

improvements obtained with our method on real data.

1.4.6 Ensemble Modeling

In this chapter, we present the ensemble approach for speaker verification. We present

the intuition behind the partition of the impostor space. Moreover, the clustering and the

refinement of the models belonging to those new impostor spaces are explained. Once again,

this approach can be extended to noisy conditions. Finally, this approach is applied to real

databases and the improvements are presented.

1.4.7 AUC and Ensemble Integration

This chapter merges the AUC and the Ensemble approaches to produce a new methodology

that can be used for both: clean and noisy conditions. In this section, we just provide

the mathematical formulation of the merge of both approaches. Besides, the results and

improvements on the NIST database are provided.

1.4.8 Discussion

This chapter depicts the results that support this thesis. We show the results for the AUC

of the ROC curve in different databases such as MOBIO, Ahumada/Gaudi and YOHO. In

the same way, we also present the results for the Ensemble and Integration approach for

these databases.

1.4.9 Conclusions and Future Work

This chapter presents the conclusions of our work, emphasizing the important characteristics

of our approaches. In the first case, we conclude that the AUC approach is more robust than

just having a discriminative or generative approach alone. In the second case, we concluded

that by segmenting the space into clusters the impostors space can be refined resulting in

improvements.

1.4.10 Appendices

In this section, we include some extra tools needed to demonstrate the solution for several

approaches. We cover the background for basic modeling, the most used methodologies for

the factor analysis and minimum verification error approaches.



Chapter 2

Classical Speaker Verification Systems

Me di cuenta de que teńıa que revolucionar; aprender

cosas nuevas para no quedarme atrás. Me di cuenta y

me rebelé.

- Jaime Sabines

This section presents an overview of the state of the art of the Speaker Verification

systems. It details the traditional way to address SV by using a Gaussian Mixture Models

(GMM) framework, joint factor analysis and i-vector or discriminative approaches like

maximum mutual information estimation (MMIE), support vector machines (SVM), and

minimum verification error (MVE).

As depicted in Figure 2.1, the SV systems have two main stages: enrollment (training)

and verification (test). In the enrollment, the set of acoustic models are trained. In the

verification, the speech trials evaluate the acoustic models and produce an accept/reject

result. The first step of both stages is feature extraction. It converts the speech signal into

a vectorial representation that contains specific information about the speaker.

In training, we can observe that there are several options of training algorithms available.

Although they have the same final goal to obtain lower error rates, the approaches can

address different aspects. We can divide them into generative, discriminative and hybrids.

Generative modeling optimizes the probability density functions (pdf) so that they can

describe the target speakers; examples of these algorithms are MAP and Factor analysis

variants. Discriminative modeling usually minimizes the empirical error rate using samples

of both the target speaker and impostors; examples of these approach are maximum mutual

information estimation, MMIE, support vector machines, SVM, and MVE. Combinations

of methodologies also occur; for example, for the i-vectors and the SVM approach. For the

purpose of our research we embed a discriminative optimization into the current generative

models so that the error rates are lowered. For the purpose of this research we will focus
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only on FA, which is considered the state of the art, and MVE as examples of both possible

scenarios.

In verification, the models already trained are evaluated using unknown speech, and a

score (usually as likelihood ratio) is produced as an output. The score is then fed into a

classifier with a predefined threshold and a decision (accept or reject a user) is made.

The SV systems, depending on the application, are divided into text-dependent and

text-independent categories. The text-dependent systems require that the user utters the

same set of words during the training and test phases. In some text-dependent cases, , the

system can ask the speaker to utter a set of words at the test stage. Both examples have

predefined acoustic models depending on the text and speaker. For the text-independent

systems, the user can speak any set of words; sometimes even in other languages, making

the task harder. Usually, the text-dependent systems can get better performances; and the

text independent SV is still a challenge.

The next sections describe how the current systems are built based on generative

modeling (MLE and MAP) approach, joint factor analysis and i-vector, and discriminative

approaches like MVE.

2.1 Feature Extraction

The proper selection of relevant information contained in the voice signal is a fundamental

step. Different types of feature extraction have been explored by the research community:

spectral, prosodic and high-level. Spectral features, which we will address in the next

sections, convey the acoustic information of the vocal tract [29, 30]. Prosodic features refer

to the intonation and the stress that a person uses when speaking; they depend on several

factors including, for example, emotional state and the situation the speaker is trying to

communicate (sarcasm, sadness, among others) [31, 32]. The high-level features extract

information about the manner in which a person speaks (the lexicon), the different topics

she addresses, and the style in which she uses the words [31, 33].

In this research, we will focus on spectral feature extraction. The model used to represent

the extraction process is based on a sound source – the larynx and a filter – the vocal tract

[34]. The parametrizations that work under this scheme are commonly divided into filter

bank (FB) cepstral analysis and linear predictive (LP) coding [35]. For the filter bank

approach the most known techniques are Mel Frequency Cepstral Coefficients (MFCC)

and Linear Frequency Cepstral Coefficients (LFCC). Both MFCC and LFCC features are

subjected to the shape and the frequency of a filter bank. In the case of MFCC, the filter

bank follows a logarithmic spacing at high frequencies [29]; LFCC adopts a linear spacing

filter bank [36]. For linear predictive coding, the most representative techniques are Linear

Prediction Cepstral Coefficients (LPCC) and Perceptual Linear Prediction (PLP). Both
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Figure 2.1: Speaker Verification architecture in detail, The big picture

employ a linear process that can predict the speech signal at each time given previous

samples. The LPCC includes an all-pole model that can describe the spectrum with a

smooth envelope [37]. Finally, the PLP uses psychoacoustic elements to model the speech

using an all-pole model similar to LPC [38].

We will briefly describe the MFCC procedure; we consider it to be the most frequently

employed by the research community.

2.1.1 MFCCs computation

The computation of the MFCCs is composed of several stages [29], as shown in Figure 2.2.

The first stage is to pre-emphasize the speech signal and multiply by a series of overlapping

hamming windows, producing the modified, signal, S(i). The next step is to transform
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S(i) to its spectrum S(w), employing short-time Fourier analysis . We can extract either

the power or the magnitude of the Fourier coefficients, Sm(w). Afterwards, a filterbank

(FB) transforms this signal into a smooth spectrum representation (close to the envelope).

The filterbank output is then converted to the log domain. Finally, we apply the DCT to

decorrelate and produce the cepstral coefficients [30]. If the filterbank is linearly spaced, the

resulting coefficients are named Linear Frequency Cepstral Coefficients. However, the most

common used are the MFCCs. They follow the mel scale that resembles the way a person

hears. To emphasize the dynamic features of the speech in time, the time-derivative (∆)

and the time-acceleration (∆2) are usually computed. It is common to compute 12 MFCCs,

one Energy coefficient and its corresponding (∆) and (∆2). However, recent studies have

shown that using more than 12 MFCCs can give better results [39, 27]. 1
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Figure 2.2: Mel Frequency Cepstral Coefficient Front End

2.1.2 Feature Normalization

Normalizations at this stage are implemented to reduce the effects of the noise and

the channel distortion. For example, cepstral mean subtraction (CMS) [40] is a blind

deconvolution that consists of the subtraction of the utterance mean of the cepstral

coefficients from each feature. In the same way, variance normalization (CVN) [41] is also

applied. Hence, the normalized features will be described by a zero mean and variance one

distribution. Another well-known feature normalization is RASTA (Relative Spectra) [42].

While CMS focus on the stationary convolution of the noise due to the channel, RASTA

reduces the effect of the varying channel, it removes low and high modulation frequencies.

The three of them are commonly used in SV architectures.

2.1.2.1 Feature Warping

A special normalization for SV at the feature stage is feature warping. It belongs to the

Gaussianization methods [43, 44]. The underlying concept in this normalization scheme is

that every spectral attribute (cepstral coefficient in our case) is normally distributed across

1The research in [39, 27] show that from 16 to 19 MFCCs, the performance is better than with the usual
12 MFCCs.
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time, but the transmission channel distorts such distribution. The task of feature warping

is to undo the distortion caused by the channel by warping each attribute’s scale so that the

resulting attribute set has a normal distribution. Feature warping is accomplished by first

assembling an empirical CDF (cumulative distribution function) from the ranked features

after and before the current frame, and then performing the CDF-inverse at the current

frame.

2.1.2.2 Feature Frame Removal

Frame removal is based on the idea that low energy frames do not provide information

about the identity of a person. The log-energy frames of each utterance are modeled by a

three-component GMM. w1 corresponds to the highest weight of the rightmost Gaussian,

w2 to the middle Gaussian, and w3 to the leftmost Gaussian. According to this model every

frame log-energy is labelled as high if it belongs to the rightmost Gaussian; medium if it

belongs to the middle Gaussian; and low if it belongs to the leftmost Gaussian [12]. The

following Equation is used to determine which frames can be extracted.

N = w1 + (g × α× w2), (2.1)

where g is a value between 0 and 1, and α is an heuristic weighting parameter. N is the

percentage (between 0 and 100) of the frames with highest energy that will be extracted.

If an accurate voice activity detector (VAD) or the speech transcriptions to perform speech

recognition are not available, frame removal is a suitable solution.

2.2 Speaker Modeling

After obtaining the feature vectors, the aim is to design an algorithm capable to verify if a

new spoken phrase belongs or not to a specific user. To successfully achieve this goal, the

next stage commonly known as training, is to extract the relevant information of each user

and construct a suitable model. Hence, the system can match the new phrase with that

specific model and give a decision about whether it is a speaker or not.

In the early stages of SV research, distance-based methods were popular. Among them,

the Dynamic Time Warping (DTW) and the Vector Quantization (VQ) were extensively

studied. The DTW method proposed a non-linear mapping or warping of one signal (test

recording) to another (target speaker utterance) [45]. The key point is to minimize the

distance between both of them and come up with a final decision. In the case of VQ, the

purpose was to partition the data space for a speaker s into non-overlapping regions and

obtain a codebook that represent that space [46]. When a new recording comes into the
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system, a likelihood measure between the incoming features and the codebook is computed.

At that stage, experiments were performed just for a few speakers and usually for text-

dependent utterances, but it was difficult to extend the methodology to text-independent

databases with hundreds of users. The challenge, then, became how to produce suitable

models for the new scenario. The solution came along with advances in computing systems.

The theoretical statistical methods, like generative and discriminative modeling, were then

possible.

The tendency was to construct overlapping models that can be more robust. A way to

solve such a problem was to employ a statistical approach. The Gaussian Mixture Model

(GMM) became that answer capable to represent a speaker in terms of a distribution with

just a few parameters. We will leave the GMM approach to be fully explained in detail in

the following sections and chapters, including the GMM approach that signified a forward

step [47, 48]. Later, it was also shown in [49], that the previous VQ is a special case of the

GMM.

This thesis stands on the GMM statistical approach. We analyze SV as a classification

problem that is solved using pattern recognition techniques [50]. The solution is given in

terms of statistical hypothesis testing [51] and Neyman-Person Lemma [52]. The Lemma

states that the relation between two competing point hypothesis models can be expressed

as a ratio. The ratio is then compared to a decision threshold and an accept/reject choice

is made.

The null hypothesis HS accepts the speaker as legitimate and the alternative hypothesis

HS̄ rejects him/her. Under this framework, for a set of observations X = χ1, χ2, ..., χT , the

ratio of two hypothesis (target-model and imposter-model) is defined as follows:

θ (X) =
p (HS|X)

p (HS̄|X)

{
> τ accept HS

< τ accept HS̄,
(2.2)

where p (HS|X) and p (HS̄|X) are the posterior probabilities of how likely a hypothesis HS

or HS̄ is to happen given the observed data, and τ is the decision threshold.

The hypotheses HS and HS̄ are described by models, Λ and Λ̄ respectively. Including

the probability distribution of Λ and Λ̄ in the formulation, Equation 2.2 is defined by,

θ (X) =
p (HS|X,ΛS)

p (HS̄|X,ΛS̄)
=
p (X|ΛS) (p (HS))

p (X|ΛS̄) (p (HS̄))
, (2.3)

where p (X|ΛS) and p (X|ΛS̄) are the likelihood functions with respect to the target and

imposter model. The likelihood denotes how probable X is an outcome of the model Λ.2

Additionaly, recall that p (HS) = 1− p (HS̄). Then, Equation 2.3 can be transformed in the

2For further details on Bayesian modeling refer to [53, 54]
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log domain,

θ (X) = log (p (X|ΛS))− log (p (X|ΛS̄)) + C, (2.4)

where log (p (X|ΛS)) and log (p (X|ΛS̄)) are the log-likelihoods corresponding to the target

model ΛS and the imposter-model ΛS̄ and C is a constant.

To fulfill the Neyman-Pearson Lemma the following should be considered. Both models

are defined by distributions that must be known in advance to reach optimality. However,

they are not available in practice and should be estimated. We also need optimal size data

sets to estimate those distributions. The more training data at one’s disposal, the better

estimation we can compute. However, the data sets are generally of limited size, because of

the cost of collecting and organizing the utterances. Hence, estimation of those hypotheses

can give approximate solutions.

The final ratio – commonly denoted as score – is given by a simplification of Equation

2.4,

θ (X) = log (p (X|ΛS))− log (p (X|ΛS̄))
> τ accept HS

< τ accept HS̄

. (2.5)

The classification problem is reduced to find optimal solutions for the distributions ΛS

and ΛS̄. Two approaches are commonly used to define ΛS̄. The first one considers a set

of competing speakers S̄1, ..., S̄N , called cohort, for each user S [55, 56]. The second one

employs just a gender-dependent set for all S target users, usually named UBM (universal

background model or imposter-model). An advantage of the latter approach is that we just

need one imposter model for all the target speakers, and it has been extensively used.

The next sections show various frameworks that have been effectively used to estimate

the probability distributions of the speakers and imposters. To compute these models

two branches are possible: generative modeling and discriminative training. Traditional

SV systems focus mainly on generative modeling (on how to obtain an accurate model of

the target speaker voice). However, discriminative training, which estimates more specific

models for target and imposter data, has acquired attention recently for different approaches

[23, 57, 58, 59]. Discriminative training addresses the problem from a different point of

view, it optimizes the correctness of a model by formulating an objective function that

penalizes the model parameters using positive and negative data examples. Some other

successful architectures employ a combination of both [15, 60, 14]. In the next paragraphs,

we will describe the classical descriptions of both of them and emphasize the outstanding

characteristics.
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2.2.1 Generative Model approach

The generative model is a solution to represent the distinctive characteristics of the speech

of a target speaker. The only information available are the data recordings with the

corresponding identity label of the speaker and a proposed statistical model to be used.

The challenge is to find a distribution (model) that can describe the phenomena– a model

that is able to capture the statistics of the vocal tract of each speaker. Hence, the key is to

find the maximum likelihood between our data and the proposed model. 3

The Gaussian Mixture Models, GMM, showed to be a plausible statistical model in which

speech is represented just by few parameters (means, variances and weights) in a simple way.

Most of the current state of the art strategies are based, in many ways, on GMM approach

to compute the desired target and imposter models [48, 62, 63]. Let’s define p(X|Λ) as a

GMM distribution for a D-dimendional feature vector as,

p(X|Λ) =
M∑
i=1

wiN (X|µi,Σi), (2.6)

where M are the number of components of the model, wi are the weights of each component

with
∑M

i=1 wi = 1, and N (X|µi,Σi) is the Gaussian probability density function with µi

mean, and Σi is the covariance diagonal matrix.

The computation of the parameters of the GMM is then the challenge to address. There

is not an analytical solution to find the parameters that satisfy the maximum likelihood,

but the problem solution employs an iterative algorithm, called Expectation Maximization,

that optimizes the model parameters.

2.2.1.1 Expectation Maximization

The Expectation maximization (EM) [64] is the leading algorithm for training the GMM,

under maximum likelihood criteria. The goal is to search for the maximization of the

“likelihood”, p(X|Λ); i.e., the probability of the realization of X from an unknown

distribution, given the model Λ. In every iteration the algorithm updates the GMM model

parameters, Λ = {wi,µi,Σi}, such that, p(X|Λ∗(n+1)) ≥ p(X|Λ∗(n)), where Λ∗ is the model

estimation at each iteration. The new model then becomes the old model until convergence

is reached.

Although there are several explanations of the EM algorithm, in this section, we briefly

explain the intuition behind it and leave further details to the next chapters. To obtain a

probability distribution that describes our data, EM comprises two stages expectation and

maximization. First, we define a “hidden variable” Z that helps to maximize p(X; Λ). Let

3For further details about maximum likelihood and the algorithm used we can refer to [61]. An intuitive
explanation of maximum likelihood is to find a model that best describes our data.
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us define, p(X|Λ) =
∑

z (X,Z|Λ). However, marginalizing Z becomes a difficult task. EM

strategy is to update the parameters of Λ∗ in two steps. In the Expectation step, we define

the function gn that is a lower bound of the objective likelihood function log p (X|Λ). The

analytical solution is to compute the posterior distribution p(Z|X,Λ). The initial model

parameters at this stage are usually computed using VQ techniques. In the maximization

step, Λ(n+1) is obtained by maximizing gn (see Figure 2.3). In other words, the new Λ∗ is

computed by maximizing the joint distribution of X and Z.

Figure 2.3: Expectation Maximization Algorithm

The purpose of the EM algorithm in SV is to produce a general model that embraces

the characteristics of all speakers (sometimes excluding the target speakers set). The GMM

model at this stage is commonly known as the imposter-model or Universal Background

Model (UBM), and in most cases is gender dependent.

At this point, we have solved part of the problem by estimating the imposter or UBM

model, Λ∗. The straightforward idea might be to extend the idea of EM and compute the

models for each target speaker. However, the availability of the data is the main constraint.

The datasets usually contain recordings of just a couple of seconds [39], not suitable for

ML training. Therefore, an algorithm able to perform an adaptation of the current general

model to a target specific model is needed (presented in the next section).

2.2.1.2 Maximum A posteriori (MAP)

EM is not able to compute accurate parameters for the target speaker models because

the data available are limited. However, an algorithm proposed by [65], similar to EM, is

currently used to adapt the imposter-model or UBM to each target speaker. The formulation

is based on the estimation of the model parameters, Λ, that maximize the posterior, p(Λ|X).
4 The new estimated model is denoted as Λ̂MAP = argmax p(Λ|X). The solution of this

adaptation includes the prior p(Λ) in the formulation. It follows the rule,

4We recall that by Bayes rule, p(Λ|X) = p(X|Λ)p(Λ)
p(X) .
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Λ̂MAP = argmax
Λ

p(X|Λ)p(Λ). (2.7)

The prior belief, p(Λ) is usually given by a previous estimation of a general model, in

this case the UBM. The solution of MAP using GMM is intractable, hence, the algorithm

is treated in a similar manner as EM as will be shown in next sections in detail.

Note that to obtain an optimal solution the system should consider: a) the definition of

the prior models, b) the appropriate estimation of those priors.

2.2.2 Discriminative Training Approach

The generative modeling focuses on optimizing for a single class. In the case of the UBM,

the training optimizes the parameters of a general model; in the case of MAP, it updates

the parameters of a target speaker model. Hence, the classifier depends entirely on how

good the models fit the data they represent (the better the representation, the better the

classification). But these methods does not focus on the separation between the classes,

target and imposter. In this sense, the discriminative modeling gives an alternative solution

to the problem. In general, the discriminative approaches consider the opposing classes at

the same time and optimize the models for both. They mainly pursue the reduction of an

error, rather than improving the model likelihood with respect to the data set. However,

the optimization process needs positive and negative samples for each class. The main

drawback of these approaches is the amount of data needed to obtain appropriate models

and the risk of over-fitting when the models become too specific to the data from which

they were trained.

In SV, discriminative techniques have not been extensively used by themselves, but their

properties can improve the current approaches or are competitive to the Generative Models.

In this section we show some examples of them.

2.2.2.1 Maximum Mutual Information Estimation (MMIE)

One of the most representative approaches of discriminative modeling is MMIE [66, 67].

The main objective of this algorithm is to maximize the mutual information between the

observations X (belonging to either target or imposter user) and the model tag (Λtar, Λimp).

Recall that when two random variables are dependent, the mutual information is maximized.

If they are independent, the mutual information is minimal.

The probability of the observation X is given by

p (X) = p (X|Λtar) p (Λtar) + p (X|Λimp) p (Λimp) . (2.8)

Clearly, the criterion is defined in the log domain as the sum over the posteriors of the
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observations,

f (Λ) =
∑

X∈Xtar

log
p (X|Λtar)P (Λtar)

p(X)
+
∑

X/∈Xtar

log
p (X|Λimp) p (Λimp)

p(X)
. (2.9)

The estimated Λ∗ is,

Λ∗ = argmax f (Λ) (2.10)

It is computed,

Λ∗n+1 = Λn + η
∂f

∂Λ

∣∣∣∣
Λ∗n

(2.11)

As shown, this method tries to maximize the class-conditional probability of the

observation while the weighted sum of the competing class-conditional probabilities is

minimized. Hence the separation between classes is optimized. This observation guarantees

that the impostor and target distributions are optimally separated and improve the error.

MMIE is the preliminary of more sophisticated discriminative modeling such as MVE

discriminative modeling as will be presented in the next chapters.

2.2.2.2 Support Vector Machine (SVM)

Another discriminative approach that has attracted attention recently is SVM. The purpose

of the SVM is to classify the multivariate data X into two classes tagged binary as [1,−1]

[68, 69]. The data vectors X, that are not linearly separable, are mapped to a higher

dimensional space via a kernel function. The solution is a hyperplane with maximal margin,

meaning that the distance between a tagged vector and the hyperplane is maximal. A

hyperplane is trained by using data X and its tags. In the testing stage, the hyperplane

determines the class of each vector.

Two ideas have mainly been developed for SVM [12]. The first one focused on the

scoring. The knowledge, in the training stage, of the scores that belong to a user is employed

to compute a hyperplane. In the test, the data vectors are compared to the hyperplane and

a decision is produced. The final score is the average of the trial data for each target user

model. The second one, is to combine the generative method GMM with the SVM [70].

Instead of evaluating each vector, the whole phrase is considered, a new input feature vector

is produced for the SVM, and just a final decision is obtained. This techniques have also

been successfully applied to spectral, high-level and lately to prosodic features [32, 33].

The evolution of the SVM for SV has become of interest because it can obtain competitive

results compared to the generative modeling approach. However, its success is mainly due

to the improvements in the kernel design and its capability to refine the modeling in other

techniques such as JFA and i-vectors [14].
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2.3 Decision Making

After computing models for every target and imposter speaker set (or UBM), the next step

is to evaluate the system, obtain feedback from testing on a “controlled database” 5 and

perform further normalizations. The target models evaluate different unlabeled recordings

(trials) and from each of them we compute a log-likelihood ratio with respect to a specific

target model. This ratio, usually named score, computes a numerical value of the relation

between two competing hypotheses. Depending on the value, the system gives a decision

(see Equation 2.5).

The score for every trial follows a hypothesis test framework; however, the classifier is

not perfect. In the process of verifying whether the speech signal X belongs to a target user

S, two errors may arise:

• Type I : known as false rejection, meaning that signal X is incorrectly rejected and is

a target speaker.

• Type II: known as false acceptance, meaning that the signal X is incorrectly accepted

and is an imposter.

In Figure 2.4, note the location of the errors and the position of the threshold, τ . The

scores truly belonging to a target speaker follow a Gaussian distribution. The same is valid

for the imposter distribution. Both overlapping distributions represent the classifier. The

challenge now is to position the threshold. On one hand, an approach is to set τ as high

as possible. However, that will produce few false acceptances and many false rejections,

meaning that it will be very secure. The target user might need to perform several trials to

finally get access. On the other hand, if τ is designed to be low, there will be many false

acceptances and few false rejection. Many imposters might be accredited by the system.

Neither of them is desirable. A good tradeoff that depends on the specific application is

appropriate. The usual technique to place an effective τ between the two competing score

distributions is to perform several experiments using a development database and harden

the threshold.

2.4 Score normalization

The scores exhibit variations produced by multiple targets speakers and multiple conditions

that need to be compensated. Therefore, it is convenient to scale (or normalize) the scores

so that they are comparable across multiple targets. Two types of normalizations are the

5 The development database from which we know that ground truth, helps us to evaluate the system in
advance and tune the threshold according to specific requirements.
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Figure 2.4: Decision Threshold of a binary classifier based on scores

most popular: with respect to the target data (Z-norm) and with respect to the test data

(T-norm) [12]. In the following paragraphs we describe them.

2.4.1 Z-norm

The Z-norm [71] or zero normalization is performed with respect to the target speaker

statistics and compensates for inter-speaker variability. Equation 2.12 shows this type of

normalization.

θ(Xtrial, S)norm =
θ(Xtrial, S)− µ(S)

σ(S)
, (2.12)

where µ and σ are the mean and the standard deviation of the scores computed for a certain

speaker model S, given imposter data. Xtrial is the test input data. One of the advantages

of this normalization is that it can be performed offline.

2.4.2 T-norm

The other well-known normalization is T-norm [72] or test normalization. In this case, the

test utterance is evaluated against imposter models as shown in Equation 2.13.

θ(Xtrial, S)norm =
θ(Xtrial, S)− µimpost(Xtrial)

σimpost(Xtrial)
, (2.13)

where µimpost and σimpost are the mean and the standard deviation obtained by evaluating

the upcoming phrase against precomputed imposter models. The computation is performed

on-line and it is preferred to have separate imposter models for each speaker.

The ZT-norm is the combination of the above and can also be TZ-norm, depending

on the order in which they are applied. Most of the state of art systems use one of the

normalizations or a combination of them [73].
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2.5 Evaluation and Performance measures

The goal of a speaker verification system is to classify the target speakers correctly and

minimize the cost of the FA and miss errors. The performance of the verification systems

is traditionally evaluated using the Equal Error rate (EER), the detection cost function

(DCF) and detection error trade off (DET) curves. In this work, these measurements are

the milestone of our research. The optimization methods discussed in this study take into

a account their performance as will be explained in next chapters.

2.5.1 Equal Error Rate

The Equal Error Rate is an operating point in which the percentage of false positives equal

the percentage of false negatives. The operating point is chosen given a threshold such that

it fulfills this constraint. The EER provides a general idea of the performance and it is

independent of the amount of samples for each class [74, 12, 75].

2.5.2 Detection Cost Function

As explained in previous sections, two errors occur in SV: false acceptance and false rejection.

Considering not just an operating point as the EER, the system should manage a “weighted”

combination of those errors according to the desire application [75, 76, 77]. For example,

if the purpose is to prevent fraud, the system must give a higher penalty to the false

acceptance than to the false rejection. Additionally, if the application is an access point,

the false acceptance penalty may be relaxed.

In this section, to follow the NIST evaluations, we analyze the problem as a search

problem; the system tries to detect the samples that truly belong to a target speaker [78]. If

the system fails detecting a sample that in fact belongs to a target, it is considered a miss.

On the other hand, if the system detects that the sample belongs to a target, but it is from

an imposter, it is consider a false alarm.

Hence we can consider a cost function of the following form,

C(κ, κ̃) =


Cmiss if κ = 1 and κ̃ = −1

Cfa if κ = −1 and κ̃ = +1

0 otherwise

(2.14)

where κ is the true class of the sample and κ̃ is the output of the classifier. κ = 1 is

considered a target sample and κ = −1 is an impostor sample.

Under this new considerations, the tradeoff between the two weighted errors is established

as the expected cost function [76],
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C(Cmiss, Cfa) = CmissPmissPtar + CFAPFAPimp, (2.15)

where Pmiss is the probability of a miss and Pfa is the probability of the false alarm. Ptar is

the prior probability that the target sample truly belongs to a target speaker. Pimp = 1−Ptar
is the prior probability that the sample belongs to an impostor. Cfa, Cmiss and Ptar depend

on the application and are decided in advanced by the designer.

Two CDFs are considered in this work:

Minimum Detection Cost Function

The minDCF is the minimum value that can be achieved by minimizing Equation 2.15

given the test set. In this case, it can be used as both as a measure of calibration and

discrimination. It is the actual operating point of the cost function at which the optimal

cost C is computed, knowing the ground truth of the test database.

Actual Detection Cost Function

This value is computed given a threshold in advance without knowing the test samples.

Usually, the threshold is obtained using development data. It is uncertain how this new

measure performs on test data; i.e., it may be close or not to the optimum.

2.5.3 Detection Error Trade off Curve

The detection error trade off curve encompasses every operating point for every miss and

FA pair [75]. It includes the EER, the CDF and the minDCF. This curve is very similar to

the ROC curve, but it presents a non-linear warping at the edges that make the curves look

linear.

Figure 2.5: Detection Error Tradeoff curve
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In this sense, we can compare two or more systems in the same plane over all the

operating points as is shown in Figure 2.5.

2.6 Summary

This chapter presented the traditional schemes in SV, giving a survey that goes from feature

extraction to decision making. Although every part of the system is important, the core of

SV is the modeling: the better the model, the better classification you can achieve. Among

the classification methods, discriminative and generative modeling give an interesting idea

on how to build a reliable classifier for SV. We leave the state-of-the-art schemes to be

explained in depth in the following chapters.
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Speaker Modeling

The pursuit of truth and beauty is a sphere of activity in

which we are permitted to remain children all our lives.

- Albert Einstein

Speaker modeling is the core of the SV system. After computing the feature vectors, the

challenge is to build a speaker model that truly represents the speaker’s voice even under

adverse conditions. For this purpose, let us first recall Hypothesis Testing theory and in

later sections detail the algorithms of interest.

Hypothesis testing is usually performed through a likelihood-ratio test. A parametric

model with parameters ΛS is defined for the data distribution from S, and an imposter model

with parameters ΛS̄ is specified for the class of imposters: the aggregate of all speakers who

are not in S. The difference between the log-likelihood of χ given by ΛS and ΛS̄ is compared

to a threshold to choose the right hypothesis, as shown in Equation 3.1.

θ (χ) = log (p (χ|ΛS))− log (p (χ|ΛS̄))

if θ (χ) > τ : H0

otherwise : H1 (3.1)

The problem of training a reliable SV system consists of learning the parameters ΛS and

ΛS̄ of an appropriately chosen parametric form of the probability distributions.

We first note that each recording χ actually consists of a sequence of feature vectors,

typically mel-frequency cepstral vectors augmented by their velocity and acceleration. Thus

χ = {X1, X2, · · · , XT}, where Xi is the ith vector in the sequence.
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The most common form of probability distribution for χ treats the individual Xi vectors

as IID with a probability density function given a Gaussian mixture model, i.e.

P (χ; ΛC) =
∏
i

∑
k

wCk N (Xi|µCk ,ΣC
k ), (3.2)

where C is either S or S̄, and wCk , µ
C
k and ΣC

k are the mixture weights, means and covariances

(usually assumed to be a diagonal matrix) of the kth Gaussian in the mixture. Thus,

ΛC = {wCk , µCk ,ΣC
k ∀k}. In addition, each d-dimensional Gaussian density function,

N (Xi|µCk ,ΣC
k ), is defined as,

N (Xi|µk,Σ, k) =
1

(2π)D/2Σ
1/2
k

exp {−1

2
(Xi − µk)TΣ−1

k (Xi − µk)}. (3.3)

To make the computation easier, we consider all the covariances to be diagonal. Training

the SV system is hence equivalent to learning GMM parameters for both S and S̄. This

research focuses mainly on the estimation of the parameters. In the next sections we describe

the main algorithms to model the parameters.

3.1 Expectation Maximization

Learning GMM parameters can generally be performed by the Expectation Maximization

algorithm, given a suitably large amount of training data. The intuition behind EM was

explained in Section 2.2. In this section, we describe the theory behind EM [79, 80] (for

detailed information see A.1).

EM is a machine learning tool that works for point estimation. Then, for a set Xt where

t = 1...T and a hidden (latent) variable Z, we can estimate the parameters Λ. Let us define

the following,

`(Λ) = log p(x|Λ) = log
∑
z

p(x, z|Λ)

>=
∑
z

Q(z|x,Λ) log
p(x, z|Λ)

Q(z|x,Λ)
≡ F (Q,Λ), (3.4)

where Q(z|x,Λ) is the density of z. Knowing the inequality, the task is to find the lower

bound of F (Q,Λ). Hence, E− step Qt+1 = arg max
Q

F(Q,Λt) and M− step Λt+1 =

arg max
Λ

F(Qt+1,Λ). Moreover, let us consider Qt+1 = p(z|x,Λt) to force the distribution Q

to just depend on Λt. Under this argument,



3.2 Maximum a posteriori adaptation 27

`(Λ) >=
∑
z

Q(z|x,Λ) log p(x, z|Λ)−
∑
z

Q(z|x,Λ) logQ(z|x,Λ) (3.5)

>= Q(Λ|Λt) + S(Q). (3.6)

Note that maximizing F (Q,Λ) is equivalent to maximizing the expected complete

likelihood. Hence, we can compute suitable expressions for the expectation and maximization

steps as follows,

E− step Q(Λ|Λt) = E[log p(x, z|Λ)]

M− step Λt+1 = arg max
Λ

E[log p(x, z|Λ)]. (3.7)

For the purpose of this research, we applied Equations 3.7 to the special case of GMM.

We obtain expressions for each Λ = {wk, µk,Σk}. Algorithm 3.1 shows the steps that the

system follows. Once we obtained a suitable Universal Model, we need a model for each

target speaker.

3.2 Maximum a posteriori adaptation

For SV systems, however, while an arbitrarily large amount of training data may be available

to learn the counter model ΛS̄, the training data available to learn the model ΛS for any

speaker is usually limited. The common solution therefore is to learn a robust counter model

ΛS̄, which in this context is usually referred to as a Universal Background Model (UBM),

from a large collection of speech from a large number of speakers, and to adapt the UBM

to the training data from the speaker to obtain ΛS.

In the ideal case where the training data from the speaker are recorded over the same

kind of channels that will be employed to record test data that must be verified, maximum

a posteriori (MAP) adaptation assuming conventional conjugate priors for the mixture

weights, means and variances has been found to be a good solution for estimating ΛS

[65]. MAP has shown to be a powerful speaker adaptation technique when just a few data

samples are available. It takes advantage of the prior information of the model as shown in

Equation 3.8. For each speaker S,

Λ̂S(χ) = arg max
Λ

p(Λ|χ) = arg max
Λ

p(χ|ΛS)p(ΛS), (3.8)

where Λ̂ are the estimated parameters for the distribution of Λ. Since we have no information

about p(Λ) it is common practice to use the UBM, i.e the UBM is adapted to the training
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data of speaker S. Equation 3.8 is also solved under the ML estimation criterion using the

same steps as in EM. The details are shown in Algorithm 3.2.

Algorithm 3.1. Expectation Maximization Algorithm

Expectation Step

1. Initialize the parameters of the Gaussian: wk, µk,Σk ∀k and the

log-likelihood `0.

2. For a set of training Xt where t = 1...T , compute the total

likelihood,

`t =
∑
k

wkN (Xt|µk,Σk), (3.9)

3. Find the responsibilities

νk,t =
wkN (Xt|µk,Σk)

`t
, (3.10)

Maximization Step

Define,

Nk =

T∑
t=1

νk,t . (3.11)

Then, we can compute:

1. weights

ŵk =
Nk
N
, (3.12)

2. means

µ̂k =

∑T
t=1 νk,tXt

Nk
, (3.13)

3. covariances

Σ̂k =

∑T
t=1 νk,t(xt − µ̂)(xt − µ̂)′

Nk
. (3.14)

Check convergence

1.

`new =

T∑
t=1

ln

{∑
k

wkN (Xt|µk,Σk)

}
, (3.15)

Compare `new with `0 and decide whether the criterion is satisfied

or not, if not return to Expectation Step 2.

According to ML, it is possible to update the parameter means and covariances. However,

it is a common practice to optimize just the means of the parameters and leave the
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covariances fixed, no effective improvements are considered by using ML approach [62].

Figure 3.1 shows how the real models are built if just the mean or both mean and covariance

are updated.

Another observation about these algorithms is that neither MAP nor EM take into

account the variability that might occur due to channel mismatch. For those non-ideal

cases, as we will see in the next sections, other powerful methods such as joint factor

analysis [15, 60] can take into account the variability of the channel and speakers obtaining

good results. But first, we briefly explain some discriminative approaches that will aid us

to understand the next chapters.
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Figure 3.1: Comparison of MAP model optimization: a) only means, b) means and
covariance

3.3 Minimum Verification Error

The theory behind minimum verification error was first conducted to solve automatic

speech recognition tasks [17, 24] and was called minimum classification error (MCE). The

algorithm was first conceived as a solution for a classifier optimization problem proposing a

methodology to minimize the probability of misclassification1 [24, 17, 83]. The structured

formulation under Bayes Decision Theory and the competitive results compared to the state

of the art classifiers made it attractive. The algorithm provided an original answer to the

optimization of the model parameters, regardless the nature of the distributions and focusing

only on the minimization of the error. Moreover, it established an estimation criterion which

leads to the update of competitive models in an iterative mode. Afterwards, the approach

was embedded into the Hidden Markov Model (HMM)2 theory.

1 MCE was studied as an alternative solution to the novel classifiers such as Artificial Neural Networks
[81] and Vector Quantization algorithms [82].

2The complete explanation of the classical ASR process can be found in [84, 85] and is beyond the scope
of this thesis. However, we would like to emphasize the influence of ASR techniques and advances that are
used in SV with the appropriate modifications.
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Algorithm 3.2. Maximum A posteriori Algorithm

Expectation Step

1. Initialize the parameters using the UBM: wk, µk,Σk ∀k, decide

the log-likelihood `0.

2. For a set of training Xt where t = 1...T and for a specific user s,

let’s compute the likelihood,

`t =
∑
k

wkN (Xt|µk,Σk), (3.16)

3. Find the responsibilities

νk,t =
wkN (Xt|µk,Σk)

`t
. (3.17)

Maximization Step
Define,

N̂k =

T∑
t=1

νk,t . (3.18)

Then we can compute:

1. weights

w̃k =

[
αkN̂k
T

+ (1− α)Nk

]
γ, (3.19)

2. means

µ̃k = αk

(∑T
t=1 νk,tXt

Nk

)
+ (1− α) µ̂k, (3.20)

3. covariances

Σ̃k = α

(∑T
t=1 νk,t(xt − µ̃)(xt − µ̃)′

Nk

)
+ (1− αk)

(
Σ̂k + µ̂k

)
− µ̃k,

(3.21)

γ ensures that the sum of all weights is equal to one. αk is considered a

regularization coefficient; it is defined as

αk =
N̂k

N̂k + r
. (3.22)

Check convergence

1.

`new =

T∑
t=1

ln

{∑
k

w̃kN (Xt|µ̃k, Σ̃k)

}
, (3.23)

Compare `new with `0 and decide whether the criterion is satisfied

or not, if not return to Expectation step 2.
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The purpose was to optimize the parameters of acoustic unit models such as phones or

words [24]. For example, a specific phone could become a target and the remaining ones

the imposter set. Then, an iterative process would take place for that specific phone model,

and also for its counter imposter model. Later in [86], MCE and MVE were applied for the

combined task of utterance verification and SV. In this work, a unified scheme for both tasks

was adopted for a two-pass verification system. Recently, another study presented by [87]

proposed an improvement to characterize the alternative hypothesis following an optimal

discrimination between the target speaker and imposters’ set.

From the SV point of view, the estimation of the distributions of S and Ŝ as computed by

EM and MAP, can also be tackled using the binary version of the algorithm, known as MVE

(Minimum Verification Error). Under this approach, the empirical error rate is minimized

using an appropriate objective function and positive (target speaker features) and negative

(imposter speaker features) examples. The procedure performs several iterations while

updating the distribution parameters until reaching convergence or a specific threshold.

For minimum classification, supposing that several classes are possible, the prime

problem is to correctly classify χ data in Cn classes.3 The following piecewise-loss function

is an appropriate option to measure the performance of such classifier.

en,l =

{
0 n = l

1 n 6= l
, (3.24)

where n, l = {S, S̄}. This function assigns a penalty of zero for correct classification and

one for incorrect classification. Moreover, we can define the conditional loss as follows,

<(Cn|χ) = el,n p(Cl|χ). (3.25)

If we denote C(χ) as the classifier decision, based on the observation χ, then for every

χ the classifier has to be designed to achieve,

<(C(χ)|χ) = min
n
<(Cn|χ). (3.26)

The above equations imply that,

<(Cn|χ) = P (Cl|χ) = 1− p(Cn|χ). (3.27)

Then, the optimal classifier that solves for the minimum loss is stated as,

C(χ) = Cn if p(Cn|χ) = max
l

p (Cl|χ) . (3.28)

3In future chapters we will use this approach to classify among attributes such as different SNRs. For
now, we follow this formulation and its simplification to a SV scenario.
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Equation 3.28, based on Bayes theory, clearly transforms the classification problem into

a distribution estimation problem. This Equation can be solved by MAP approaches if we

have complete knowledge of the distributions and enough data for each speaker. In most

practical tasks this is not the case.

A useful solution is to employ a smooth representation of the objective function that is

suitable for both the minimization of the error and the optimization. In [24, 17, 83], an

optimization criteria is proposed based on likelihood functions and a classifier that operates

with the following decision rule,

C(χ) = Cn if gn(χ; Λ) = max
l

gl (χ; Λ) . (3.29)

To accomplish this objective three elements are needed and will be discussed in the

next paragraphs. Let us first define a set of discriminant functions, such as log-likelihood

functions that can be plugged into the objective function. Let gn(χ; Λ) = log (p (χ; Λn))

evaluate the log-likelihood function for class Cn by observing χ. Second, for any speaker we

define the misverification measure as,

dn(χ) = −gn (χ; Λ) +Gn (χ; Λ) , (3.30)

Gn (χ; Λ) is considered the log-likelihood average of the competing classes. Gn (χ; Λ) is

defined using the following expression,

Gn(χ; Λ) = log { 1

M − 1

∑
n6=l

exp [ηgl (χ; Λ)]}
1
η

, (3.31)

η is considered a slack factor to control the contribution of the discriminant functions.

For the special case of SV, M = 2 (two classes are possible: target or imposter).

Furthermore, if M = 2, then η = 1. Equation 3.31 can be reduced to

Gn(χ; Λ) = log g (χ; ΛS̄). (3.32)

Third, let’s define the new loss function `n (χ; Λ) = `(dn), a sigmoid function that makes

a soft decision centered at a threshold:

`(dn(χ)) =
1

1 + exp (−γdn(χ) + θ)
, (3.33)

where γ ≥ 1 and usually θ = 0. If dn(χ) is less than zero, it means that not error occurred;

if dn(χ) is positive, an error happened and it is penalized.

With these three elements we can accomplish a smooth representation of a composite

objective function. Finally, we use the indicator function 1(·) to sum the losses over the two
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classes (target and imposter) and review the performance:

`(χ; Λ) =
∑
n

`n(χ; Λ)1(χ ∈ Cn). (3.34)

The optimization of the parameters by minimizing the loss function is solved using the

generalized probabilistic descendent (GPD) algorithm [24] as shown in Equation 3.35,

Λt+1 = Λt − ε∇`(χ; Λ), (3.35)

where ε is the learning step, and ∇`(·) denotes the gradient. The above procedure is applied

to every element of the model parameters Λ = {µCk ,ΣC
k , w

C
k }.

We perform the optimization dimension by dimension. Then, for target speaker CS and

for dimension d, for example, for µS, to avoid bias, let µ = σ µ̃. We compute the following

(note that we dropped out all subindices to make the formulation clear),

µ̃(t+ 1) = µ̃(t)− ε∂`(χ; Λ)

∂µ̃
|Λ=Λt . (3.36)

By the chain rule we compute,

∂`(χ; Λ)

∂µ̃k
=
∂`(χ; Λ)

∂d

∂d

∂µ̃k
. (3.37)

The first element is then,

∂`(X; Λ)

∂d
= γ`(d)(1− `(d)). (3.38)

The misverification measure for the two types of errors:

∂d

∂µ̃k
=


−∂g(X;Λ)

∂µ̃k
+ ∂G(X;Λ)

∂µ̃k
X ∈ C (Type I)

∂g(X;Λ)
∂µ̃k

− ∂G(X;Λ)
∂µ̃k

X /∈ C (Type II)

(3.39)

∂g(χ; Λ)

∂µ̃k
=

1

p(χ; Λ)

∂ p(χ; Λ)

∂µ̃k
, (3.40)

∂G(χ; Λ)

∂µ̃k
=

1

p(χ; Λ̄)

∂ p(χ; Λ̄)

∂µ̃k
. (3.41)

Then, consider for a specific k, dimension d, the final equation to compute the mean is,

∂p(χ; Λ)

∂µ̃k
=

wkN (χ|µ̃k, σk)∑
k′ wk′ N (χ|µ̃k′ , σk′)

(
χ

σk
− µ̃k

)
. (3.42)
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The computation for Σ and wCk adopt the same procedure (for clarifications and further

details refer to Appendix C.1) Once again, let σ̃ = log(σ), Then the final Equation to

compute σ is

∂p(χ; Λ)

∂σ̃k
=

wkN (χ|µk, σ̃k)∑
k′ wk′ N (χ|µk′ , σ̃k′)

{(
χ− µk
σ̃k

)2

− 1

}
. (3.43)

Finally, for the set of weights wk and to ensure that
∑K

k=1wk = 1, let w = exp(w̃)∑K
k=1 exp(w̃)

,

∂p(χ; Λ)

∂w̃k
=

N (χ|µk, σk)∑
k′ w̃k′ N (χ|µk′ , σk′)

. (3.44)
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Figure 3.2: Minimum Verification Error architecture

Figure 3.2 describes the formulation in detail. For the training stage and for an i-th target

speaker, MVE depends upon an initial target model to evaluate the likelihood gi(X; Λ), an

imposter model to compute Gi(X; Λ) and a set of target and imposter or cohort speech

tokens4. Each initial target model can be obtained from the adapted model estimated by

MAP or EM. The initial imposter and target models are evaluated using the data-vector χt

and Equation 3.31. Afterwards, we compute the misverification distance d and map it onto

the loss function (sigmoid). Since the system compasses the ground truth of the data, it is

able to count for the errors and penalize accordingly for FA and FR. Hence, we construct a

loss function that depends on the errors `. The optimization of the model parameters with

respect to the minimization of the loss function is the final calculation.

The final outcomes for an i-th speaker are the optimized target and imposter models

under the MVE framework, as described in Algorithm 3.3. In the test stage, the system

evaluates the unlabeled recording employing the new model parameters for target and

imposter. Although MVE is a method per se that can handle random initialization models,

it has shown that if combined with techniques based on ML estimation, the models get

refined and the classification more accurate [89, 87].

4The cohort is commonly defined according to the application [88, 56]; for example, the selection can
be based on the likelihood ratio (at the score level), or in terms of similarity between two models as an
alternative. There is no agreement on which is the best option [56], but the approach can be successful if
built for specific conditions.
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It is possible to analyze the effect of MVE in terms of likelihood (see Figure 3.3). The

plot depicts the output histograms of the discriminative functions gn(χ; Λ) and Gn(χ; Λ)

before and after optimization. In this example, we chose a scenario where a target user

and an imposter show a similar likelihood values (as depicted in Figure 3.3.a ). The top

histograms show the discriminant functions with respect to a target speaker, purple for

target user and pink for imposter. The next graph shows histograms with respect to the

cohort or UBM. The green plot describes the distribution of the cohort likelihoods and the

gray histogram belongs to the target speaker. We clearly observe the overlapping of the

histograms. After 10 iterations using MVE, Figure 3.3.b shows how the histograms broaden

as they also separate. This effect aids the accuracy of the classifier, improving the results.
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(a) Discriminant function histogram before optimization
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(b) Discriminant function histogram after optimization

Figure 3.3: Comparison of target and imposter likelihood histograms

3.4 From models to supervectors

For the traditional approaches and until this point in this thesis, the trend has been to

build models from sets of data. Unseen data are classified according to those models. An

alternative solution is to find a representation of each utterance using a single vector, usually

called supervector.
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Algorithm 3.3. Minimum Verification Error I

Initialization

1. Train the imposter or cohort model (usually employing EM) and

the target speaker model (using MAP)

Λ̄ = {W̄C
k , µ̄

C
k , Σ̄

C
k }, Λ = {WC

k , µ
C
k ,Σ

C
k }. (3.45)

2. Compute the misverification distance and the combined loss

function for the FA and FR errors using,

dn(χ) = −gn (χ; Λ) +Gn (χ; Λ) , (3.46)

and

`(χ; Λ) =
∑
n

`n(d(χ; Λ))1(χ ∈ Cn). (3.47)

Parameter Estimation

For a specific class C, a component k in the GMM, dimension d, and a

set of training Xt where t = 1...T

1. Obtain the gradients of the sigmoid loss function for each of the

model parameters: {wCk , µCk ,ΣCk } and plug them into:

Λt+1 = Λt − ε∇`(χ; Λ), (3.48)

∇`(χ; Λ) = γ`(d)(1− `(d))
∂ p(χ; Λ)

∂Λk
. (3.49)

2. Optimize the models for every class

(a) For a specific k, dimension d and to avoid bias, let µ = σ µ̃.

Then,

∂p(χ; Λ)

∂µ̃k
=

wkN (χ|µ̃k, σk)∑
k′ wk′ N (χ|µ̃k′ , σk′)

(
χ

σk
− µ̃k

)
. (3.50)

(b) let, σ̃ = log(σ), Then σ is

∂p(χ; Λ)

∂σ̃k
=

wkN (χ|µk, σ̃k)∑
k′ wk′ N (χ|µk′ , σ̃k′)

{(
χ− µk
σ̃k

)2

− 1

}
.

(3.51)

(c) For wk and to ensure that
∑K
k=1 wk = 1, let, w = exp(w̃)∑K

k=1 exp(w̃)
.

∂p(χ; Λ)

∂w̃k
=

N (χ|µk, σk)∑
k′ w̃k′ N (χ|µk′ , σk′)

. (3.52)
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Algorithm 3.3. Minimum Verification Error II

Check for convergence

1. Compute the loss function with the new parameters:

`new(χ; Λ) =
∑
n

`n(d(χ; Λ))1(χ ∈ Cn). (3.53)

2. Compare `new with ` if it is higher than a threshold τ iterate from

Parameter Estimation.

An approach of this kind was first presented in [90] and then reutilized by [91]. Both

showed that time-averaged features contain relevant information of the speaker that can

be represented as a single vector (that acts like a model). Afterwards, a distance measure

between new utterances’ super vectors and the “models” is computed and a decision is

taken.

Other algorithms evolved in the same direction. SVMs, for example, created a whole

theory around the construction and classification of these supervectors. The sequence kernels

are part of this effort. The key point is to map a set of vectors to a single one via a kernel and

perform classification [92]. It is not under the scope of this thesis to have a deep description

of these approaches. However, their importance is notable.

The GMM components used as supervectors marked a watershed in the algorithms. The

k means of all the Gaussians in a GMM are concatenated into a single vector, defined as a

supervector,

M = [µ1|µ2| · · · ].

The new supervectors are the input to different state-of-the-art systems such as SVM

[93, 70], and other factor-analysis-based techniques (explained in the next sections).

3.5 Factor Analysis

To understand the state of the art of Joint Factor Analysis and i-vectors it is useful to explain

first the simplest case of factor analysis (FA). Factor analysis establishes that continuous

factors can control data; meaning that these factors can model the covariance structure

of the high-dimensional data. So we can think that the data can be generated by first

locating a point in a subspace and then adding noise. If that is the case, we can consider

the following:

X − µ = LZ + ε, (3.54)
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where X is a random variable of dimensions P ×1 (observation), µ is the data mean vector,

L refers to the loading matrix of P ×R dimensions, Z is the latent random variable (known

as factor vector) of R × 1 dimensions and ε is a random residue with diagonal covariance

matrix ψ. For a further and detailed explanation of FA, please refer to Appendix B.

The key point of FA, in the context of SV, is to think about a supervector that belongs to

a speaker which is disturbed by some kind of perturbation. Under this scheme, the speaker

model remains the same for all the recordings in different conditions, represented by the

speaker factors. ε describes the contribution of the perturbation to the model. Generally,

the first term, LZ, represents the contribution of any factor, but can also be extended to

include multiple factors, as shown in joint factor analysis, where the model is decomposed

into speaker and channel contributions. In either case, the solution of Equation 3.54 is

performed in two ways, using Maximum Likelihood Estimation or Discriminative Modeling.

Both techniques will be explained in detail in the following sections.

3.5.1 Joint Factor Analysis (JFA)

The purpose of factor analysis is to reduce the channel and speaker variability by

decomposing the distributions of the feature vectors into speaker and channel factors [15, 60].

In this framework, let us once again define C as the number of components of a GMM, Λ,

from a speaker S, that form a supervector M = [µ1|µ2| · · · ] (Here we have not explicitly

shown the superscript representing the speaker for generality). The supervector MS,H

representing the GMM for the distribution of data over each channel type H by a speaker

S is assumed to be composed from a collection of factors as:

MS,H = s + c, (3.55)

where s is the speaker supervector and c is the channel supervector. Moreover, the

distribution of s can be described by

s = m + V yS +DzS, (3.56)

where m is a CF × 1 supervector that represents the global mean across all speakers, V is

a low rank rectangular matrix which columns are the eigenvoices representing the subspace

over which speaker-specific components of MS,H lie, yS is a normally distributed random

vector (with 0 mean and unit variance) representing speaker factors specific to speaker S,

D is diagonal matrix and z is a normally distributed random vector representing residual

error.

In the same way,

c = UxS,H , (3.57)
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where U is a low rank rectangular matrix, which colummns are the eigenchannels

representing the subspace over which the channel specific components of MS,H lie, and

xS,H is a normally distributed vector representing channel factors specific to recordings of

speaker S over channel H. Baum-Welch statistics for learning the loadings V , U and D, the

EM procedures for learning the factors yS, xH , zS, as well as the methods for classification

with the resulting model in a manner that factors out the interfering contributions of the

channel are well laid out in [60, 15]. The computation of the sufficient statistics such as

0-th, N , the 1-st, F , and 2-nd, S are an aid to estimate la loading matrices and the factors.

For verification, we match an utterance with s; that is, we assume that the supervector

has the form s + UxS,H . Several scoring methods have been proposed [94]. To perform the

usual likelihood ratio and integrating out the channel contribution is unfeasible. From the

alternative approaches, the one that has attracted more attention is the linear scoring that

presents a simplification that reduces the evaluation to matrix multiplication of the form,

θs,H = (V ytar +Dztar)Σ
−1(Ftst −Ntstm−NtstU xtst), (3.58)

where tar refers to target speaker and tst to unseen recording and N refers to the 0-th order,

and F to the first order statistic according to the test set.

This technique has evolved in recent years obtaining good results [60]. It has been

adapted to various circumstances; for example, different training and testing channels

(interview, telephone and cross-channel scenarios).

3.5.1.1 Joint Factor Analysis step by step

Algorithm 3.4 summarizes the JFA algorithm step by step. It describes the clue steps to

estimate the parameters of the loading matrices V , U and D for a speaker S, using Baum-

Welch algorithm. Thereafter, the factors x, y and z are estimated in terms of their posterior

means and the observations, employing the loading matrices. For clarity we use the subscript

to emphasize the speaker S or channel H. For a more detailed explanation, please refer to

Appendix B.

3.5.2 Frontend Factor Analysis: i-vector

This training approach is based on the idea of a new low-dimensional speaker and channel-

dependent space representation using factor analysis [14]. Whereas in JFA two spaces were

defined, the speaker with its eigenvoice matrix V and the channel with its eigenchannel

matrix U, in this case the new space contains both in only one space. The new space is

known as “total variability space” and encompasses the variabilities of the speaker and the
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channel. A total variability matrix, embracing the eigenvectors with the largest eigenvalues,

is obtained from the total covariance matrix. Then, the new speaker and channel model is

defined as

M = s + Tω, (3.59)

Algorithm 3.4. Joint Factor Analysis Algorithm I

Train the JFA matrices

1. Assume that U and D are zero, train the loading matrix V ,

M = m+ V y.

(a) Compute the Baum and Welch Statistics 0-th, N , the 1-st,

F , and 2-nd, S, order statistics of speaker s and Gaussian

component c employing observations T .

(b) Using Baum-Welch statistics, estimate the posterior of the

hidden factor y.

(c) Compute statistics across speakers using the information of

posterior distribution of the estimated y.

(d) Compute V and the update of the covariance.

(e) Iterate from a to d between 15 to 25 times. In every iteration

substitute the estimated V .

2. Assume D is zero, train the loading matrix U given the estimate

of V ,

M = m+ V y + Ux.

(a) After estimating y for each speaker, compute the Baum and

Welch statistics, NH and FH , for each H (conversation side

or channel) of each speaker S.

(b) Calculate the shift for each speaker using R = m+ V ys and

compute its Gaussian posterior. Subtract it from the first-

order statistics F . The new FH(s) depends on the channel

and the speaker.

(c) Use the new statistics to train U .

(d) Iterate from a to c 15 to 20 times using the updated NH and

FH .
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Algorithm 3.4. Joint Factor Analysis Algorithm II

3. Train the residual D given the estimates of V and U ,

M = m+ V y + Ux+Dz.

(a) Compute the speaker shift of m + V ys, and the channel shift,

Uxs,H . Compute the Gaussian posterior of the shifts and

subtract them from the first order statistics, FS,H .

(b) Estimate the initial factor z and update the statistics across the

speakers.

(c) Calculate D

(d) Iterate from b to c 15 to 20 times.

Compute factors

• Estimate x (channel), y (speaker) and the residual z in terms of

the posterior mean and the observations.

Scoring

• Compute the final score by a simplified version of the log-likelihood

ratio. Given a new utterance (referred here as tst), the loading

matrices and the factors (referred here as tar), compute the

product,

θs,H = (V ytar +Dztar)Σ
−1(Ftst −Ntstm−NtstU xtst).

where M represents the combined speaker and channel-independent supervector extracted

from the UBM. T is a low-rank rectangular matrix and ω is a random vector, composed of

the identity vectors (i-vectors), with normal distribution N(0, I). M is normally distributed

with mean m and covariance matrix TT ′. The procedure to train the matrix T is very similar

to the training of V in JFA, but in eigenvoice training the different conversation sides of

the target speakers are treated as different speakers. Hence, the new modeling is in fact a

projection of an utterance onto the low-dimensional total variability space.

ω, the hidden variable can be solved using Baum-Welch statistics. If we consider ω to

be defined by its posterior distribution, a sequence of L frames {y1, y2, ..., yL}, and a UBM

of C components in a F -dimensional space; then,

Nc =
L∑
t=1

p (c|yt,Ω) , (3.60)

Fc =
L∑
t=1

p (c|yt,Ω) yt. (3.61)
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where c is the number of the Gaussian component, P (c|yt,Ω) is the posterior probability

of c given the realization yt. Moreover, the centralized first-order Baum-Welch statistics,

using the UBM, is as follows:

F̂c =
L∑
t=1

p (c|yt,Ω) (yt −mc) , (3.62)

where mc is the mean of UBM component c. Then, the i-vector for a phrase is computed

as,

ω =
(
I + T ′Σ−1N(u)T

)
· T ′Σ−1F̂ (u), (3.63)

where N(u) is a CF × CF diagonal matrix composed of NcI diagonal blocks. The super

vector F̂ (u) of dimension CF × 1 is computed by concatenating all F̂c for a given phrase u.

Σ is the CF × CF diagonal covariance matrix that models the residual variability.

Once the new feature vectors, i-vectors, are computed, then next step is to build an

appropriate model that can discriminate among speakers. Two main branches were explored.

On one hand, SVM was used on extensive studies as shown in [93, 70]5. On the other hand,

the most popular one is PLDA [95].

3.5.2.1 Probabilistic Linear Discriminant Analysis (PLDA) model

PLDA is a generative modeling approach to handle i-vectors. It was first used in image

recognition scenarios [95] and then extended to SV [73]. Note that the formulation is

similar to the one employed by JFA.

The supervector rS,H representing the i-vector of a single recording over a channel H by

a speaker S is assumed to be composed of a collection of factors,

rS,H = m+ V yS + UxS,H + ε, (3.64)

where m is an offset, V is a loading matrix representing the subspace over which speaker-

specific components of rS,H lie (dealig with inter-speaker variability), and U is a loading

matrix representing the subspace over which the channel-specific components of MS,H lie

(deals with intra-speaker variability) and ε is the residual variability. The factors xS,H

and yS follow normal distributions and ε follows a Gaussian with zero mean and diagonal

variance. The modeling solution follows the same steps as JFA.

5It is beyond the scope of this thesis to describe in detail the SVM approaches. However, the methodology
is very interesting. Details can be found in [74]
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Finally, for scoring, we rely on a likelihood ratio of the form,

θ (X) =
p (rS, rnew|H1)

p (rS|H0) p (rnew|H0)
, (3.65)

where rnew stands for the i-vector from an unseen phrase, H1 is the hypothesis of both

vectors belonging to the same speaker, and H0 represents the hypothesis of both vectors

coming from different speakers.

Algorithm 3.5 delineates the steps of this methodology. We omitted the parts that are

similar to the JFA approach.

Algorithm 3.5. I-vector Algorithm

Train the Loading matrix

1. Train the loading matrix T ,

M = m+ Tw.

(a) As in JFA, compute the Baum-Welch statistics 0-th, N ,

the 1-st, F , and 2-nd, S, order statistics of speaker s and

Gaussian component c. Collect the phrases belonging to

specific channels and speaker, treat the different conversation

sides of the target speakers as different speakers.

(b) Using Baum-Welch statistics, estimate the posterior of the

hidden factor w.

(c) Compute statistics across speakers using the information of

posterior distribution of the estimated w.

(d) Compute T and the update of its covariance.

(e) Iterate from b to d between 15 to 25 times. In every iteration

substitute the estimated T .

Channel compensation

Two approaches have shown successful results:

1. Compute the linear discriminant analysis (LDA) to reduce the

dimensionality of the i-vectors. Afterwards, use Probabilistic

Linear Discriminant Analysis (PLDA) as a the target trainer

2. Compute LDA of the i-vectors followed by within-class covariance

normalization (WCCN).

Scoring

• Compute the cosine distance scoring (CDS) on the updated i-

vectors (after channel compensation).
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3.6 Summary

This chapter described the most popular modeling algorithms. We presented the theory

behind the state-of-the-art approaches including generative and discriminative modeling.

Moreover, we showed training examples using real data to point out the effects they may

have to perform any of the optimizations. Lastly, we emphasized the MVE approach.

In the next chapters we present modified versions of the current approaches, based on a

discriminative approach similar to MVE, that can improve current results.
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Robustness in Speaker Verification

What is essential is invisible to the eyes.

- Antoine de Saint Exupéry The Little Prince

In real conditions the speech signal is exposed to extraneous distortions that affect

system performance. Robustness in SV deals with these undesired circumstances. It has

become a complex process that takes into account the adverse conditions in the environment

and variability among recordings. Noise in the background is a straightforward problem

that affects the speech signal. The most common types of noise are additive (background

noise) and convolutive (channel noise). In the case of additive noise, the speech signal is

distorted when background noise is added to a clean speech signal (this effect can be clearly

observed in the spectral domain). Convolutive noise appears as a result of the multiplicative

contribution of the channel to the signal in the frequency domain. Moreover, apart from

noise, system performance must guarantee that variability among recordings of the same

speaker is minimized and that variability among different speakers is maximized. In this

chapter, we give a description of these problems and examples of their current solutions.

4.1 Inter-speaker Variability

In SV, an utterance and a claimed identity is processed through a system that had been

previously trained on a set of target models. The evaluation of those spoken phrases

produces a similarity value that enables the system to accept or reject the user. It is

desirable that the matched trials of a target model “a” do not get a high similarity value for

other models “b, c, d, ...” that include the imposter and other possible targets. In addition,

different trials of the same user should get tied to his own model. One of the challenges then

is to maximize the similarity distance between the target model and the competing classes,

while minimizing the distance among the recordings of the same speaker.
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The most common solution is to efficiently train the target models for each speaker. We

assume that the voice of each speaker can be differentiated from the rest. Every speaker

shows the property of uniqueness; i.e., the speech is clearly defined by the particularities of

the vocal tract. From the classical approach of SV, maximum likelihood is a sufficient

solution that gives satisfactory results even though it does not contemplate the strict

modeling of an imposter speaker [13]. From the ML perspective, a target model fits the data

of a particular speaker (the better the model, the better the classification). Another solution

is given by Factor Analysis [14, 15] which describes an utterance as a linear combination of

speaker factors. In this approach, the undesired variations are marginalized out. Later, in

a joint combination with channel factors, the channel contribution can be also modeled and

left out of the computation, extracting the unique information of each speaker. A similar

strategy applies for i-vectors.

4.2 Session Variability

Now that the SV system guarantees that classification between a target user and the

imposter is successful, the next step is to determine the variability of a target speaker

among different recordings. When speaking about text-independent SV system the training

and the test differ in content, so the system relies only on the acoustic information contained

in the data. Hence, the algorithms must consider the variability between two utterances

from the same user recorded at different times and under different conditions. Those

differences among recordings are known as session variability and have become one of the

most challenging issues in SV.

In a real scenario, the conditions employed to train the models are usually different from

the ones used in the test (mismatch condition). To tackle this problem, several approaches

have been proposed. The early ones just dealt with one channel [96, 97], usually telephone.

However, as the technology evolved, new channel conditions were investigated and with

them how to manage the channel mismatch. The new channels consisted of different types

of telephones (cellular, landline) and microphones. The first studies in this new scenario

used a model for each channel condition [96, 39, 97]. Traditional ML and SVM approaches

were sufficient to build systems that compensated for the channel contributions. Afterwards,

more sophisticated algorithms were developed such as JFA and i-vectors [98, 99, 100]. The

idea of describing a spoken phrase in terms of a linear decomposition of speaker and channel

factors marked the new state of the art [15, 14].
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4.3 Noise and its effects in Speaker Verification

In this section, we discuss how additive noise affects SV. In real conditions, noise distorts

every stage of a speaker verification system: front-end, modeling and evaluation (scoring).

Therefore, well-known ASR tools are able to solve the problem at each stage [40, 101], but

also it is possible to view the problem from a SV perspective [102, 1].

The additive noise model in the frequency domain for an observed signal x(k) composed

of speech signal s(k) and noise n(k) is,

X(ejω) = S(ejω) +N(ejω), (4.1)

where X,S and N represent the spectrum of the observed signal, the speech and the noise.

In the ideal case, the noise could be removed, if we had complete knowledge of the noise at

every frequency. However, the process of estimating the noise and its phase is not an easy

task.

4.3.1 Noise in the feature domain

In real circumstances, the effect of the noise can be observed in the spectral domain as shown

in Figure 4.1. The distortion causes not just poor intelligibility, but a significant change

in the spectrum. In the clean case, the vowels are well defined; while in noisy conditions,

it is difficult to define the starts and ends of the acoustic units (words and phones). To

make it suitable for SV application, the next issue is the impact on the VAD. An important

element in SV is the correct extraction of speech that contains relevant information from

a speaker without the silences. In the noise case, it is not clear which parts of the signal

contain no information about the speaker (see Figure 4.1), making it difficult for the VAD

to work properly.

One possible solution is to use tools from ASR to deal with the noisy conditions – clean

the noisy signal and use the same SV scheme. Another possible solution, proposed in [103],

is to include enhancement techniques that can improve the quality of the signal.

Once we extract the appropriate segments of speech, the next issue to consider is the

aftermath in the cepstral domain. The feature vectors are usually computed using magnitude

spectra and then transformed into MFCCs. An easy way to observe the impact of noise is

to plot a scatter plot. The x-axis depicts a dimension of the MFCCs for clean speech; the

y axis maps out the same MFCC dimension of the noisy speech. The line at 45 degrees

represents the identity function x = y, see Figure 4.2 (also shown in [104]). Note the spread

and the variability of the data with respect to the diagonal after adding 0-dB noise. The

challenge is then to reduce the variability (transform the data to reach the diagonal) so that

the model represents the target user.
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a)

b)

c)

d)

Figure 4.1: Shows the effect of the noise in the spectral domain. a) represents the clean
speech signal in time domain. b) shows the clean speech signal spectrum. c) depicts the
speech signal at 0 dB SNR. d) displays the spectrum of the same speech signal at 0 dB SNR.
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Figure 4.2: log scatter plot of the first MFCC clean speech against noisy speech at 0 dB.

4.3.2 Noise in the models

In this section, we compare the clean and noisy speech models. When noise is present the

parameters of the GMM models are modified – the means are shifted, the covariances and

the weights are also changed, see Figure 4.3. Depending on the type of noise (the SNR and

degree of stationarity) the models updates are unpredictable.

Moreover, the new models present a shift and modifications in the parameter models

Λ = {w, µ,Σ} (see Figure 4.4). Therefore, compensation algorithms that can handle this

effect are necessary in the SV systems.

Examples of model compensation techniques to overcome this problems are described in
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Figure 4.3: Scatter plot comparison between noisy and clean features: the continuous ellipses
show the GMM component of a speaker model in clean conditions; the dotted ellipses
represent the same recordings with added noise at 0 dB.
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Figure 4.4: Example of model distribution for one speaker, a) speaker model in clean
conditions b) speaker model in noisy conditions (0 dB SNR).

[105, 106]. The first one adapts the current GMM speaker model to the desired condition,

in a similar way as feature mapping does in the feature domain [106]. A transformation

function trained with prior information about the noise condition converts either the models

or the features to a new space. For these two schemes, the noise-type labels of the models

or features are needed to decide the most accurate transformation function. The second

approach proposes a blind compensation; i.e, the system does not have knowledge of the

noise and the noise-clusters are computed in an unsupervised manner. Even though these

approaches showed improvements, the new JFA and i-vectors ensure better results due to

its capability of dealing with unknown conditions (the latter approach will be explored in

next sections).

4.3.3 Noise in the score domain

The noise not only exhibits its impact at a single operating point (for example the EER),

but also in the score distributions and along the DET curve (see Figure 4.5). The noise
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degrades the signal and manifests itself in every stage. Poor performance is clearly observed

in the evaluation (last classification of the system). Targets are confused with imposters,

and the opposite is likely as well. For a binary classification, an intuitive explanation is that

the opposing distributions overlap, increasing the FA and FR and making the classification

difficult. Also, we note that for the noise-score distributions the mean and variances differ.

As a result, the DET curve is higher for noisy speech, including the EER.

Score normalization approaches such as Z-norm [71], T-norm [72] and ZT-norm [12]

can alleviate the problem to some extent. Their main purpose is to eliminate the offsets

caused by extraneous factors. However, the problem of low SNRs is addressed by model

compensation or robust feature extraction techniques.

                  

score
            

   

   

   

   

   

   

   

   

   

   

    Target

speaker

Impostor

FR FA

speaker

EER

10                            

1

   

   

   

   

   

   

   

   

   

   

   

FA

F
R

EER

 Operating Point

Figure 4.5: Score distributions and DET curves for two scenarios: a) blue line represents
the clean condition, b) red line shows the noisy condition.

4.4 A glance of Robust solutions

The solution to the noise problem can be solved using well known Automatic Speech

Recognition tools (as shown in this section). However, it is also useful to tackle the problem

by employing embedded algorithms in the SV system. A few solutions have been given

to address the noisy conditions in Speaker Verification that will be described in the next

paragraphs.

4.4.1 Robustness in Automatic Speech Recognition

Researchers proposed to directly work on solutions similar to the ones employed for ASR. In

the following paragraphs we want to give a general view of what we consider to b important

algorithms that are the basis for some of the SV algorithms. The solutions that have been

extensively used in ASR are divided into three main groups: speech enhancement, feature

vector adaptation or normalization, and acoustic model adaptation. In this thesis we will

not discuss them in depth, but we consider that the basis of the algorithms have evolved or

can be used for either ASR or SV.
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The objective of speech enhancement is to clean the speech signal in the feature

extraction process. Examples of the algorithms are CMS (cepstral mean subtraction) [40]

and SS (spectral subtraction) [101].

Feature vector adaptation or normalization occurs in the feature space. The algorithm

models the distortion between clean and noisy features by a parametric function that can

later be used to compensate the mismatch in the test features. A basic example of this

normalization is RASTA (relative spectral amplitude) [42], which is a high-pass filtering that

reduces the effect of a varying channel. Another example is CDCN (codeword-dependent

cepstral normalization) [107]. In this case, the transformation is based on the normalization

of the acoustic space, defining a universal codebook that can be transformed to the vectors

in a phrase.

Model adaptation compensates for the mismatch by adjusting the parameters of the

acoustic models. This scheme sometimes gives better results because it can model the

uncertainty of the noise. One of the main disadvantages is that a certain amount of data

is needed to obtain reliable statistics. Examples of these schemes are MAP (maximum

a posteriori estimation) [65], MLLR (maximum likelihood linear regression) [108], PMC

(parallel model compensation) [109, 110], and VTS (vector Taylor series) [111, 112].

Moreover, we emphasize the Ensemble Speaker and Speaking Environment (ESSE) modeling

method. The last examples are SPLICE (stereo-based linear compensation environment)

[113, 114] and MEMLIN (multi-environment model-based linear normalization) [115].

Although these methodologies have been used for ASR, they can be extended to SV.

4.4.2 Factor analysis and Robustness

Recently, the research community presented one of the first efforts to address robustness

in SV. The first step was the construction of a noisy database to show the limitations and

potentialities of the current state-of-the-art systems [102]. The new baseline database is

an extension of the clean NIST [116], switchboard [117], and Fisher [118] databases adding

noise as well as reverberation. It also includes characteristics, already treated in previous

evaluations, such as channel mismatch between the train and test sets, and different degrees

of vocal effort. The new database was built artificially, i.e., from a set of clean data the

noise and reverberation was added. The noise belongs to cocktail party noisy recordings at

different SNRs (8, 15, 20 dB). The reverberation was recorded at different room types and

reverb times (at 0.3, 0.5, 0.7 s).

The system uses the current state-of-the-art scheme; it includes an i-vector front-end,

followed by LDA for dimensionality reduction and PLDA modeling [119]. The system shows

promising EERs – of less than 3%– given by clean speech even when there is a mismatch

between the test and training conditions. Moreover, the current approach was also tested for
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different feature extractors: MFFCs, prosodic polynomial coefficients and MLLR (maximum

likelihood linear regression). For these cases the degradation of the EER is from 3 to 14

times compared to the baseline. The results showed that the method does not depend on

the feature extraction scheme. It is important to note that at this stage the training of

the UBM and the i-vector is computationally expensive, so a good solution is just to add

noise to the PLDA and LDA part. The first attempt was to add noise to every part of the

system, but including extra noisy features to model the UBM didn’t give any significant

improvements. When adding noise just to the PLDA modeling, a 40% improvement was

achieved. These studies showed the potentiality of the current state of the art.

4.4.2.1 Vector Taylor Series VTS

Another way to address the modeling is to define a mapping function that characterizes the

mismatch between the training and testing models [111, 112]. This study suggests that the

effects of the noise effects have been underestimated due to mathematical simplifications.

It characterizes the statistics of the additive noise and the linear filtering in a transmission

channel. This method can be applied to the feature vectors (including delta and double

delta) or even to the representation of those vectors. A special case of this type of modeling

is the Jacobian adaptation (JA).

An extension of the state of the art that modifies the front-end using VTS is presented

in [1]. This approach tries to clean the i-vectors, but it is not used as the usual VTS, where

we search for a mapping function that characterizes the mismatch between the training and

testing conditions. Under this new scheme, the utterance of the GMM, similar to what it

is done in JFA, is decomposed into two distributions: the clean and the noisy. The clean

distribution belongs to the i-vectors. Note that by including the VTS, the system can model

nonlinear effects in the GMM caused by the additive noise. The results of this approach

show its benefits at low SNRs (8 and 15 dB) and it is also robust for unseen data.

Lately, in [120] the authors described a modified version of the VTS proposed by [1].

For this special case, the unscented transform, UT, is used to compute the first order VTS.

The new nonlinear function is applied to a set of sampled points. The resulting transformed

data is used to calculate the model parameters. The approach has shown improvements for

low SNRs.

Table 4.1 compares the improvements obtained for 8-dB SNR. The mean and variance

normalization approach is used as the baseline for the VTS i-vector approach. VTS is then

used as the baseline for the UT transform. For clean-condition experiments, the system

enrollment was performed using clean data, and the test is performed under noise conditions.

For the multi-condition scenario, the enrollment phrases used the noisy data at the same

SNR as the test phrases.
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VTS - ivector VTS - Unscented Transform
clean multicondition clean multicondition

Approach MVN VTS MVN VTS VTS UT VTS UT

EER 15.5 5.2 5.9 3.2 6.3 5.9 4.2 3.6
Rel. Improvement 66 45 7 14

Table 4.1: Comparison of VTS EER and relative improvement, 8 dB [1].

4.4.2.2 Acoustic Factor Analysis

Acoustic factor Analysis [2] considers the covariance information in the feature space to

obtain robust models. The state-of-the-art factor analysis schemes employ super-vector

space as the basis of the decomposition of the signal. Moreover FA uses a diagonal

covariances of the GMM models believing that the MFCCs are uncorrelated. However,

[121] shows that full covariances can also provide discriminative information of the speaker.

In contrast, this new approach shows that the MFCCs are not fully uncorrelated and

that a better estimation of the parameters can be performed in the feature space instead

of the super-vector space. The new solution strategy uses a mixture probabilistic principal

component analysis, MPPCA [122], embedded into the FA approach. It follows the same

idea as in FA, for χ = X1, X2, · · · , XT , where Xi is the ith vector in the sequence

X = LZ + µ+ ε, (4.2)

where X is a random variable of dimensions P ×1 (the observation), µ is the mean vector, L

refers to the loading matrix of P×R dimensions, Z is the acoustic factor of R×1 dimensions

and ε is random noise with diagonal covariance matrix ψ. The latent vector Z follows a

Gaussian distribution Z ∼ N (0, I), ε ∼ N (0, ψI) and X ∼ N (µ, ψI+LLT ). To capture the

variations of multiple speakers and its corresponding phonemes and conditions, MPPCA is

defined as,

P (X) =
M∑
i

wiN (µi, ψiI + LiL
T
i ), (4.3)

where wi, µi, ψ and Li are the mixture weight, mean, noise covariance and the loading

matrix of the ith PPCA model and I is the identity matrix.

With this approach we obtain a mixture-dependent transformation for the i-vector

architecture. Then, we compute the UBM using the EM algorithm and use it to compute the

MPPCA. Moreover, we can decide the number of axes we require (with the optimal number

still under investigation), discarding the lower dimensions. Afterwards, we can compute the

loading matrices and the factors with this new scheme.
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Table 4.2 shows an example of the improvements obtained with respect to two baseline

systems, one with full covariance and the other with diagonal covariance. q refers to

the number of dimensions retained from 60-dimensional vectors, using an i-vector/PLDA

scheme. AFA shows competitive results with respect to the current baseline.

Baseline AFA
full cov diag cov q = 36 q = 42 q = 48

EER 2.03 2.55 2.06 1.79 1.95
Rel. Improv - - -1.1 12 4.1

Table 4.2: Comparison of AFA EER and relative improvement [2].

4.4.3 Front-end modification

Modification of the frontend signifies better models and accuracy. Although, the research

in ASR can be extended to SV, there are few studies that center on robustness from an

SV point of view. In this section, we give an example of such research that addresses the

problem by modifying the front-end to produce new features.

4.4.3.1 Regularization of all-poles

The study presented in [3] describes a modification of the traditional MFCC-based front

end. The approach replaces the DFT estimation with a weighted Linear Prediction, LP,

with regularization. This research shows a deep analysis of the traditional LP, stressing

a comparison with the weighted LP. The experiments were performed under very noisy

conditions (for example, under 10 dB factory noise and babble noise). For every case, this

new modified front-end improves the baseline.

The main idea of the regularized LP [123] is that it gives a penalty for rapid changes

in an all-pole spectral envelopes. SV benefits from the idea that the spectral models are

smoothen so that mismatch between training and test is reduced.

Table 4.3 depicts an example of the results for different LP-based approaches under

babble noise at 10 dB. The LP approach outperforms the FFT-baseline system. Moreover,

the stabilized weighted LP (SWLP) and the minimum variance distortionless response,

MVDR,1 also improve the current baseline showing the potential of the LP approaches.

1Further details about this approach are described in [3]
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Baseline FFT LP SWLP MVDR

EER 21.28 20.36 19.69 19.68
Rel. Improv - 4.3 7.4 7.5

Table 4.3: Comparison of LP approaches EER and relative improvement, 10 dB [3].

4.5 Summary

This chapter describes the basic background and latest approaches behind robustness from

an SV point of view. We observe how noise degrades the signal process in every stage,

producing undesired effects in the performance. However, the research on this area is getting

attention and there is an increasing number of research that tries to alleviate the effect of the

noise. The noise can be treated with the usual and known solutions given by ASR research

field (speech enhancement, feature vector normalization and acoustic model adaptation).

But the SV community has also proposed modifications to the current system algorithms

that can handle the noise. We highlight the approaches based on factor analysis, which

have shown to improve the performance metrics.

As shown in this section, the algorithms for robust ASR motivated other studies in SV

in the same directions. Our research is a fusion of both ideas, which can be seen as a vector

transformation and an acoustic model adaptation. The next chapters present these ideas to

improve the current known algorithms.
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Chapter 5

Experimental Framework

You’re never given a dream without also being given the

power to make it true.

- Richard Bach The Adventures of a

Reluctant Messiah

There are plenty of reasons to use NIST databases as the starting point of the SV

research. Nowadays, the performance of the state-of-the-art systems compare the results in

terms of curves and efficiency measures. Besides, the comparisons also take place at several

stages of the process, for example: feature extraction, modeling and evaluation. The NIST

databases provide a reliable and homogenous environment for such comparisons. Moreover,

the databases have been of help to the research community when building complex systems

where the constituent parts belong to different research groups.

The current chapter is entirely dedicated to the NIST databases.1 We start by describing

the current infrastructure used to develop our SV system. Secondly, we briefly describe the

characteristics of the current NIST databases. Next, this chapter shows the traditional

experimental setup that we used for the baseline experiments and that will be used for the

proposed approaches along this thesis. Lastly, we give the initial baseline results for this

setup.

5.1 Current infrastructure

The following functional cluster was used for such challenging project with a limited

infrastructure (see Figure 5.1) composed of: Autonomous Beowulf cluster with 310 CPUs,

with the following machines: Pentium 4 HT 3.2 GHz ; Xeon W3530 2.80GHz ; Xeon

1Most of the state of the art baseline results and comparisons with other systems are performed using
this set of databases [39, 98].
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E5645 2.40GHz AMD Opteron 6272 2GHz ; AMD Opteron 6276 2.6GHz ; Core2 Duo

E8400 3.00GHz ; 1Gbps LAN 12TB storage. Software: SGE, Matlab 7.11.0.584, Python

2.6.6, Perl v5.10.1, x86 64 GNU-Linux.

The code was implemented in a parallelized mode in which all the computers can perform

a reliable computation.

Figure 5.1: Infrastructure used by the Speaker Verification System

5.2 NIST database characteristics

A great effort has been done by the National Standard Institute and Technology to promote

the research on this field [116].2 Every two years the community organizes an evaluation

among participants around the world. Each evaluation addresses the lately challenges. From

the beginning, the plan was to record a database for a text-independent purpose. The first

tasks included only a few trials and the challenge was to generate good models for each target

speaker. Over the years, the databases have increased in target speaker and trials number.

Moreover, for the mismatch conditions (different conditions for the training and test) is

common to include several kinds of microphones and telephones. The latest evaluations

included different types of vocal effort (low, high and medium) as well. The last one also

included noise at different signal-to-noise ratios.

Before 2012 the rules were strict on not using speech signals from other target users to

model a certain speaker. In the recent evaluation, the competition allowed the use of this

information.

2Almost every new algorithm has to be tested using these databases, the organism provided to document
improvements. Since 1996 the competition has tried to perfect SV systems, going from the development
of better models of the target speaker progressively including a huge amount of trials (of the order of one
million) and most recently encompassing noise. The tasks includes harder goals to achieve.
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To have an idea of the databases, a summary of the conditions presented is shown in

Table 5.1.

train condition test condition channel

Interview interview same microphone
Interview interview different microphone
telephone telephone matched condition
telephone telephone mismatched condition
Interview telephone mismatch channel condition
telephone interview mismatch channel condition

Table 5.1: Table presenting the common conditions

Lastly, every evaluation presents an increment in the number of trials as part of the

concern of how real imposters try to access the verification systems. The last evaluation

included a set of one million trials.

For the noisy conditions we employed Aurora II database [124]. This database has been

widely employed for ASR, it includes the TI-digits in a clean scenario and TI-digits in noisy

conditions. As part of this work, we selected babble noise to be added to the clean recordings

using the noise adding tool, FaNT in [125]. The noisy recordings are then employed to test

the baseline and our proposed techniques.

5.3 NIST database baseline

In this section, we introduce the experimental setup. We show further details about the

actual datasets used and the specific feature extraction. We also present a compilation of

the most relevant results.

We focus our research on the core-core evaluation NIST 2008, which is a defined task.

We employed the NIST Speaker Evaluation 2004, 2005, 2006, 2008 and 2010 databases

[39] to complete this study. The training data selection consists of building a UBM using

the recordings in databases 2004, 2005, 2006 and 2010. Databases 2004 to 2006 provided

sufficient information to build models for telephone conditions. Database 2010 granted

different microphone and mismatch conditions to our experiments. Database 2008 tested

the baseline framework and the new approaches. From this database, the target speakers

belonging to the core-core evaluation were used to train specific user models. Lastly, the set

of trials (from database 2008) evaluated the reliability of those models and the system.

The training and testing data sets are composed of either one two-channel telephone

conversation of approximately five minutes total duration, with the (target or proposed

trial) channel designated previously, or a microphone conversation segment of three to

fifteen minutes involving both the interviewee (target speaker) and an interviewer. The data
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also included various types of microphones (seven) and both conversational and interview

sessions.3 The common conditions used are described in Section 5.2 and Table 5.1.

For the set of experiments, we adopted the NIST evaluation restrictions (for example,

neither choosing other target models as imposter models, nor using other target data to

estimate the current target models).4 Following the NIST 2008 Evaluation rules, the

probability of being a target, Ptarget, is 0.01 and the probability of being a impostor, Pimpostor,

is 0.99.

5.3.1 Front-end

For the feature extraction, a short-time 256-pt Fourier analysis is performed on a 25-ms

analysis window and 10ms frame rate. The feature vector (token) consists of 49 Mel

Frequency Cepstral Coefficients (MFCCs), including delta and double delta coefficients,

as shown in Table 5.2. The next step is to apply a feature warping normalization to undo

the distortion caused by the channel. This warping is accomplished by first assembling

an empirical CDF (cumulative distribution function) from the ranked features within 1.5

seconds after and before the current frame (3 seconds total), and then perform the CDF-

inverse at the current frame. We included a frame removal criterion that encloses the concept

of eliminating the low energy frames that do not provide information about the identity of

the person. Low and 70% of the medium log-energy frames were simply discarded

Cep. Coeff 16
logE 1

∆ Cep 16
∆∆ Cep 16

Table 5.2: Table presenting the MFCC computation

5.3.2 UBM generation

A gender-dependent and target-independent 512-mixture GMM UBM model was trained

from the core-core of NIST-SRE 2004, 2005, 2008 and 2010 databases.5 Note that databases

2008 and 2010 training include several types of microphones that were used to test the system

against mismatched conditions. The EM algorithm was used to obtain maximum likelihood

estimates of the GMM parameters. For every iteration of EM, the system randomly polls

80% of the training tokens, corresponding to approximately 15 hours of speech. The UBM

3More information about the types of microphones can be found in [39] and in [116].
4Although in recent evaluations the rules have become more flexible, employing the target speakers as

part of the imposter models, we built imposter models independently from the target data.
5Usually, the NIST databases must be cleaned from silent recordings or recordings with any kind of

problems. This process is always performed in advance.
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is first initialized using the K-means algorithm to obtain a set of 512 centroids. By using the

k-means the performance of EM was simplified, however, it is always important to check that

the local bounds are not very restrictive so that EM can provide a satisfactory estimation.

The EM algorithm is then repeated after the model had converged (10 iterations).

5.3.3 Speaker Modeling

For each target speaker the current UBM is adapted using an MAP algorithm (using 2

to 5 iterations). For the special case of the NIST dabase 2008, a recording file for each

speaker was used to perform adaptation. In the next sections, we present the results for our

approaches, but MAP models are the starting point for all of them.

5.3.4 Baseline results

Table 5.3 presents the baseline results obtained using traditional techniques for database

2008. We just give an example for the simplest case using the GMM approach. 512 Gaussian

components were used for this purpose. We observe that the results for mismatched

conditions are worse than the ones for matched conditions. Moreover, the best results

are obtained by the telephone set, probably because of the amount of telephone data used

in the training.

Female Male Average

1 Interview interview same mic 14.0 14.9 14.4
2 Interview interview different mic 18.3 18.2 18.2
3 Interview tel 17.9 18.8 18.3
4 Tel tel 12.5 13.0 12.7
Average 15.6 16.2 15.9

Table 5.3: Table presenting the final results (EER) on the Test set for NIST 2008

5.4 NIST database baseline - JFA

The starting point of JFA is definitely the traditional approach. The frontend remains the

same, computing 16-dimensional MFCCs including deltas and double deltas (see Table 5.2).

Next, we compute a gender-dependent and target-independent model, UBM, from a pool

of raw speech (NIST Speaker Evaluation 2004, 2005, 2006 and microphone recording from

2010 core database).

For the JFA baseline, the speaker and channel factors were learned from a pool of

recordings adapted to individual speakers. Apart from NIST databases, already described,

other databases used for the training stage are Switchboard-1 (SW1) and Switchboard-2
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(SW2) [117]. These two databases contain telephone recordings. From an extensive set,

we selected a subset of 2480 files for the SW1 and 3108 for SW2. These databases were

collected as part of the first efforts to have spontaneous speech for a specific speaker and

for different duration time. This selection remains for the rest of our experiments, unless

stated otherwise.

The detailed descriptions of the databases employed to train the loading matrices V , U ,

and D, are shown in Table 5.4 and 5.5.6

V estimation set U estimation set

NIST 05 Tel. 2158 NIST 05 Tel. 1429
NIST 05 Mic. 600 NIST 05 Mic. 600
NIST 10 Mic. 461 NIST 10 Mic. 261

SW 1 R 2 Tel. 1240 SW 1 R 2 Tel. 660
SW 2 P-I Tel. 3108 SW 2 P-I Tel. 1636

Table 5.4: JFA training set for female

V estimation set U estimation set

NIST 05 Tel. 2201 NIST 05 Tel. 1216
NIST 05 Mic. 600 NIST 05 Mic. 600
NIST 10 Mic. 600 NIST 10 Mic. 345

SW 1 R 2 Tel. 2480 SW 1 R 2 Tel. 1314
SW 2 P-I Tel. 3108 SW 2 P-I Tel. 1627

Table 5.5: JFA training set for male

Finally, 570,000 trials (female and male) were used to evaluate system performance.

The JFA algorithm implementation by the Speech Processing Group at the Brno

University of Technology [27] was adapted to our infrastructure needs and capabilities.

The basic implementation has been shown to be successful in part or whole by [99, 94, 22].

From the complete dataset shown in Table 5.4 and 5.5, we compute 600 eigenvoices

and 500 eigenchannels for each gender modeling. The variability term was trained in the

same way as the speaker factors. The baseline results are depicted in Table 5.6, showing an

expected improvement with respect to the traditional ML approach.

Female Male Average

1 Interview interview same mic 10.7 11.1 10.9
2 Interview interview different mic 13.5 13.7 13.6
3 Interview tel 13.5 14.1 13.8
4 tel tel 9.8 10.2 10.0
Average 11.9 12.2 12.07

Table 5.6: EER results on the Test set for NIST 2008 for JFA approach

6This configuration was selected after the study performed by [126].
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5.5 NIST database baseline - MVE

Once again as in JFA, the starting point is the traditional approach. The system first

computes the 16-dimensional MFCCs including deltas and double deltas (see Table 5.2)

for all the databases. Next, the training stage calculates the UBM and the MAP-adapted

model for every target speaker.

Generally, discriminative algorithms employ positive and negative examples to optimize

the objective function, meaning that the optimization embraces both models: target and

imposter. MVE is not an exception; several sets are constructed according to a cohort

selection. A cohort sample is a negative sample of the current target model. Although

a cohort sample is any sample that does not belong to the target data set, usually its

computation is based on some other criteria such as the likelihood with respect to the

target model, or the distance between the negative sample and the target model.

At first, the selection was performed randomly, as described in the following selection,

but later we found that just a small set can be used to provide a reliable optimization.

5.5.1 Cohort Set selection

For every experiment, the cohorts were selected randomly, 500 phrases from NIST 2004,

2005 2006, switchboard 1 and switchboard 2; moreover, we selected 500 phrases from NIST

2010 microphone (interview). A total 3000 phrases were used as imposter samples. For

every experiment, we used a different seed to select the phrases as a starting point.7

The results for the MVE configuration are shown in Table 5.7. There is a considerable

improvement if compared to the traditional approach. However, the results are not as good

as the ones presented by JFA. Once again, the best results belong to the matched conditions,

performing even better for the telephone-telephone scenario.

Female Male Average

1 Interview interview same mic 12.2 12.6 12.4
2 Interview interview different mic 14.8 15.0 14.9
3 Interview tel 15.1 15.4 15.2
4 tel tel 11.2 11.7 11.4
Average 13.3 13.6 13.5

Table 5.7: EER results on the Test set for NIST 2008 for the MVE approach

7We performed experiments with the same setup, but using a different seed for the random cohort
selection. The results didn’t present any considerable difference.
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5.6 Summary

This chapter shows the experimental setup used to obtain the baseline results in the NIST

database that will be used along the following chapters. The description starts from

processing the audio signal up to the final step when the system outputs a performance

measure (EER). We present baseline outcomes for the traditional approaches, JFA and

MVE. JFA shows the best performance, having lower EER than MVE and the traditional

approach. MVE improves the traditional approach but didn’t obtain results as good as JFA.

These set of outcomes give us a clear idea of the performance of the system and represent

the starting point of our research.
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Optimization of the area under the

ROC curve

Knowledge can be communicated, but not wisdom. One

can find it, live it, be fortified by it, do wonders through

it, but one cannot communicate and teach it.

- Hermann Hesse Siddartha

System performance in SV is measured by considering the false acceptance and false rejection

errors. Both errors are closely related and a tradeoff between them is always considered;

i.e., the systems select an appropriate separation threshold between the distributions that

describe that binary classifier. Traditional methods proposed a clever way to plot both

errors in a curve called the detection error tradeoff (DET) curve. This performance curve

is a wrapped representation of the Receiver Operating Characteristic (ROC) Curve. In

this chapter, we explore the area under the curve of both representations: the ROC curve

and the effect in the metrics such as the DET curve and the minDCF. We also show a

mathematical formulation to optimize the model parameters based on those curves using a

discriminative approach. First, we give a preliminary explanation about the ROC and how

it relates to the DET curve. Then, we detail our algorithm and its formulation.

6.1 The Receiver Operating Characteristic Curve

For a binary classifier, the ROC curve analysis provides the tools to measure system

performance [127]. First, we define two classes as in previous sections: positives (targets)

and negatives (imposters). The errors are the same as in our previous definitions, but we

will use a different nomenclature for clarity in this section. If a positive is classified as a

positive, it is called true positive (TP). If a negative is classified as negative, it is named
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true negative. If a positive is classified as a negative, it is called false negative, miss or false

rejected. If a negative is classified as a positive, it becomes a false positive (FP), false alarm

or false accepted.

The ROC curve, then, plots the relation between false positive rate vs true positive rate,

see Figure 6.1. Let us consider the two probability distributions that define the classification

of the scores, we compute each operating point by moving the score threshold from minus

infinity to infinity. In fact, it plots the tradeoff between false alarm rate in the interval [0, 1]

and true positive percentage in the interval [0, 1] as a convex function.
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Figure 6.1: Score distributions for three different classifiers.

The EER of this graph is the summary of all the operating points, and it is where

PFA = Pmiss. The closer the curve is to the (0, 1) point the better the classifier performs.

6.2 Area under the ROC curve

A single operating point on the ROC curve is not enough to describe the efficiency of the

system. The area under the ROC curve is a more sensible measure of classifier performance,

as stated in [127]. Moreover, it is always useful when comparing two or more binary classifiers

and want to use a single scalar, that can give information of all the operating points.1

The properties of the area under the ROC curve can be related to the Wilcoxon-Mann-

Whitney (WMW) statistic. The AUC lies on the interval (0,1), as it is a unit square. The 45

degrees diagonal line describes a random classifier with area 0.5. Hence, no classifier should

have area less than 0.5. In statistical terms, the AUC is the probability of a classifier to

score a random positive sample more times than random negative samples. This statement

is the bridge to the WMW statistic [25, 128].

The statistic is usually defined as,

Υ =

∑
χ∈H

∑
χ̂∈W 1(F (χ) > F (χ̂))

|H||W|
, (6.1)

1However, we must not guarantee that the higher the AUC the better, there are cases where the classifier
works better in certain regions (depending on the desired application or the classifier design).
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where 1 is the indicator function. H and W are two sets of data belonging respectively

to the target score set or impostor score set, and F (χ) determines if any data instance χ

belongs once again to the target or impostor. The statistic is equivalent to the AUC of the

ROC curve.

Another way to look at this statistic is as a joint probability of the target and impostor

scores over a region [129] as,

P (F (χ) > F (χ̂)) =

∫ ∞
−∞

P (F (χ))

∫ F (χ)

−∞
P (F (χ̂)) dF (χ̂) dF (χ). (6.2)

Both formulations are similar and present a convenient figure of merit. There are other

similar approximations of the ROC curve as the ROCCH (ROC convex hull) [130]. The

latter is considered an interpolation of the ROC curve operating points, building an actual

convex hull of those points. Although this new approach deserves more attention, and has

been explored in [129], it has not been examined in this thesis.

With this thesis, we will deal with the computation of the AUC that can be expressed

as a metric that describes the performance of the system. An easy and direct way is just to

compute Υ in Equation 6.1, or using Equation 6.2. In this research we will use Υ and give

results according to it.

6.3 From ROC to DET Curve

The Detection Error Tradeoff (DET) curve is closely related to the ROC curve. It plots

false acceptance probability against the miss probability (instead of TP as in ROC curve)

to observe the errors at the same time. Moreover, it warps the curve at the edges so that it

makes the curves look linear when Gaussian [76]. The warping is performed using a quantile

function of the normal distribution (probit function),

Q(a) = probit(a) =
√

2 erf−1(2a− 1), (6.3)

where a takes the values of PFA (for the x -axis) and Pmiss (for the y-axis) and erf−1 is the

inverse error function. The interval of the ROC curve [0, 1] is then transformed to [−∞,∞].

The DET curve is usually limited to a window of interest defined by the Pmiss and PFA,

decided in advance.

Similar to the ROC curve, the complete DET curve is built by moving the threshold at

each operating point of the FA and miss probabilities. In this sense, we can compare two

or more systems in the same plane over all the operating points as is shown in Figure 6.2.

Once again, the minDCF and the EER can be plotted in these curves to have a complete

performance of the actual classifier.
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6.4 Optimization of the area under the curve

We note that some of the traditional learning methods outlined in Sections 2.2 and Chapter

3 train the distributions of the individual classes S and S̄ without explicitly considering the

fact that the actual task is one of discrimination. Needless to say, discriminative versions

of these learning algorithms also exist.

Discriminative [18] and maximum margin [131] methods for both learning and adaptation

of GMM parameters have been proposed in the literature. Similarly, discriminative versions

of JFA and its variants have also been proposed, e.g. [57]. All of these methods attempt to

learn model parameters to maximize the empirical classification error on the training data

provided. Consequently, they naturally optimize the performance at a specific operating

point – that characterized by the relative (possibly weighted) proportions of positive and

negative examples provided to them. This operating point may not be related at all to

the actual operating point at which the system is actually eventually evaluated. Moreover,

we would ideally not like to commit to an operating point – we would like to optimize the

performance at every operating point. In other words, we do not merely wish to improve

the performance of a single point in the ROC curve, such as the EER, and affect the DET

curve (see Figure 6.2); we would like to explicitly optimize the entire ROC curve. The way

we will do this is by explicitly optimizing the AUC – the area under the ROC curve.
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Figure 6.2: ROC and DET curves for three different classifiers.

A way to address the problem, is to optimize the AUC of the ROC curve that is described

by the WMN statistic and document the improvements on the DET curve.

Consider a binary classifier that attempts to classify the data as belonging to a class C

or not. Once again, let H and W be two sets of data belonging respectively to C and C̄

(i.e. not in C). The empirical AUC of a classifier that computes a score θ(χ) to determine

if any data instance χ belongs to C is given by Equation 6.4.

Υ(Λ) = 1.0−
∑

χ∈H
∑

χ̂∈W 1(θ(χ) > θ(χ̂))

|H||W|
(6.4)
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In the equation above we have written Υ(Λ) to be a function of Λ = ΛC ∪ΛC̄ , where ΛC and

ΛC̄ are the parameters of any models associated with C and C̄, to aid us in the explanation

below.

We can optimize the AUC by employing the function given in Equation 6.4. Equation

6.4, computed over the training set, is thus a new objective function to be minimized. The

AUC function specified by Equation 6.4 is not smooth, however, since it is the sum of

discontinuous indicator functions. In order to optimize it, a smooth, differentiable version

of this objective function is needed.

To do so, we replace the indicator functions 1(a > b) by a sigmoid function, following

an approach that is commonly used in discriminative training methods, e.g. [24], as in

Equation 6.5,

R(a, b) =
1

1 + exp (−γ ϕ(a, b))
, (6.5)

where γ governs the steepness of the sigmoid and controls the learning rate and ϕ is the

distance ϕ(a, b) = a− b.
Thus, the modified AUC function to optimize is:

Υ(Λ) = 1.0−
∑

χ∈H
∑

χ̂∈W R(θ(χ), θ(χ̂))

|H||W|
. (6.6)

The modified AUC function of Equation 6.6 must be appropriately customized to the

type of model being considered. It can then be optimized using the generalized probabilistic

descendent (GPD) algorithm. Let X represent the complete set of training instances:

X = H ∪W . The GPD updates are performed according to the following:

Λt+1 = Λt − ε∇Υ(X,Λ), (6.7)

∇Υ(X,Λ) = − 1

|H||W|
∑
χ∈H

∑
χ̂∈W

γR(1−R)

[
∂θ(χ)

∂Λ
− ∂θ(χ̂)

∂Λ

]
. (6.8)

In the above Equation R is a short-hand notation for R(θ(χ), θ(χ̂)). ε is a learning rate

parameter.

The above formalism can generally be used in all formulations of speaker verification with

appropriate customization of the objective function. Below we consider two approaches as

an illustration.

6.5 Minimum Verification Error

In the minimum-verification error approach, GMM parameters for individual speakers are

optimized to minimize empirical verification error on the training set [89]. Replacing the
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objective function usually used in MVE training, we get the modified objective function:

Υ(Λ) = 1.0−
∑

χ∈H
∑

X∈χ
∑

χ̂∈W
∑

X̂∈χ̂R(θ(X), θ(X̂))∑
χ∈H Lχ

∑
χ̂∈W Lχ̂

, (6.9)

where Lχ is the number of feature vectors in χ. Note that the original AUC formulation

of Equation 6.4 only considers misclassifications – both FA and FR, in keeping with the

conventional formulation of MVE. The “soft” version of the AUC given by Equation 6.9

also naturally conforms to this formulation.

Using the representation ∑
χ∈H

Lχ = |H| (6.10)∑
χ∈W

Lχ = |W|, (6.11)

the GPD update rule for any parameter φ of the distributions is now given by φt+1 =

φt − ε∇φΥ(X,Λ), where

∇φΥ (X,Λ) =− 1

|H||W|
∑
χ∈H

∑
X∈χ

∑
χ̂∈W

∑
X̂∈χ̂

γR(1−R)∇φl(X, X̂,Λ), (6.12)

and ∇φl(X, X̂,Λ) is a local gradient with respect to φ at χ, χ̂ and has the form given by

Equation 6.13,

∇φl(X, X̂,Λ) = −∂θ(X)

∂φ
+
∂θ(X̂)

∂φ
. (6.13)

∂θ(X)
∂φ

represents the derivative of the log-likelihood-difference given by the Gaussian mixture

models for the target speaker and the universal background model for vector X with respect

to φ. The update rules for the individual parameters wSk , µSk and ΣS
k are obtained by plugging

in ∂θ(X)

∂wSk
, ∂θ(X)

∂µSk
and ∂θ(X)

∂ΣSk
respectively into Equation 6.13. These equations are relatively

straightforward to derive, (please refer to Appendix C for further details).

For the purpose of this chapter we will just include the final update equations. Once

again, consider µ as an example, then, µ̃ = µ/σ, Let the misverification measure be

∂θ(X)

∂φk
=

(
−∂g(X; Λ)

∂φk
+
∂G(X; Λ)

∂φk

)
sgn(c), (6.14)

where sgn(c) is +1 if it is a target and −1 if it is an imposter.

Moreover,



6.5 Minimum Verification Error 71

∂g(χ; Λ)

∂Λk
=

1

p(χ; Λ)

∂ p(χ; Λ)

∂Λk
and

∂G(χ; Λ)

∂Λk
=

1

p(χ; Λ̂)

∂ p(χ; Λ̂)

∂Λ̂k
. (6.15)

Then for µ, a specific k, dimension d and to avoid bias, let µ = σ µ̃. Hence,

∇φΥ (χ, µ̃k) =− 1

|H||W|
∑
χ∈H

∑
X∈χ

∑
χ̂∈W

∑
X̂∈χ̂

γR(1−R)
wkN (χ|µ̃k, σk)∑
k′ wk′ N (χ|µ̃k′ , σk′)

(
χ

σk
− µ̃k

)
. (6.16)

For σ, let σ̃ = log(σ). Then, the final equation to compute σk is

∇φΥ (χ, σ̃k) =− 1

|H||W|
∑
χ∈H

∑
X∈χ

∑
χ̂∈W

∑
X̂∈χ̂

γR(1−R)
wkN (χ|µk, σ̃k)∑
k′ wk′ N (χ|µk′ , σ̃k′)

{(
χ− µk
σ̃k

)2

− 1

}
. (6.17)

Finally, for the set of weights wk and to ensure that
∑K

k=1wk = 1,let, w = exp(w̃)∑K
k=1 exp(w̃)

∇φΥ (χ, w̃k) =− 1

|H||W|
∑
χ∈H

∑
X∈χ

∑
χ̂∈W

∑
X̂∈χ̂

γR(1−R)∇φl(X, X̂,Λ)
N (χ|µk, σk)∑

k′ w̃k′ N (χ|µk′ , σk′)
. (6.18)

Algorithm 6.1. Optimization of the ROC curve,

MVE I

Initialization

1. Train the basis imposter or cohort model (usually employing EM)

and the target speaker model (using MAP)

Λ̄ = {W̄C
k , µ̄

C
k , Σ̄

C
k }, (6.19)

Λ = {WC
k , µ

C
k ,Σ

C
k }. (6.20)

2. Compute the misverification distance and the combined loss

function for the FA and FR errors using,

dn(χ) = −gn (χ; Λ) +Gn (χ; Λ) sgn(c), (6.21)

and

Υ(Λ) = 1.0−
∑
χ∈H

∑
X∈χ

∑
χ̂∈W

∑
X̂∈χ̂R(θ(X), θ(X̂))∑

χ∈H Lχ
∑
χ̂∈W Lχ̂

. (6.22)
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Algorithm 6.1. Optimization of the ROC curve,

MVE II

Parameter Estimation

For a specific class C, a component k in the GMM, dimension d. and a

set of training Xt where t = 1...T .

1. Obtain the gradients of the sigmoid loss function for each of the

model parameters: {wCk , µCk ,ΣCk } and plugged them into:

Λt+1 = Λt − ε∇Υ(χ; Λ), (6.23)

∇φΥ (X,Λ) =− 1

|H||W|
∑
χ∈H

∑
X∈χ

∑
χ̂∈W

∑
X̂∈χ̂

γR(1−R)∇φl(X, X̂,Λ).

(6.24)

Recall, ∇φl(X, X̂,Λ) =
(
−∂g(X;Λ)

∂φk
+ ∂G(X;Λ)

∂φk

)
sgn(c).

2. Optimize the models for every class:

(a) For a specific k, dimension d and to avoid bias, let µ = σ µ̃.

Then,

∂p(χ; Λ)

∂µ̃k
=

wkN (χ|µ̃k, σk)∑
k′ wk′ N (χ|µ̃k′ , σk′)

(
χ

σk
− µ̃k

)
. (6.25)

(b) let, σ̃ = log(σ), Then σ is

∂p(χ; Λ)

∂σ̃k
=

wkN (χ|µk, σ̃k)∑
k′ wk′ N (χ|µk′ , σ̃k′)

{(
χ− µk
σ̃k

)2

− 1

}
.

(6.26)

(c) For wk and to ensure that
∑K
k=1 wk = 1, let, w = exp(w̃)∑K

k=1 exp(w̃)
,

∂p(χ; Λ)

∂w̃k
=

N (χ|µk, σk)∑
k′ w̃k′ N (χ|µk′ , σk′)

. (6.27)

Check for convergence

1. Compute the loss function with the new parameters:

Υ(Λ)new = 1.0−
∑
χ∈H

∑
X∈χ

∑
χ̂∈W

∑
X̂∈χ̂R(θ(X), θ(X̂))∑

χ∈H Lχ
∑
χ̂∈W Lχ̂

.

(6.28)

2. Compare `new with `; if it is higher than a threshold τ iterate from

Parameter Estimation.
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6.6 JFA

In the case of JFA, the set of parameters to be learned are of two kinds. The global

parameters include V , the speaker loadings, U , the channel loadings, and D, the diagonal

error scaling matrix. The specific parameters include yS, which is specific to a speaker S

and xS,H , which is specific to the speaker-channel combination S,H.

Hence, two distinct learning problems must be addressed: learning the global loadings

from a large collection of speaker recordings over a variety of channels, and learning specific

factors for individual speakers. The global parameters must learn the overall characteristics

of the speaker and channel subspaces. Specific parameters must be learned to customize a

model to a specific speaker given training data for the speaker.

The AUC objective function must be appropriately customized in each case. In all cases,

the discriminant function θ() in Equation 3.1 is specified as in Equation 6.29.

θ(χ) = log p(χ;V, U,D, yS(χ), xH(χ),S(χ))− log p(χ;λS̄, U, xH(χ),S(χ)) (6.29)

Here S(χ) represents the speaker S represented in the recording χ. H(χ) represents the

recording channel in χ. The equation above explicitly indicates that the log-likelihood for

the model of speaker S is computed using Gaussian parameters from the supervector

M = m+ V yS(χ) + UxS(χ),H(χ) +Dz, (6.30)

whereas the parameters of the “imposter” model for any recording are obtained from

M ′ = m + UxS(χ),H(χ) + Dz, which only considers the universal mean m adjusted by the

channel factors which customize them to the recording χ. The global mean m is derived

from the universal background model λS̄.

6.6.1 Global parameters: Loadings estimation

Let X represent a large collection of recordings χ obtained from a large number of speakers.

Let S be the set of all speakers represented in X. Let XS represent the subset of X

representing recordings from speaker S and XS̄ be recordings from remaining speakers, i.e.

X = XS ∪XS̄. X can be partitioned in this manner in as many ways as there are speakers

in S.

To learn global parameters, we define the AUC objective function as given in Equation

6.31,

Υ(Λ) = 1.0− 1

|XS||XS̄|
∑
S∈S

∑
χ∈XS

∑
χ∈XS̄

R(θS(χ), θS(χ̂)). (6.31)

As before, the GPD update rule for any global parameter φ is given by φt+1 =



74 Chapter 6. Optimization of the area under the ROC curve

φt − ε∇φΥ(X,Λ), where

∇φΥ(X,Λ) =−
∑
S∈S

∑
χ∈XS

∑
χ∈XS̄

γR(1−R)∇φl(χ, χ̂,Λ)

|XS||XS̄|
, (6.32)

and ∇φl(χ, χ̂,Λ) is a local gradient with respect to φ at χ, χ̂,

∇φl(χ, χ̂,Λ) = −∂θ(χ)

∂φ
+
∂θ(χ̂)

∂φ
. (6.33)

To derive the update rules for individual parameters, it is sufficient to obtain the

derivatives ∂θ(χ)
∂φ

with respect to the corresponding parameters. This case was studied in

[132] and it is extended in the equations given below to the special case.2

The formulation takes two stages (as in the usual JFA) to decouple estimation of V, U,Ψ.

First, we will consider V estimation, maintaining U fixed, considering that Q = V V > + Ψ,

where Ψ = DD> and is diagonal.

Then for µ, a specific k, dimension d and to avoid bias3, let µk = qk µ̃k, Hence,

∇φΥ(χ, µ̃k) =−
∑
S∈S

∑
χ∈XS

∑
χ∈XS̄

γR(1−R)

|XS ||XS̄ |
wkN (χ|µ̃k, qk)∑
k′ wk′ N (χ|µ̃k′ , qk′)

(
χ

qk
− µ̃k

)
. (6.34)

To estimate Q, first we present the expression for V and then Ψ; refer to Appendix C.2

that details about identities. We will also make the matrix dimensions explicit, considering

that Ψ is diagonal. Then, qk, let q̃ = log(q).

Then, for V ,

∇φΥ(χ, ṽij) =−
∑
S∈S

∑
χ∈XS

∑
χ∈XS̄

γR(1−R)

|XS ||XS̄ |
wkN (χ|µk, qk)∑
k′ wk′ N (χ|µk′ , qk′)

{
[Q−1(x− u)]i[(x− u)>Q−1V ]j − [Q−1V ]ij

}
.

(6.35)

Then, for ψ,

∇φΥ(χ, ψ̃i,j) =−
∑
S∈S

∑
χ∈XS

∑
χ∈XS̄

γR(1−R)

|XS ||XS̄ |
wkN (χ|µk, qk)∑
k′ wk′ N (χ|µk′ , qk′)

{
1

2

(
Q−1
ii − [Q−1x− µ]2i

)}
.

(6.36)

Now, for U , we fix the current Q and estimate accordingly.

∇φΥ(χ, Ũk) =−
∑
S∈S

∑
χ∈XS

∑
χ∈XS̄

γR(1−R)

|XS ||XS̄ |
wkN (χ|µk, qk)∑
k′ wk′ N (χ|µk′ , qk′)

{(
χ− µk
Ũk

)2

− 1

}
. (6.37)

2We use the FA formulation presented in [132]; analogous to the Baum-Welch algorithm, in here we have
previously derived the minimum classification approach.

3Our usual change of variables holds for this formulation.
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Finally, for the set of weights wk and to ensure that
∑K

k=1wk = 1, let, w = exp(w̃)∑K
k=1 exp(w̃)

,

∇φΥ(χ, w̃k) =−
∑
S∈S

∑
χ∈XS

∑
χ∈XS̄

γR(1−R)

|XS ||XS̄ |
N (χ|µk, qk)∑

k′ w̃k′ N (χ|µk′ , qk′)
. (6.38)

We would like to note that this process is replacing the current Baum and Welch

estimation of the model parameters.

6.6.2 Estimating Specific Parameters

To learn the specific parameters for a particular speaker S, the AUC objective is defined

simply as

Υ(ΛS) = 1.0−
∑

χ∈XS

∑
χ∈XS̄

R(θS(χ), θS(χ̂))

|XS||XS̄|
. (6.39)

Note that unlike Equation 6.31, which includes an outer summation over all speakers,

Equation 6.39 only considers a single speaker S.

As before, the GPD update rule for any specific parameter φ is given by φt+1 =

φt − ε∇φL(X,Λ), where,

∇φΥ(X,Λ) = −
∑

χ∈XS

∑
χ∈XS̄

γR(1−R)∇φl(χ, χ̂,Λ)

|XS||XS̄|
,

and ∇φl(χ, χ̂,Λ) is defined as in Equation 6.33.

To derive the update rules for individual parameters yS, xS,H and zS, it is sufficient to

obtain the derivatives ∂θ(χ)
∂yS

, ∂θ(χ)
∂xS,H

and ∂θ(χ)
∂zS

, and employ these in the GPD update rules.

In practice the speaker and channel factors yS, xH,S and zS can also be estimated using

conventional EM estimate rules.

Note that the estimation of global parameters also requires estimation of specific

parameters, since the update rules for the former require the latter. Thus, estimation

of global parameters involves estimation of both global and specific parameters for all the

speakers in the training set. To learn a model for a new speaker for whom only a small

amount of training data have been made available, only the specific parameters need be

learned employing the already-known global parameters.

Although we have explained the above in terms of JFA, the same formulation can also

be used to learn i-vector representations [14], which are essentially the same as the above

without explicit separation of channel factors. AUC-optimized PLDA based representations

can be derived similarly to the rules given above, with the modification that the GPD rules
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will now employ partial derivatives with respect to PLDA parameters.

Algorithm 6.2. Optimization of the ROC curve, JFA

I

Initialization

1. Train the imposter or cohort model (EM) and the target speaker

model (MAP)

Λ̄ = {W̄C
k , µ̄

C
k , Σ̄

C
k } Λ = {WC

k , µ
C
k ,Σ

C
k }. (6.40)

2. Compute the misverification distance,

dn(χ) = −gn (χ; Λ) +Gn (χ; Λ) . (6.41)

Parameter Estimation, Global Parameters

1. Compute the combined loss function for the FA and FR errors

using,

Υ(Λ) = 1.0− 1

|XS ||XS̄ |
∑
S∈S

∑
χ∈XS

∑
χ∈XS̄

R(θS(χ), θS(χ̂)). (6.42)

2. Obtain the gradients of the sigmoid loss function for each of the

model parameters: {wCk , µCk ,ΣCk } and plug them to:

Λt+1 = Λt − ε∇Υ(χ; Λ),

∇φΥ(X,Λ) =−
∑
S∈S

∑
χ∈XS

∑
χ∈XS̄

γR(1−R)∇φl(χ, χ̂,Λ)

|XS ||XS̄ |
.

(6.43)

Recall, ∇φl(X, X̂,Λ) =
(
−∂g(X;Λ)

∂φk
+ ∂G(X;Λ)

∂φk

)
sgn(c).

3. Optimize the models for every class, considering Q = V V > + Ψ

(a) For a specific class C, a component k in the GMM, dimension

d. and a set of training Xt where t = 1...T .

∂p(χ; Λ)

∂ṽi,j
=

wkN (χ|µk, qk)∑
k′ wk′ N (χ|µk′ , qk′){

[Q−1(x− u)]i[(x− u)>Q−1V ]j − [Q−1V ]ij
}
.

(6.44)

(b) For Ψ,

∂p(χ; Λ)

ψ̃i,j
=

wkN (χ|µk, qk)∑
k′ wk′ N (χ|µk′ , qk′)

{
1

2

(
Q−1
ii − [Q−1x− µ]2i

)}
.

(6.45)
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Algorithm 6.2. Optimization of the ROC curve, JFA

II

(c) For U ,

∂p(χ; Λ)

Ũk
=

wkN (χ|µk, qk)∑
k′ wk′ N (χ|µk′ , qk′)

{(
χ− µk
Ũk

)2

− 1

}
. (6.46)

(d) For wk and to ensure that
∑K
k=1 wk = 1, let, w = exp(w̃)∑K

k=1 exp(w̃)
,

∂p(χ; Λ)

∂w̃k
=

N (χ|µk, σk)∑
k′ w̃k′ N (χ|µk′ , σk′)

. (6.47)

Check for convergence

1. Compute the loss function with the new parameters:

Υnew(Λ) = 1.0− 1

|XS ||XS̄ |
∑
S∈S

∑
χ∈XS

∑
χ∈XS̄

R(θS(χ), θS(χ̂)).

(6.48)

2. Compare Υnew with Υ; if it is higher than a threshold τ iterate

from Parameter Estimation.

Parameter Estimation, Especific Parameters

For the discriminative approach we have the following:

1. Compute the combined loss function for the FA and FR errors

using,

Υ(ΛS) = 1.0−
∑
χ∈XS

∑
χ∈XS̄

R(θS(χ), θS(χ̂))

|XS ||XS̄ |
. (6.49)

2. Obtain the gradients of the sigmoid loss function for each of the

model parameters: x, y and plug them into Λt+1 = Λt−ε∇Υ(χ; Λ),

∇φΥ(X,Λ) = −
∑
χ∈XS

∑
χ∈XS̄

γR(1−R)∇φl(χ, χ̂,Λ)

|XS ||XS̄ |
.

Recall, once again, ∇φl(χ, χ̂,Λ) =
(
−∂g(χ;Λ)

∂φk
+ ∂G(χ;Λ)

∂φk

)
sgn(c).

3. Optimize for the factors x and y (discriminative form).

Check for convergence

1. Compute the loss function with the new parameters:

Υnew(ΛS) = 1.0−
∑
χ∈XS

∑
χ∈XS̄

R(θS(χ), θS(χ̂))

|XS ||XS̄ |
. (6.50)

2. Compare Υnew with Υ; if it is higher than a threshold τ iterate

from Parameter Estimation.



78 Chapter 6. Optimization of the area under the ROC curve

6.7 Noise case

Noise increases the inherent variability of the signal, potentially shifting it from any

operating point a classifier may be optimized for, possibly in an unpredictable manner.

We demonstrate that an operating-point-agnostic training paradigm that optimizes the

entire ROC curve can result in classifiers that are significantly more robust to noise than

conventional classifiers even when the effect of noise is not explicitly considered. The training

formalism that optimizes the entire ROC curve by maximizing the AUC, follows the same

criteria explained above.

First, we will provide some intuition about the role of the classifier. We can view it in

the sense of the distributions and how they are affected by the noise. Moreover, we can also

observe the behavior of the ROC curve.

As explained before, the noise can cause unpredictable effects as shown in Figure 6.3.

First, we can observe random shifts on the distributions, when noise is added. The changes

are more erratic when the SNR increases. The reliability of the classifier is also diminished:

the EER increases (the same occurs to the DET curve) and the AUC of the ROC curve

decreases.
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Figure 6.3: The effect of noise in the score distribution and in the ROC curve

To prevent these errors, we used the AUC approach in the usual way. For matched

conditions, although the AUC approach does not take into account the noise, the models

provide improvement compared to the baseline. AUC compensates for the variations induced

by the noise and focus on increasing the AUC. Note that the effects are diminished as shown

also in Figure 6.3.

6.8 Comparing the AUC approach with the

Calibration approach

In this section, we point out some of the differences between the AUC approach and the

Calibration approach described in [133, 76]. Calibration has been successfully used in recent
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studies with successful results [134, 133, 135]. The idea behind calibration is to transform

the scores into LLRs. Let, θ(χ) represent a trial score for a speaker s and phrase χ. Then,

Θ(χ) = [θ1(χ)θ2(χ)...θN(χ)]. The transformation can be represented as follows,

Θ̂(χ) = R(θ(χ),Λ) = aθ(χ) + b, (6.51)

where R represents a linear transformation, and Λ are the parameters a, b. When optimizing

these parameters, the objective logistic regression objective function is minimized [76].

On one hand, the goal of the calibration approach is to optimize the set of Λ parameters.

The LLR function employed is,

θ(χ) = log eθ̂(χ) −
N∑
j=1

log eθ̂(χ). (6.52)

On the other hand, the discriminative approach we propose maximizes the separation

between target and imposter models [19, 136]. It employs positive and negative samples to

optimize the GMM model parameters. But the main purpose is either to maximize the area

under the ROC curve, the DCF or to maximize the separation between the two opponent

models. The main LLR function is as follows,

θ (χ) = log (p (χ|ΛS))− log (p (χ|ΛS̄)) ,

where log (p (χ|ΛS)) and log (p (χ|ΛS̄)) are the log-likelihoods corresponding to the target

model ΛS and the anti-model ΛS̄.

In this respect the goals that motivate both techniques are different. However, a study

of the CLLR under the discriminative approach can be for future research.

6.9 Experiments and Results

We ran two experiments to evaluate the proposed AUC-minimization approach. In the

first experiment, we compared the performance of conventional MAP and JFA-based

learning with JFA optimized using the AUC criterion on speech recordings, where the

noise conditions in the training and test data were matched. In the second experiment, we

compared the performance of AUC-minimization-based MVE against conventional methods

on mismatched conditions, where the test data are noisy.

6.9.1 On the selection of the competing samples

In general, the discriminative methodologies use positive and negative examples to optimize

the objective function (see Section 5.5 for details on the databases used). However, there are
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negative samples (or imposter speakers) that are more suitable to compute more accurate

models.

In this section, we study which samples can produce impact in the correct training of

the models. The different discriminative approaches described are based on the minimum

classification error approach. All of them depend on a misverification measure which is a

difference of likelihoods of the form,

d (χu,Ωu,Λu) = −g (χu,Ωu,Λu) +G (χu,Ωu,Λû) . (6.53)

In this sense, the training samples that can be highly confused as imposters or target

speakers represent a higher risk, see Figure 6.4.
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Figure 6.4: Vulnerable area in misverification measure d

In training, the designer has complete control over the system. A filtering of the samples

that belong to the correct or incorrect classification; i.e. the flat parts of the sigmoid

function, can be granted as correct or penalized accordingly. However, the samples that

appear in the slope of the sigmoid function are the ones that refine the models. Hence, after

a few iterations and noting convergence, it is possible to discard samples which give high and

low misverification measures and focus on the central part of the sigmoid. This observation

is important for both the current algorithm, where at first glance the basic approach is to

perform the experiments with all the data that are available.

Table 6.1, analyzes the performance for a set of 100 users discarding 10%, 20%, 30% and

40% of the total data. By sorting the cohort sets with the lowest d, we found the sets that

are more confusing for the classifier.4 We observe that removing data samples causes the

error rate to become worse as expected, but we can choose to remove from 10% to 30% and

obtain competitive results.5

4The experiments are based on the experimental setup in 5.5, but selecting 100 target users and
performing full-set optimizations for the cohort and target models.

5Special care has to be given when the EER becomes very low (below 1%).
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Samples discarded EER

original MAP 10.5
AUC-MVE 9.34

10% 9.36
20% 9.45
30% 9.87
40% 10.7

Table 6.1: On the selection of the number of cohort samples for discriminative training

6.9.2 Experiments on clean speech

In the first approach, all training and test recordings were noise-free, although collected

over varied channels. This is the standard setup for the NIST 2008 test. We compared

the baseline classification performance to that obtained with the AUC-optimized JFA. For

the AUC-optimized JFA, the loading matrices V, U and D were computed to maximize the

AUC. The factors yS and xH,S were learned in a conventional way. For the test speakers,

target users were enrolled conventionally, through MAP adaptation and computation of the

factors: xS, yH,S and z.

For the AUC-optimized training, we need: a) target and impostor tokens, b) an initial

target model and the imposter. The initial target model was provided by the adapted

models in the baseline (MAP).

Table 6.2 shows the results obtained. They are consistent with comparisons performed

by other researchers: JFA outperforms both baseline MAP learning as well as MVE learning

significantly. JFA uses an optimized implementation by [27]. The results have been

optimized empirically and are considered competitive for the particular data setup used.

All performance numbers improve as the amount of training data used to learn the base

UBM increases.

More important, we note that the AUC-optimized classifier actually outperforms

conventionally trained models both for MVE and JFA. In fact, over multiple runs of the

experiment with different initializations and parameterizations, the trend of results in Table

6.2 were maintained. Note that for the MVE and AUC approaches we decreased the number

of positive and negative examples in the iterations. For the first iteration, we used the

complete cohort or UBM set. From the second iteration till the last (approximately 10) we

reduced the number of training samples in 30%.

In addition, Figure 6.5 we show the results of the current AUC of the different approaches.
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System EER minDCF

Baseline MAP 15.95 6.7
Baseline JFA 12.07 4.2
MVE 13.51 5.8
AUC-MVE 13.21 5.4
AUC-JFA 11.93 3.9

Table 6.2: AUC optimization: EER for MVE and JFA, clean condition

Figure 6.5: AUC optimization: AUC results for different systems, clean conditions

6.9.3 Experiments on noisy speech

In the second experiment, we compared baseline techniques to AUC-minimized training on

noisy speech. Experiments were performed using speech corrupted to a variety of SNRs (10

dB, 15 dB, and a cocktail of 0-15 dB), all of them using babble noise.

The first column of Table 6.3 shows the results obtained for clean data. The results are

consistent with comparisons performed by other researchers: JFA outperforms both baseline

MAP learning as well MVE learning significantly. In both cases, the models learned via

AUC-minimization somewhat outperform conventionally trained models. All performance

numbers are noted to improve as the amount of training data used to learn the base UBM

increases.

The remaining columns of Table 6.3 compares MAP, MVE, JFA, AUC-optimized JFA

and AUC-optimized MVE on noisy speech of various SNRs. We observe that AUC-

optimized learning consistently outperforms conventional training in all cases. Moreover,

the best results are obtained with AUC-optimized MVE. The results are consistent across

all noise conditions. This is in contrast to the observation for clean speech, where the best

performance is obtained with JFA.

Figure 6.6 shows results for the current AUC. We can observe that for the clean scenario,

JFA gets the best results; however, the MVE approaches perform better as SNR decreases.

Lastly, Figure 6.7 shows the relative improvement obtained from the baseline and by

applying the AUC approach to both the MVE and the JFA approaches.
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System clean 15 dB 10 dB 0-15 dB (cocktail)

MAP 15.95 18.01 17.48 35.7
MVE 13.51 17.67 17.15 28.1
JFA 12.07 17.23 16.79 27.3
JFA-AUC 11.93 16.51 16.22 24.0
MVE-AUC 13.21 15.93 15.78 22.8

Table 6.3: AUC optimization: EER of the noisy task (babble noise).

Figure 6.6: AUC optimization: AUC results for different systems in Noise Conditions

Figure 6.7: AUC optimization: relative improvements.

6.9.4 The effect of the optimization of the AUC of the ROC curve

in the score distribution

In this section, we explore the aftermath of performing the area under the ROC curve

optimization in the score domain. In here, we show an example of speech at 10 dB SNR

(babble noise).

Figure 6.8 shows score decision distributions for this specific case. The dotted line

represents baseline scores after applying the MVE approach, which shows a baseline

performance. The continuous line represents the optimized AUC of the ROC curve. Note
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that the means are shifted, from a −0.1 to 0.03 for the target speakers and from −0.5 to

−0.7 for the imposter speaker. The variance is broadened from 0.22 to 0.31 for the target

speakers and from 0.63 to 0.75. Finally, the EER goes from 17.67 to 15.93.
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Figure 6.8: AUC Optimization: Score Distributions for 10dB SNR, babble Noise

Figure 6.9 presents the same scores but plotted in terms of a ROC curve. We clearly

observe an improvement from the baseline to the curve that includes the AUC optimization.

The red curve corresponds to MVE alone and the blue line to the optimized system.
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Figure 6.9: AUC optimization: ROC curve for 10dB SNR, babble Noise

Last, we show the effect in a DET curve. We can see how AUC lowers not just the

EER but the error rate at every operating point along the curve. Once again, the red curve

corresponds to the MVE alone and the blue line to the optimized system.

6.9.5 Number of Gaussians

We also performed experiments when the models contained less than 1024 Gaussian

components. Table 6.4 shows the results for 1024, 512, 256, 128 and 64 Gaussian

components for different systems. We can observe how results are better for JFA in the

clean case. However, they are not as good when the number of components of the GMM

are reduced. The reason behind this effect is that FA depends on the correct estimation of

the distributions and the amount of the data used in the training. On the other hand, the

MVE approach optimizes for the empirical verification error. In the case of few Gaussians,

the MVE uses the complete feature vector space and optimizes accordingly; i.e., the model



6.10 Summary 85

  1     2     5     10    20    40  
  1   

  2   

  5   

  10  

  20  

  40  

False Alarm probability (in %)

M
is

s
 p

ro
b

a
b

ili
ty

 (
in

 %
)

Speaker Detection Performance

Figure 6.10: AUC optimization: DET curve for 10dB SNR, babble Noise

parameters have space to move by minimizing the objective function. Factor analysis sticks

to the correct optimization based on ML. MVE shows stable results for all the cases.

System 1024 512 G 256 G 128 G 64 G

MAP 12.9 15.9 18.3 20.5 23.9
MVE 10.8 13.5 16.6 17.4 20.3
JFA 8.5 12.0 20.2 23.7 25.2
JFA-AUC 7.2 11.9 17.3 20.2 23.8
MVE-AUC 9.1 13.2 16.1 16.9 18.8

Table 6.4: AUC optimization: EER for different number of GMM components.

6.10 Summary

This chapter analyzes the optimization of the area under the ROC curve. We performed

ROC maximization by using a discriminative approach, based on the MVE algorithm. The

results showed that including AUC optimization improves the results for every approach:

MVE and JFA. We also observed the effects of our methodology in the ROC curve, the

classification distribution, the DET curve, the EER and the minDCF. Moreover, we explored

the number of Gaussians for both approaches. For a small number of Gaussians, the

discriminative approach obtains lower EER. However, for more than 256 Gaussians, JFA

clearly provides the best improvements.
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Chapter 7

The Ensemble Modeling Approach

The highest education is that which does not merely

give us information but makes our life in harmony with

all existence.

- Rabindranath Tagore

The previous chapters showed different forms of training. Traditional approaches focus on

the optimization of target models and use a single UBM as the basis. In this chapter, we

explore the idea of having multiple imposter models. We start from the premise that the

imposter data which can clearly be confused with the true speaker can better enhance the

discriminative property of the classifier rather than the imposter data that is not very likely

to belong to the target speaker. If well addressed, the approach can improve the system

performance.

We also consider the noise case as a natural branch of this approach. The noise conditions

of the speaker verification systems can be addressed in particular ways, either by using ASR

techniques or by just using the known algorithms applied to noise. Previous research had also

focused on employing just a single background model that can adapt to noisy conditions. In

our research, we proposed to fragment the data space and obtain multiple imposter regions

for specific noise conditions, but also within them.

7.1 Cohorts

The first idea is concerned with multiple models for the imposter or background model

is the cohort. A cohort is, in essence, an imposter that is very “likely” to be accredited

as target speaker. The reasons are diverse, but mainly occur when the classifier fails to

discriminate between two speakers whose acoustic information is similar. The cohorts are
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mainly employed in the final stage of verification. Usually, they are grouped and form cohort

sets that are used for normalizing the scores to remove the effects of channel mismatch and

speaker variabilities [70, 137, 138]. The main goal of these cohorts is to transform the scores

so that the new scores are in the same range. Thus, a unique decision threshold can be

easily established for all the target speakers.

However, the cohort idea can also be applied in the training stage to obtain more specific

models. There is just a small number of studies that focus on the cohort selection to form

multiple models ; some examples are [139, 58]. The main interest of these studies is the

amount of data needed to model the speakers, the data that are most useful to generate the

UBM or the cohort models, and the efficiency of the methods in terms of computing time.

Inspired by this trend, we present an ensemble approach which develops several imposter

models from the cohort space for every target speaker. Moreover, we propose an ensemble

model for noise conditions. In this case, one of the noise conditions acts as a target condition

and the rest as competing classes for optimization purposes. In the next sections, we present

the details of the approach.

7.2 Ensemble Model for Robust Verification

We now describe our proposed variation to the basic likelihood-ratio test based framework.

Instead of estimating a general background model from all available data, we partition the

space of background signals according to a variation-inducing factor we wish to account

for. Then, we train a separate specific background model for each of the partitions, and

corresponding to each of the background models we train a target model for the speaker.

When a new recording arrives, we must choose the appropriate partition, and use the

corresponding background and target models for the likelihood ratio test. Since the approach

effectively employs an ensemble of background models, we refer to it as the ensemble model

approach. Below we outline our procedure for training background models for each of the

steps of our procedure.

We begin by assuming that we have a large collection of recordings from which to

train the background models. We assume that the signal space is partitioned into P non-

overlapping regions Ω1,Ω2, · · · ,ΩP , such that together these partitions cover the entire

space, see Figure 7.1 (the background space was partitioned into five different regions;

from each of this new data sets we obtain a model). Correspondingly, we assume that the

recordings are clustered into P groups, each corresponding to signals that fall into one of

these partitions. We defer the description of exactly how these partitions are obtained until

the next section.
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Figure 7.1: Partition ensemble Scheme

7.3 Finding the partitions

The first challenge of this approach is to obtain suitable partitions Ω1, · · · ,ΩP from the signal

space. It is natural to compute those partitions blindly or using some prior information.

Although having prior information about the clusters may signify of great help; it is always

desirable to investigate when the system has to decide autonomously. In this research we

explored both branches.

7.3.1 Supervised Partitioning

Supervised Partitioning may be used, when prior knowledge of the factors by which we

wish to partition the space is available for the background-model training data. Below

we consider two mechanisms: partition by noise and partition by speaker. Partitions may

similarly be obtained by other factors such as channel variations. Hierarchical partitioning

strategies that consider multiple factors concurrently may also be used [140].

7.3.1.1 Environment-based partitions

We partition the signal space according to the SNR. In this research, we assume that

partitions are formed based on the SNR of the signals. We divide the range of all possible

SNR values into P intervals. Each interval represents a partition of the signal space. Let

SNRC
min and SNRC

max represent the minimum and maximum SNRs associated with partition

ΩC . A signal X with signal-to-noise-ratio, SNRX , is assigned to a partition C such that

SNRC
min < SNRX ≤ SNRC

max. (7.1)

Note that partitions may also be formed based on noise type, or other known characteristics

of the noise. In this research, however, we have only considered SNR.

The environment partitions may also be based on the channel. For example, we can
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distinguish between microphone and telephone, and also develop subcategories of them that

depend on a particular feature of the device. For training purposes in several databases

(for example, NIST databases [116]) this information is available. Then, each recording

associated to a certain channel type belongs to a partition ΩC .

7.3.1.2 Speaker Partitions

When speaker identity is known for all recordings in the training set, partitions are obtained

by clustering them by speaker. We first compute a universal background model (UBM) from

unpartitioned data. We then use an agglomerative clustering procedure to cluster speakers.

Initially, each speaker forms his or her own cluster. From all the current clusters, we select

two clusters with the smallest distance and merge them.1 The procedure continues until

there is no cluster left. Agglomerative clustering iteratively merges the closest clusters until

the desired number of clusters (and consequently, partitions) is obtained.

At each stage of the clustering, the UBM is adapted via MAP adaptation to learn a

model ΛC for each new cluster C. In this research, the distance between any two clusters is

defined by the empirical cross entropy:

d(C1, C2) =
1

|χC1 |
log

P (χC1 ; ΛC1)

P (χC1 ; ΛC2)
+

1

|χC2 |
log

P (χC2 ; ΛC2)

P (χC2 ; ΛC1)
, (7.2)

where χCi is the set of all recordings in cluster Ci. Other clustering mechanisms may also

be employed.

7.3.2 Unsupervised Partitions

When a priori knowledge about the training recordings is unavailable, partitions may be

formed by clustering them using unsupervised methods.

For the purpose of this research, we employed k-means as a clustering tool. The algorithm

starts first deciding an appropriate number of clusters, K. In our case, we can relate the

clusters according to a specific factor. For example, if we are dealing with noisy signals at

different SNR (from 0 to 20) we can decide K = 5, so that it accounts for five intervals.

Later, the system can provide more granularity to these clusters.

Once the number of clusters is decided, we initialize K initial points, called centroids

either by random values or by picking randomly K vectors from the pool of imposter data.

Afterwards, the system assigns “memberships” to each data vector (distances from the

vector to each centroid). The lowest distance, means that the vector belongs to a certain

cluster. Once we account for all the data vectors, the system goes through the same process

1The smallest distance may be computed using criteria as log likelihood, cross-entropy, euclidean distance
between the means, among others.



7.4 Training the Ensemble Model 91

iteratively until the error function E does not change significantly,

E =
K∑
j=1

∑
χl∈cj

(χ− cj)2 , (7.3)

where χ is the set of all recordings in the data space, and cj is a specific centroid.

The factor by which partitions are formed can be controlled by using an appropriate

distance function. Generic clustering based on Euclidean distances or likelihoods may be

used to cluster the data by a dominant factor.

7.4 Training the Ensemble Model

Corresponding to each of the partitions Ω1, · · · ,ΩP we train a separate partition-specific

background model. All background models are GMMs. In principle these can be trained

separately for each partition using the EM algorithm. However, we require each of the

background models to be highly specific to the partition they represent, and not generalize

to other partitions. In order to do so, we train all of them together using the following

discriminative training procedure [140].

Let ΛC represent the model for a partition ΩC . Let χC represent all (training) recordings

assigned to ΩC . For any partition ΩC , let

ΩC̄ =
⋃
C̄′ 6=C

ΩC̄′ (7.4)

represent the complement of ΩC , i.e. the union of all partitions that are not ΩC and i is the

number of the partition.

Let g(χ; ΛC) = logP (χ; ΛC) represent the log-likelihood of any recording χ computed

with the distribution for partition ΩC . We can now define d (χ,ΛC), a misclassification

measure for how likely it is that a data χ ∈ χC from ΩC will be misclassified as belonging

to ΩC̄ as

d (χ,ΛC) = −g (χ; ΛC) +G (χ,ΛC̄) , (7.5)

G (χ,ΛC̄) represents the combined score obtained from a partitions in ΩC̄ ,

G (χ,ΛC̄) = log

{
1

|ΩC̄ |
∑

C′:ΩC′∈ΩC̄

exp [ηg (χ,ΛC′)]

} 1
η

, (7.6)

where |ΩC̄ | is the number of partitions included in ΩC̄ , and η is a positive parameter. Now,

we can define a new objective function for discriminative training of ΛC . This function takes

the following form,
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`(ΛC) =
1

|χC |
∑
X∈χC

1

1 + exp [−γ (d (χ,ΛC) + θ)]
, (7.7)

where |χC | represents the number of recordings in χC , and γ and θ are control parameters.

Note that for this specific case, we consider the formulation with different competing classes

(as many as the number of partitions). Hence, the optimization is performed per partition.

Finally, the objective function in Equation 7.7 can be optimized by applying the following

generalized probabilistic descent (GPD) update rule for ΛC :

Λt+1
C = Λt

C − ε∇`(ΛC)|ΛtC . (7.8)

Since all background models are GMMs, ΛC = {wCk , µCk ,ΣC
k }, where wCk , µCk and ΣC

k are

the mixture weight, mean and covariance matrix of the k-th Gaussian of the GMM for ΛC .

To obtain the update rules for these individual parameters, ∂`(ΛC)

∂wCk
, ∂`(ΛC)

∂µCk
and ∂`(ΛC)

∂ΣCk
must

respectively be plugged in for ∇`(ΛC) in the update rule of Equation 7.8.

Once again, as in previous chapters we solve for the parameters. Then, we consider the
following:

µ = σ µ̃, σ̃ = log(σ), w =
exp(w̃)∑K
k=1 exp(w̃)

.

For µ, a specific k, dimension d and to avoid bias, let

∇φ`(χ, µ̃k) =
1

|χC |
∑
X∈χC

γ`(1− `) wkN (χ|µk, σk)∑
k′ wk′ N (χ|µk′ , σk′)

(
χ

σk
− µ̃k

)
. (7.9)

For σk, let

∇φ`(χ, σ̃k) =
1

|χC |
∑
X∈χC

γ`(1− `) wkN (χ|µk, σk)∑
k′ wk′ N (χ|µk′ , σk′)

{(
χ− µk
σ̃k

)2

− 1

}
. (7.10)

Finally, for the set of weights wk,

∇φ`(χ, w̃k) =
1

|χC |
∑
X∈χC

γ`(1− `) N (χ|µk, σk)∑
k′ wk′ N (χ|µk′ , σk′)

. (7.11)

The procedure is employed by the MVE and JFA approaches. We obtained refined target

and imposter models.
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7.4.1 MVE

Once the background models ΛC are obtained for all partitions, we can also train partition-

specific target-speaker models, ΛC
S by fixing the background model ΛC and using a similar

discriminative approach to train ΛC
S . Note that we consider the usual MVE approach (the

binary case), with just two classes (target and imposter), and η = 1. Hence, Equation 3.31,

which is the multiclass version, can be reduced to G(χ; ΛC
S ) = log g

(
χ; ΛC

S̄

)
.2

7.4.2 Factor Analysis

In the same way, the approach can be embedded in the JFA algorithm. The basic UBM is

now a set of different imposter models that are treated separately. The system trains the

loading matrices V , U and D for each partition. Moreover, it also computes the speaker

factors for each ΩC . In the test stage, the scores for a trial are obtained against each

partition.3

7.5 Scoring for classification

Once we obtained appropriate models for the target speaker and their corresponding

imposter models, the aim is to find suitable ways to score.

Given the pairs,

{ΛC1 ,Λ
C1
S }, {ΛC2 ,Λ

C2
S }, · · · {ΛCP ,Λ

CP
S },

the set of background models for all P partitions and their corresponding partition-specific

target speaker models for any claimed speaker S, we can compute the score θS(X) to be

employed in the likelihood ratio test for any recording X in one of several ways. Let

θSC(X) = logP (X|ΛC
S )− logP (X|ΛC) (7.12)

be the likelihood ratio computed in the log domain from the models for partition ΩC . The

options for obtaining the final score θS(X) are:

A) Partition Selection: We assign the recording to the most likely partition as

Ĉ(χ) = arg max
C

logP (χ|ΛC). (7.13)

We then compute the score from the assigned partition: θS(X) = θS
Ĉ(χ)

. This is a

conservative score that selects the partition with signals most likely to be confused with

2Refer to Chapter 3.3 for details.
3refer to Chapter 3.5.1 for details.
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the target speaker (see Figure 7.6). In this sense, the decision threshold must be trained

with an accurate design that can guarantee a correct classification. We used Focal

(described in [135, 129]) to calibrate the scores.

Figure 7.2: Partition Ensemble: Selection

B) A priori: If the correct partition ΩC for X is known a priori, then we can simply set

θS(X) = θSC(X), see Figure 7.3.

Figure 7.3: Partition Ensemble: A priori

Although we expect to obtain the best results with this approach, the labels are not

always available. So we can consider the A priori selection as an upper bound.

C) Best score: We select the greatest score: θS(X) = maxC θ
S
C(X), see Figure 7.4.

Figure 7.4: Partition Ensemble: Best score

D) Combination: Here we simply combine the scores from the different partitions (see

Figure 7.5),

θS(X) =
∑
C

wSCθ
S
C(X). (7.14)
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In our work we trained an SVM (for details on this algorithm refer to Appendix A.2)

to classify the speaker; in this case, wSC are simply the weights assigned by the SVM.

In a first approach, we just concatenated scores from each system belonging to a target

speaker, ξi = [θS1 , θ
S
2 , ..., θ

S
P ]. Then, the labels and ξ are the input data for the SVM.

A second approach used the normalized log likelihoods of each trial with respect to the

target model within a partition, then ξi = [gS1 , g
S
2 , ..., g

S
P ]. For both, the linear kernel was

employed. This is equivalent to learn the weights discriminatively. It is also comparable

to the fusion approach.

Figure 7.5: Partition Ensemble: Combination

E) Fusion: We obtain the scores for the target speaker with respect to the P imposter

models. Then, for a trial j, target a, and N different scores, the linear fusion is given

by,

fj = α0 + α1a1,j + α2a2,j + ...+ αNaN,j. (7.15)

To obtain the α weights, we employ the logistic regression fusion as stated in [135, 129]

(see Figure 7.6). Target speaker trial scores and imposter trial scores form two matrices:

A is a score matrix of N × K, where N are the different classifiers (P partitions) and

K are the number of target trials, and B is a score matrix of N × L, where L are the

number of imposter trials. Then, the objective logistic regression function based on the

cost is

C =
P

K

K∑
j=1

log(1 + e−fj−logitP ) +
1− P
L

L∑
j=1

log(1 + egj+logitP ), (7.16)

where P is a prior probability usually set to 0.5. The target and imposter scores are

given by,

fj = α0 +
N∑
i=1

αiai,j gj = α0 +
N∑
i=1

αibi,j (7.17)

The complete algorithm is described in Algorithm 7.1.
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Figure 7.6: Partition Ensemble: Fusion

Algorithm 7.1. Ensemble Approach I

Initialization

1. Train the imposter model (UBM) in the usual way employing EM,

Λ̄ = {W̄C
k , µ̄

C
k , Σ̄

C
k }. (7.18)

Finding the partitions

Obtain the partitions ΩP and their corresponding raw models.

1. Supervised: Assign the elements of each cluster according to

some specific attribute known in advance (SNRs, similar speakers,

channel). Adapt the UBM to the partition.

2. Unsupervised: Use an unsupervised clustering algorithm (like k-

means) to find the clusters. Adapt the UBM to the partition.

Training the Ensemble Model

1. Compute the misverification distance for every partition with

respect to the competing partitions and the loss function using,

d (χ,ΛC) = −g (χ; ΛC) +G (χ,ΛC̄) , (7.19)

where the combined score obtained from a partitions in ΩC̄ is,

G (χ,ΛC̄) = log

{
1

|ΩC̄ |
∑

C′:ΩC′∈ΩC̄

exp [ηg (χ,ΛC′)]

} 1
η

. (7.20)

and the loss function,

`(ΛC) =
1

|χC |
∑
X∈χC

1

1 + exp [−γ (d (χ,ΛC) + θ)]
. (7.21)

2. Obtain the gradients for the model parameters: {wCk , µCk ,ΣCk } and

plugged them into:

Λt+1 = Λt − ε∇`(χ; Λ), (7.22)

∇`(χ; Λ) = γ`(d)(1− `(d))
∂ p(χ; Λ)

∂Λk
. (7.23)
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Algorithm 7.1. Ensemble Approach, Part II

Convergence

1. Compute the loss function with the new parameters:

`new(χ; Λ) =
∑
n

`n(d(χ; Λ))1(χ ∈ Cn). (7.24)

Compare `new with ` if it is higher than a threshold τ iterate from

Parameter Estimation. Use the new P refined models as the UBM

for either MVE or JFA approach.

Scoring for classification

Given the pairs,

{ΛC1
,ΛC1

S }, {ΛC2
,ΛC2

S }, · · · {ΛCP ,Λ
CP
S }, (7.25)

1. Compute the score for each partition,

θSC(X) = logP (X|ΛCS )− logP (X|ΛC). (7.26)

2. Choose among the following scoring options.

a) Partition Selection: Assign the recording to the most likely

partition as, Ĉ(χ) = arg maxC logP (χ|ΛC).

b) A priori: If the correct partition ΩC for X is known a priori,

then we can simply set θS(X) = θSC(X).

c) Best-score: We select the greatest score, θS(X) = maxC θ
S
C(X).

d) Combination: Combine the scores from the different partitions:

θS(X) =
∑
C w

S
Cθ

S
C(X). In this case wSC are simply the weights

assigned by the SVM.

e) Fusion: Combine the scores from the partitions in a logistic

regression fusion, fj = α0 +
∑N
i=1 αiai,j .

7.6 Ensemble example: real data

We present an example of the ensemble approach using clean data. The intention is to

provide the reader with some insight of the procedure before considering more complex

experiments. In a first stage we train the target models and the UBM as usual. Second, we

partition the data space to obtain specific models. Next, the system trains the models in a

discriminative manner such that the empirical error is minimized and the model specificity

is enhanced. Finally, several iterations are performed to reach convergence.
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The first step after computing the UBM and the target models is to obtain a set of

partitions ΩP from the data space. We employed the unsupervised partition method to

show the performance in the worst case scenario where no information about the clusters is

available. Figure 7.7 shows the real partition using k-means clustering for the data space,

considering a clean dataset and an extraction of the real UBM. For each of those partitions

the system builds a model, in this case an adaptation of the current UBM.4
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Figure 7.7: Partition Ensemble Scheme, real example

The discriminative ensemble approach is then applied to each of the partitions. Figure

7.8 shows the misverification measure d (χ,ΛC) for some of the partitions (initial and final

after 10 iterations) and a single target user. This graph clearly depicts an empirical error

reduction. Note that the model parameters change along the iterations.

Figure 7.8: Value of d for 3 different clusters and different iterations.

The discriminant function (log-likelihood) histogram from a target and its corresponding

cohort histogram are shown in Figure 7.9.5 We observe that the histograms spread and

4The partition models might be an adaptation from the current UBM or an independent computation
of a model. In our experience, adaptation works better for all cases.

5For this specific example we used all the cohort samples available from the imposter data set.



7.6 Ensemble example: real data 99

separate along the iterations, altering the misverification distance d.
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Figure 7.9: Discriminant function (log-likelihood) histograms for one target and 2 cohort
samples

After reaching convergence for all the cohort models, the system performs the selected

scoring method for every partition. The score results for the ten partitions and the specific

target user model are shown in Table 7.1. Note that some of the imposter scores seem

to be very close to the actual target speaker; for example, cluster ones and four. Recall

that all of these clusters represent negative samples for the target speaker. The actual best

score for a set of positive samples for this speaker is of 0.91216, which is clearly higher

than the imposter scores presented in Table 7.1. Moreover, if the training data of the

target speaker were placed in some cluster, most of the samples would be found in Cluster

Five (approximately 60%). The imposter samples were randomly selected from the pool

of imposter set, but the membership test cluster is number ten (approximately 35%). The

clusters that provide more information about imposters that may be confused with the

target are 1 and 4, according to the likelihood results. Note that these scores were obtained

using unseen data, that is the reason why the actual results from a priori , best score,

and partition selection are diferent. Several options are possible for the selection of the
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most appropriate score to consider. Table 7.2 describes the results for the scoring method.

According to this results, the selected scoring method is the combination of scores and the

fusion.

cluster score imposter samples score target samples

1 0.439598 0.53196
2 -0.540602 0.88931
3 -0.600463 0.91316
4 0.364815 0.44016
5 -0.443482 0.87047
6 -0.200627 0.84925
7 -0.315752 0.85311
8 -0.228535 0.83860
9 -0.326056 0.86034
10 -0.510749 0.87213

Table 7.1: Scores for 10 clusters with respect to a target speaker model.

Scoring method Score imposter samples Score target samples

partition selection -0.443482 0.88931
a priori -0.510749 0.87047
best score -0.600463 0.91316

combination -0.538124 0.92154
fusion -0.672565 0.93768

Table 7.2: Scoring selection scores with respect to a target speaker model.

This procedure is extended to all the target speakers; the results are shown in the

following sections.

7.7 Experiments and Results

This section includes an experimental analysis for the ensemble approach. Algorithms such

as MVE and JFA are used together with the ensemble to demonstrate its capability. We

show results for both clean and noisy condition, and in terms of how the partitions are

performed for each case. Moreover, we present a comparison of techniques and how they

are affected by our algorithm.

7.7.1 Experimental Setup

We employed the NIST Speaker Evaluation 2004, 2005, 2010 and 2008 database [39] to

complete this study. We conducted two experiments, one on clean data and the second on

noise-corrupted data. For all experiments, we used the NIST2008 database as targets. For
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the noisy condition experiments, babble noise extracted from the Aurora 2 database was

added to the training and test files at different SNRS: 0,5,10,15 and 20 dB. The training

data was randomly partitioned into equal parts, one for each noise condition; the same

procedure was applied for the test set.6

The objective in the clean experiment was to partition the space by speaker. For the

noisy data, we evaluated partitioning by noise condition. In both cases, we evaluated

partitions formed from a priori information about the data, as well as by unsupervised

k-means clustering. The five methods: partition selection, (PS), a priori, (AP), best score,

(BS), combination, (CO), and fusion,(FU), were evaluated. We used a 256-Gaussian GMMs

for background models in all cases.

In the clean experiment, we evaluated the performance obtained with speaker-based

partitions with different numbers of partitions. As a baseline we also evaluated the

conventional verification framework, where we trained generic gender-dependent background

models (UBM) and adapted these to the target speaker using MAP [65], Joint Factor

Analysis (JFA) [15, 60] and Minimum Verification Error (MVE) [83] training. The UBM

did not include data from any target speaker, not even for the data partitions and their

negative/positve samples.

For the noise experiment we employed 5 partitions, one corresponding to each SNR level.

The proposed method only establishes a mechanism for defining background models for each

partition. The method described in Section 7.4 actually uses MVE to learn partition-specific

target models. Partition-specific target models were also trained via JFA or MAP. For the

noise experiments these were also evaluated in addition to UBM-based baselines.

7.7.2 Results

Table 7.3 shows the results for the clean experiments with different numbers of partitions.

The EER and minDFC results are shown. The ensemble model improves performance

in every case. Morever, partitions based on a priori knowledge consistently outperform

partitions obtained from unsupervised clustering. The best result is obtained when scores

from the partitions are fused; this result significantly outperforms JFA, and is the best

result we have ever obtained on this test set. Increasing the number of partitions beyond 16

resulted in degradation of performance probably due to the lack of data. Discriminative

training of background models to make them specific also turns out to be the key.

The alternative is to simply train each of them using maximum likelihood. This was

consistently worse than discriminative refinement of partition-specific background models

in all experiments.

Figure 7.10 presents the relative improvements for the best results (combination and

6 The noise was added using FaNT software [125].
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Condition EER minDCF

Baseline MAP 16.9 6.9
Baseline JFA 15.2 6.3
Baseline MVE 16.3 6.5

4-clusters 8-clusters 16-clusters

Condition PS AP BS CO FU PS AP BS CO FU PS AP BS CO FU
k-means 16.2 15.5 17.1 14.9 13.8 15.2 13.8 16.0 13.2 12.7 14.8 13.2 15.4 12.5 12.0
minDCF 6.45 6.35 6.65 6.23 5.74 6.28 5.85 6.37 5.74 5.64 6.10 5.32 6.36 5.71 5.6

prior info 14.9 14.4 15.4 13.7 12.8 13.5 11.9 13.9 11.3 10.8 12.1 10.9 12.8 9.5 9.1
minDCF 6.24 5.93 6.34 5.67 5.56 5.77 5.58 5.92 5.21 4.93 5.61 5.08 5.62 4.83 4.13

Table 7.3: Ensemble modeling: EER and minDCF for different clusters on clean condition

fusion scoring methods). Although the highest relative improvement is obtained by the

systems that have prior information about the attribute; the results for blind clustering

provided noticeable improvements, as well.

Figure 7.10: Ensemble modeling: relative improvements (clean condition)

Table 7.4 and 7.5 show results for the noisy data. Once again, the ensemble method

results in improvements in every case. Supervised partitions obtained from prior knowledge

of SNR result in the best performance. Interestingly, identifying the partition for a test

utterance through a priori (AP) of its SNR did not result in the best performance, although

it does outperform other methods of selecting partitions. The best results are obtained,

once again, by combining scores from the partitions either by fusion approach or by the

combination approach. Moreover the best results are obtained by MVE, rather than JFA.

This is an inversion with respect to the usual results with generic models, where JFA

consistently outperforms MVE training.

Figure 7.11 depicts the relative improvements of the proposed methods with respect to

the JFA baseline. The improvements are more noticeable for the MAP and the MVE than

in JFA.
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5c-MAP 5c-JFA
Baseline 28.6 25.0
minDCF 15.60 13.23

Condition PS AP BS CO FU PS AP BS CO FU

k-means 28.3 25.8 29.5 24.2 21.2 26.0 25.1 26.8 24.5 21.5
minDCF 16.89 13.48 17.43 10.57 8.19 13.70 13.22 14.17 10.66 7.86

prior info 25.2 23.4 26.4 22.3 19.2 24.8 24.2 25.2 23.7 20.6
minDCF 13.34 8.97 13.68 8.45 7.64 9.35 9.16 13.28 9.32 7.85

Table 7.4: Ensemble modeling: EER and minDCF for different clusters (noise condition), MAP and JFA

5c-MVE
Baseline 28.3
minDCF 15.32

Condition PS AP BS CO FU

k-means 27.0 24.1 27.7 23.1 20.13
minDCF 14.21 10.48 14.34 8.52 7.86

prior info 23.7 22.2 24.4 20.9 18.4
minDCF 9.21 8.35 10.59 7.78 7.16

Table 7.5: Ensemble modeling: EER and minDCF for different clusters (noise condition), MVE

Figure 7.11: Ensemble modeling: relative improvements (noise condition)

7.8 Summary

This chapter shows the theory behind the Ensemble approach. It analyzes the different ways

to perform a partition of the data space to produce suitable imposter models that can help

to enhance the model specificity and reduce error. The key idea is to simplify the training

modeling by discriminatively train separate models that resemble a given attribute. We

give details of the relevant steps that occur in the process employing real data to have the

insight of the methodology. The results show the potential of the technique specially when

embedding the methodology in other discriminative approaches such as MVE. When using

the technique with JFA the improvements are substantial.
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Chapter 8

Integration of the AUC optimization

and Ensemble Methods

Good that you ask – you should always ask, always have

doubts.

- Hermann Hesse Demian

In this chapter, we show how to integrate the algorithms described in the two previous

sections: area under the ROC curve optimization and the ensemble modeling approach.

First, we present the benefits of optimizing the parameters using the AUC approach. By

optimizing for every operation point along the curve, the AUC of ROC curve is maximized,

and the EER and the minCDF are reduced. Moreover, we detailed the procedure to partition

the data space using the ensemble approach. The intention of this chapter is to combine

these techniques for both cases: clean and noisy speech.

A general scheme of the ensemble-AUC methodology is shown in Figure 8.1. We

introduce a top down architecture that comprises several partition levels. Each level can be

optimized by the known techniques. Let us suppose that the data space can be partitioned

in distinctive clusters for any given condition, not necessarily disjunct (first level). Every

cluster contains speaker or other attribute clusters from which we can compute models.

The approach is to first choose a condition and build the clusters accordingly. Then, we

maximize the distance between these competing regions using ensemble modeling. Once we

have these new mapped and refined clusters, we continue to the next partition level in the

same manner. As an example, the first-level partitions may correspond to any condition

(channel, noise type, SNR), and the second to the actual speakers. Note that the refinement

of the models, provided by the AUC of the ROC curve, can be included at every level on

the methodology to ensure that we are getting optimized models.
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In the next sections, we highlight the main characteristics of the ensemble modeling

and AUC of the ROC curve optimization to give the reader a self-contained chapter.

Afterwards, we show how both techniques merge, what are the key points to address and

the improvements obtained.
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Figure 8.1: Ensemble-AUC modeling scheme

8.1 Ensemble Modeling

In previous chapters, we explored the idea behind partitioning the data space depending

on a specific attribute (channel, noise or group of speakers). The data are partitioned

forming an ensemble of clusters. This can be done in a supervised or unsupervised way.

Supervised means that we have some previous knowledge of the nature of the clusters that

we will obtain; for example, the type of noise, the kind of channel for each utterance, or

the cluster to which each speaker belongs to. Unsupervised means that the clustering is

completely blind, but with the expectation that we can partition the clusters according to

a specific attribute. Once we obtain those partitions, we compute GMM models for each

partition using the classic algorithms (EM for the UBM and MAP for the target speaker

or for the competing models). We update the current parameters for each target model

and its corresponding competing model using a discriminative approach, maximizing the

misclassification distance among them. The new updated models are then the input for a

training algorithm such as MVE and JFA. Each partitioned model by itself is used to train

both, the target and competing models. When a new utterance is verified by the system,

it will produce scores according to a certain target model and its corresponding competing

models. From those scores, the final score is chosen according to a selection algorithm.

This procedure has been useful when the phrases are under noise conditions. In those

cases, we can have a better definition of the attribute according to the specificity of the

condition model that can be a SNR or the noise type.
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8.2 Optimization AUC of the ROC curve

The AUC of the ROC curve has shown improvements when optimizing the model

parameters. In essence, the methodology searches for the maximization of every point

in the ROC curve, and hence the reduction of the EER and the minCDF. Although this

approach can occur at any stage in the ensemble modeling, we discuss the simplest case:

binary classification of a speaker. The first step is to obtain a set of trained models for both

target and imposters. Afterwards, we use the WMW as a statistic to compute the area

under the curve of the ROC curve of a classifier. Moreover, we modify the statistic to be a

function of the current false acceptance FA and miss probability,

Υ(Λ) = 1.0−
∑

χ∈H
∑

χ̂∈W 1(θ(χ) > θ(χ̂))

|H||W|
, (8.1)

where H and W are two sets of data belonging respectively to class C and competing

class C̄ (i.e. not in C). The AUC of the ROC curve of a classifier computes a score θ(χ)

to determine if any data instance χ belongs to C. The modified statistic is, then, the new

objective function to optimize. The model parameters that describe the scores (log-likelihod

ratio) are given by GMMs; i.e., the parameters to optimize are Λ = {WC
k , µ

C
k ,Σ

C
k }. Once

again, the optimization follows a discriminative approach based on MVE. The approach is

also extended to noise conditions with promising results.

In the next sections, we can see how is it possible to combine both techniques and obtain

significant improvements.

8.3 Combining Ensemble Modeling and AUC of the

ROC curve optimization

The merging of both techniques results in a robust approach. On one hand, ensemble

modeling provides specificity to the models required for each condition (for example, SNR,

channel). On the other hand, optimization of the area under the ROC curve updates, in

a discriminative way, the model parameters. Maximizing the AUC produces an impact at

every operating point, not only focusing on points of interest like the EER or the minDCF.

Moreover, this approach can be embedded into known algorithms such as MVE or JFA. A

natural step is to extend the methodology to noise conditions.

Figure 8.2 describes the methodology followed, going from the traditional training of the

target and competing models to the refinement of those models using the ensemble modeling

and the AUC of the ROC curve.
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Speech Signal
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Figure 8.2: Ensemble-AUC modeling modeling in detail

8.3.1 Partitioning the data space (Ensemble)

The first step is to partition the data space, employing ensemble modeling. The designer

decides which attribute to explore for this purpose. An intuitive way to do it is to choose an

attribute for each level. From the complete data space, decide on a top partition. For our

special case, we started with a channel partition. In the next layer, for example, we clustered

the data according to the noise type and obtained further partitions for each possible SNR.

It is possible to apply the same procedure to subsequent levels.1

As in the simple ensemble approach, at the first level the signal space is partitioned

into P non-overlapping regions Ω1,Ω2, · · · ,ΩP , such that together these partitions cover

the entire space. We train GMM target models for each of the partitions and a usual UBM

from which we can perform the adaptations. We assume that the recordings are clustered

into P groups, each corresponding to a set of signals that fall into one of these partitions.

According to [140], it is possible to build subspaces depending on the attributes of

the speaker signal: channel, speaker, noisy condition and SNR. To maximize the class

separation (meaning the separation among different environments or channel), we use a

misclassification measure that is susceptible to changes in a certain condition. Following

this work, two options were explored in this research:

• Enviroment Clustering (EC): A hierarchical clustering, where the data space is the

root of a tree that includes all the environments. It partitions into layers with several

1A common constraint is the amount of data available. For this approach, we assume that all the data
is at our disposal.
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branches, as described in Section 8.1. Each contiguous cluster on a same layer contains

similar acoustic characteristics. For a hierarchical tree of P partitions, we denote the

subspaces as: Ω = {Ω1 ∪Ω2, ...∪Ωu...∪ΩP}. Each of the these clusters is represented

by a super-vector Ωrepu by a function R(·). Hence, Ωrepu = R(Ωu).

• Environment Partitioning (EP): From the full data space we generate a GMM model,

similar to the UBM. Then, we partition the GMM components according to similarity

measures such as Mahalanobis, Bhattacharyya, or the divergence. Each subset u ∈ ΩP

of components define the new region.2 The data space vectors establish a membership

to these new clusters. Once again, ΩGMMu = R(Ωu).

For both cases, the new objective function and misclassification measure for U utterances

in P different conditions take the form,

`(Ωu) =
1

U

∑
U

1

1 + exp [−γ (d (χu,Ωu,Λu) + θ)]
, (8.2)

where χu is an utterance in the training data for partition u, Ωu belongs to a spanned

subspace Ω, γ and θ are control parameters and Λu represent the GMM parameters for that

specific region. Accordingly, the misverification measure,

d (χu,Ωu,Λu) = −g (χu,Ωu,Λu) +G (χu,Ωu,Λû) , (8.3)

and

G (χu,Ωu,Λû) = log

{
1

U − 1

∑
j,j 6=u

exp [η × g (χu,Ωj,Λj)]

} 1
η

. (8.4)

where η is positive, û are the regions not belonging to u, and G takes into account the

contribution of competing models. Equations 8.3 and 8.4 show the conditional dependence.

We have P−1 competing models that are optimized. The above formulation can be employed

for the next approaches.

The solution is given by applying the usual GPD update rule for Λu,

Λt+1
u = Λt

u − ε∇`(Λu)|Ωtu . (8.5)

Following the previous algorithm, it is possible to explore channel mismatch, noisy

environment, and a combination of the two.

2Another possible solution is to use an acoustic-based unit to form such clusters [140]. For a feature-based
approach, the super-vector is partitioned into Z sub-vectors, (for example, static, delta and double-delta
coefficients).
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8.3.2 Refining the Models (AUC approach)

The models obtained by the ensemble approach depend not only on the neighboring models,

but can also be optimized by maximizing the AUC of the ROC curve, hence reducing the

EER and minDCF. A certain partition u becomes a target model, the rest of the partitions

become the competing models.

Let χ represent the complete set of target and competing training instances: χ = H∪W ,

where H contains all the target instances and W all the competing instances. Thus, the

modified AUC function to optimize a specific partition u is,

Υ(χ,Λu) = 1.0−
∑

χ∈H
∑

χ̂∈W R(θu(χ), θû(χ̂))

|H||W|
, (8.6)

θu and θû are the usual scores of χ with respect to a target model Λu or competing model

Λû, and R is the soft representation of the sigmoid function. The modified AUC function

of Equation 8.6 can then be optimized using the GPD algorithm,

Λt+1
u = Λt

u − ε∇Υ(χ,Λu) (8.7)

∇Υ(χ,Λu) = − 1

|H||W|
∑
χ∈H

∑
χ̂∈W

γR(1−R)

[
∂θu(χ)

∂Λu

− ∂θû(χ̂)

∂Λû

]
. (8.8)

In the above equation, R is a shorthand notation for R(θ(χ), θ(χ̂)), and ε is a learning rate

parameter.

The general summary process is depicted in Figure 8.3. From a full data space, the

algorithm performs a partition among a specific attribute (first layer). We optimize and

maximize the separation of this new models; i.e., the models are refined. In a second stage,

the algorithm maximizes the separation within the current clusters, and refine them. In the

final stage, for the special case of SV, we have to optimize the target speaker against the

impostors.

Figure 8.3: Ensemble-AUC scheme

Two clear applications arise from the above methodology: channel mismatch and noisy

environments.
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8.3.3 Channel Mismatch

The channels in the recordings used for training and testing might be different, causing poor

system performance. To solve this issue, we introduce the channel as the intended ensemble

attribute. We start from the premise that a gende-dependent UBM embraces the universe

of all possible conditions and we will represent the Total Space as T .

Environment clustering (EC) and environment partitioning (EP) are suitable off-line

options to distribute T and to prepare the channel-dependent regions. For example, the

sub-partitions belonging to Ωu can differentiate between microphone and telephone at a

first level of the hierarchical structure.

Afterwards, we can refine the sub-region models by increasing coverage. Using the a

priori information from the channel clustering and partitioning, we can update the models by

performing inter-channel training denoted as ΛQu , where Qu represents the partition among

a condition, followed by intra-channel training (computing ΛΩQu
among the competing

models). The former will produce a spread among the channel sub-spaces; the latter will

broaden the coverage. The final models are constructed accordingly.

For a test vector, we estimate the model from which it was produced, stochastic matching

[141] is used for this purpose. Qu i estimated according to the chosen EC or EP algorithm.

For both, a cluster selection is performed based on the highest likelihood to the testing data

χ
Y
. The mapping of such utterance is given by

ΩQu = argmax
u

P (χ
Y
|R(ΩQu)), (8.9)

QYu = Gφ(ΩQu), (8.10)

where Y refers to the test data, and Gφ is a function that transforms the models from a

training channel domain to the new test domain.

8.3.4 Noisy Environment

Once again, for this approach, we take the total data space T as our starting point. In this

case, EC and EP are used to produce the sub-regions comprising Ωe, consistent with the noise

type and SNR. According to [140], after gender separation, a second layer of the hierarchical

tree divides the sub-spaces in low and high SNR. We employ this methodology with a later

refinement of each sub-region using the known algorithm to increase the coverage. The inter-

environment algorithm maximizes the separation among the sub-regions and computes Qe

(each partition refers to a cluster with certain low or high SNR). Moreover, the coverage

within each sub-region is broadened with the intra-environment technique, producing ΩQe .
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The final on-line models, QYe are estimated according to the chosen EC or EP, considering,

QYe = Gφ(ΩQe), (8.11)

Gφ is a mapping function that relates the training noisy condition with the test condition.

8.3.5 Channel Mismatch and Noisy environment

This combined scheme is a summary of the previous approaches. The first step is to perform

a gender separation. Afterwards, we use EC to compute Ωu using a channel basis with the

corresponding refinement. In the third layer of a hierarchical tree the noise type and SNR are

included, resulting in a set of Ωe
c sub-spaces. These final sub-spaces contain the information

of channel, noise type, and SNR. The next step is to increase the separation among Ωe
u

sub-spaces, computing Qe
u. Moreover, to increase the coverage, we can compute ΩQeu .

The online models, QY eu are estimated according to

QY eu = Gφ(ΩQeu), (8.12)

where Gφ is a mapping function that transforms the models from a training domain to the

test domain.

8.4 Speaker modeling

For each target speaker we perform a similar procedure. After employing any of the above

analyses, it is possible to refine the speaker space by maximizing the separation among

competing speakers using inter-speaker training.

For example, a new objective function and misclassification measure for U utterances

from a particular Speaker s in different conditions take the form,

`(Ωs) =
1

U

∑
U

1

1 + exp
[
−γ
(
d
(
χu,Ωe

u,s,Λu

)
+ θ
)] , (8.13)

where χu is an utterance in the training data for partition u, Ωe
s,u belongs to a spanned

subspace Ω (that considers the channel and the SNR), γ and θ are control parameters, and

Λe
u,s represents the GMM parameters for that specific region. Accordingly,

d
(
χu,Ω

e
u,s,Λu

)
= −g

(
χu,Ω

e
u,s,Λu

)
+G

(
χu,Ω

e
û,s,Λû

)
, (8.14)
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where

g
(
χu,Ω

e
u,s,Λu

)
= log p(χ; Ωe

u,s,Λu),

G
(
χu,Ω

e
u,s,Λû

)
= log p(χ; Ωe

û,s,Λû). (8.15)

Equations 8.14 and 8.15 show the conditional dependence. If we just want to finish the

process by increasing coverage, we can solve by applying the (GPD) update rule for Λe
u,s,

Λt+1
u,e,s = Λt

u,s,e − ε∇`(Λu,s,e)|Ωtu,s,e . (8.16)

For the purpose of this work, we present a formulation using an optimization of the AUC

of the ROC curve. Hence, we explore two approaches as in previous Chapters, MVE and

JFA.

8.4.1 MVE in an Ensemble approach

For the MVE approach we define the following objective function that represents the WMW

statistics,

Υ(Λu,e) = 1.0−
∑

χ∈H
∑

X∈χ
∑

χ̂∈W
∑

X̂∈χ̂R(θu,e(X), θu,e(X̂))∑
χ∈H Lχ

∑
χ∈W Lχ

, (8.17)

where Lχ is the number of feature vectors in χ. Note that the formulation depends on

the noise type and the channel-refined space is given by Ωu,e. The scores θ are computed

according to this space.

Using the representation ∑
χ∈H

Lχ = |H|,
∑
χ∈W

Lχ = |W|,

the GPD update rule for any parameter φ of the distributions is now given by φt+1 =

φt − ε∇φΥ(X,Λu,e), where

∇φΥ (X,Λu,e) =− 1

|H||W|
∑
χ∈H

∑
X∈χ

∑
χ̂∈W

∑
X̂∈χ̂

γR(1−R)∇φl(X, X̂,Λu,e), (8.18)

and ∇φl(X, X̂,Λu,e) is a local gradient with respect to φ at χ, χ̂ and has the form given by

Equation 8.19,

∇φl(X, X̂,Λu,e) = −∂θu,e(X)

∂φ
+
∂θu,e(X̂)

∂φ
, (8.19)

∂θu,e(X)

∂φ
represents the derivative of the log-likelihood-difference given by the Gaussian
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mixture models for the target speaker and the universal background model for vector X

with respect to φ.

The final solution can be obtained in two ways: a scoring method or stochastic matching.

The scoring techniques described in Section 6.5 uses a set of scores for different partitions

to form a fusion scheme. Stochastic matching is also a possible solution to decide the

environment for a particular phrase without needing to perform a scoring method.

8.4.2 Factor Analysis in an Ensemble Approach

The proposed ensemble method pursues the same goal as JFA: to extract the information

of the speaker while marginalizing the contribution of any variability caused by channel

or noise conditions. Going further, we include the ensemble approach for the i-vector and

refine the current models so that the i-vectors will properly cover the space for different

conditions. Recall that the utterance is defined as,

M = s + Tω, (8.20)

where M represents the combined speaker and channel-independent supervector extracted

from the UBM. T is a low-rank rectangular matrix and ω is a random vector, composed

of identity vectors (i-vectors), with normal distribution N(0, I). M is normally distributed

with mean m and covariance matrix TT ′.3 Hence, the new modeling is in fact a projection

of an utterance onto the low-dimensional total variability space.

In an ensemble scenario, the space is partitioned into several regions depending on

the desired channel and/or noisy condition. Hence, let X represent a large collection of

recordings χ obtained from a large number of speakers in a certain Ωu,e. The starting point

for the training are the models Λu,e, defined by those regions. For this formulation we also

assume that the score is a likelihood ratio, so that the optimization holds.

Let S be the set of all speakers in X. Let XS represent the subset of X representing

recordings from speaker S and XS̄ be recordings from remaining speakers, i.e. X = XS∪XS̄.

Note that, X can be partitioned in this manner in as many ways as there are speakers in S.

To learn global parameters, we define the following AUC objective for each region Ωu,e.

Υ(Λu,e) = 1.0− 1

|XS||XS̄|
∑
S∈S

∑
χ∈XS

∑
χ∈XS̄

R(θu,eS (χ), θu,eS (χ̂)) (8.21)

The GPD update rule for any global parameter φu,e is given by φu,et+1 = φu,et −

3The procedure to train the matrix T is very similar to training the loading matrix V in JFA, but in
eigenvoice training, all the utterances from a speaker are treated as different speakers. Refer to Appendices
B.2 and B.3 for further details.
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ε∇φu,e Υ(X,Λu,e), where

∇φu,eΥ(X,Λu,e) =−
∑
S∈S

∑
χ∈XS

∑
χ∈XS̄

γR(1−R),∇φu,e l(χ, χ̂,Λu,e)

|XS||XS̄|
(8.22)

∇φu,el(χ, χ̂,Λu,e) is a local gradient with respect to φu,e at χ, χ̂, and

∇φu,el(χ, χ̂,Λu,e) = −∂θu,e(χ)

∂φu,e
+
∂θu,e(χ̂)

∂φu,e
(8.23)

To derive the update rules for individual parameters, it is sufficient to obtain the

derivatives with respect to the corresponding loading matrix T (refer to Chapter 7 for

details). Moreover, we can optimize the i-vector in a similar manner. The next step,

employing the PLDA is straightforward for each of the subspaces Ωu,e. Consequently, we

can employ a fusion scheme to decide the most appropriate scoring solution.

The global approach proposed is potentially successful since it structures the space

in advance, giving the opportunity to use a priori information for better modeling.

Furthermore, the technique has been presented for a SV scenario, under different real

conditions. Note that this space refinement can be properly included in other optimization

schemes, such as an ML-MAP approach.

This scheme has similarities with JFA and probably pursues the same goal, the

marginalization of variability not belonging to the speaker. On one hand, ensemble modeling

segments the space into regions in which the classification is localized for those specific

partitions. On the other hand, the AUC of the ROC curve refines the models for every

operating point. But the main purpose is to be employed in noisy conditions. In this case,

the target partitions are modeled so that the localized operating points are improved.

Algorithm 8.1. Integration of the AUC optimization

and Ensemble Methods I

Initialization

1. Train the general model (UBM) in the usual way employing EM,

Λ̄ = {W̄C
k , µ̄

C
k , Σ̄

C
k }. (8.24)

2. Decide the number of levels in the hierarchy and its type. Usually we

get two levels: one for the channel and one for the SNR.
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Algorithm 8.1. Integration of the AUC optimization

and Ensemble Methods II

Ensemble Modeling

1. Obtain the channel partitions Ωu and their corresponding models,

Λu = {Wu
k , µ

u
k ,Σ

u
k}. (8.25)

2. Training the Ensemble Model: Choose between EC or EP.

• Enviroment Clustering (EC): For a hierarchical tree of P

partitions, we can denote the subspaces as: Ω = {Ω1 ∪
Ω2, ...Ωu, ... ∪ ΩP }. Each of the these clusters can be

represented by a super-vector Ωrepu by a function R(·).
Hence, Ωrepu = R(Ωu).

• Environment Partitioning (EP): Generate from the full data

space a GMM model and partition the GMM components

according to similarity measures. Each subset u ∈ Ω of

components define the new region. Once again, ΩGMMu =

R(Ωu).

3. Define the loss function for U utterances in P conditions by,

`(Ωu) =
1

U

∑
U

1

1 + exp [−γ (d (χu,Ωu,Λu) + θ)]
, (8.26)

where χu is an utterance in the training data for partition u, Ωu

belongs to the spanned subspace Ω, γ and θ are control parameters

and ΛC represents the GMM parameters for that specific region.

4. Define the misclassification measure

d (χu,Ωu,Λu) = −g (χu,Ωu,Λu) +G (χu,Ωu,Λû) , (8.27)

G (χu,Ωu,Λû) = log

{
1

U − 1

∑
j,j 6=u

exp [η × g (χu,Ωj ,Λj)]

} 1
η

.

(8.28)

where η is positive, û are the regions not belonging to u, and G

takes into account the contribution of competing models.

5. The solution is given by applying the (GPD) update rule for Λu,

Λt+1
u = Λtu − ε∇`(Λu)|Ωtu . (8.29)

6. Check for convergence

(a) Compute the loss function with the new parameters:

`new(Λu) =
1

U

∑
U

1

1 + exp [−γ (d (χu,Ωu,Λu) + θ)]
(8.30)

(b) Compare `new with `. If it is greater than a threshold τ ,

iterate.
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Algorithm 8.1. Integration of the AUC optimization

and Ensemble Methods III

Refining the Models (AUC approach)

Let χ represent the complete set target and competing training instances:

χ = H ∪ W, where H contains all the target instances and W all the

competing instances.

1. Compute the modified AUC function to optimize for a specific

partition u

Υ(χ,Λu) = 1.0−
∑
χ∈H

∑
χ̂∈W R(θu(χ), θû(χ̂))

|H||W|
. (8.31)

θ and θ̂ are the usual scores of χ with respect to a target model

Λu or competing model Λû, and R is the soft representation of the

sigmoid function.

2. Optimize Equation 8.31 using the GPD algorithm using the

following rule, Λt+1
u = Λtu − ε∇Υ(χ,Λu). Therefore,

∇Υ(χ,Λu) = − 1

|H||W|
∑
χ∈H

∑
χ̂∈W

γR(1−R)

[
∂θu(χ)

∂Λu
− ∂θû(χ̂)

∂Λû

]
.

(8.32)

3. Check for convergence

(a) Compute the loss function with the new parameters:

Υnew(χ,Λu) = 1.0−
∑
χ∈H

∑
χ̂∈W R(θu(χ), θû(χ̂))

|H||W|
. (8.33)

(b) Compare Υnew with Υ if it is greater than a threshold τ ,

iterate.

Speaker Modeling

1. Compute the misverification function and for U utterances for a

speaker s,

`(Ωs) =
1

U

∑
U

1

1 + exp
[
−γ
(
d
(
χu,Ωeu,s,Λu

)
+ θ
)] . (8.34)

where χu is an utterance in the training data for partition u, Ωes,u
belongs to the spanned subspace Ω (that considers the channel and

the SNR), γ and θ are control parameters and Λeu,s represent the

GMM parameters for that specific region.
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Algorithm 8.1. Integration of the AUC optimization

and Ensemble Methods IV

2. Compute the misverification measure,

d
(
χu,Ω

e
u,s,Λu

)
= −g

(
χu,Ω

e
u,s,Λu

)
+G

(
χu,Ω

e
û,s,Λû

)
, (8.35)

where

g
(
χu,Ω

e
u,s,Λu

)
= log p(χ; Ωeu,s,Λu),

G
(
χu,Ω

e
u,s,Λû

)
= log p(χ; Ωeû,s,Λû). (8.36)

2. Solve by applying the (GPD) update rule for Λeu,s,

Λt+1
u,e,s = Λtu,s,e − ε∇`(Λu,s,e)|Ωtu,s,e . (8.37)

2. Decide which method to use for optimizing: i-vector or MVE. Solve

accordingly.

8.5 Experiments and Results

This section describes the integration of both techniques and the final results up to now.

Note that in this part we include experiments not only using traditional approaches, but

also with the i-vectors, considering it just as a frontend from which we can train a model.

See Tables 8.1 and 8.2.

5c-MAP 5c -MVE
Baseline 28.6 28.3
minDCF 15.60 15.32

Condition PS AP BS CO FU PS AP BS CO FU

k-means 27.2 23.4 28.6 21.3 19.4 25.1 22.3 25.9 21.2 18.4.
minDCF 15.73 12.35 17.43 10.57 8.19 11.56 8.44 12.32 8.14 6.57

prior info 23.2 21.5 24.3 20.0 17.2 21.6 19.9 22.3 18.7 16.2
minDCF 12.88 8.03 13.2 7.84 6.56 7.91 7.53 8.54 7.23 6.68

Table 8.1: Integration approach: EER and minDCF for different clusters on noise condition,
MAP and MVE.
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5c-JFA 5c i-vector
Baseline 26.3 25.0
minDCF 14.03 13.23

Condition PS AP BS CO FU PS AP BS CO FU

k-means 24.9 23.4 25.6 23.2 20.4 24.2 23.1 24.6 22.3 19.5
minDCF 13.85 13.63 15.72 12.74 7.36 12.72 12.47 14.85 11.87 6.84

prior info 23.3 22.5 23.3 21.6 19.0 22.3 21.2 22.5 20.7 18.1
minDCF 9.77 10.13 12.78 8.11 7.51 8.71 9.16 11.90 7.31 6.05

Table 8.2: Integration approach: EER and minDCF for different clusters on noise condition,
JFA and i-vector.

8.5.1 Experimental Setup

The setup for this experiments follows exactly the same procedure showed in the ensemble

modeling. We employed the NIST Speaker Evaluation 2004, 2005, 2010 and 2008 database

(see Section 7.7.1). We conducted an experiment on noise-corrupted data. For all

experiments, we used the NIST2008 SRE database as targets. Babble noise, extracted

from the Aurora 2 database, was added randomly to the training and test files at different

SNRS: 0, 5, 10, 15 and 20 dB. Moreover, we selected the conditions and channel as attributes

to explore.

First, we built a hierarchical tree, with a first layer that focuses on the channel attributes

and a second layer that deals with the noise conditions. The results were obtained for

five cluster partitions in the first layer, plus a refinement of those models. Two channels

were considered: microphone and telephone. No further partitions were explored within

these categories. The second layer accommodates the noise partition for different SNR

(considering this experiments were performed just using babble noise). MAP and MVE

approaches were employed as explained in Chapter 7. The JFA experiments used 50

eigenchannels for U , and 400 eigenvoices for V for every region. This experiment shows

the results for a simple i-vector approach as described in Chapter 3. We extracted a set

of 300 i-vectors that were followed by the reduction to 100 using LDA. Afterwards, these

new i-vectors are processed by the PLDA. The five methods: partition selection,(PS), a

priori, (AP), best score, (BS), combination, (CO), and fusion,(FU), were evaluated. Their

corresponding unsupervised (k-means) and supervised partitioning were also explored.

8.5.2 Results

Tables 8.1 and 8.2 depict the results for the different optimizations and ensemble approaches;

the AUC optimization is implicit in these results. We note that the best results were

obtained for the combination(CO) and fusion (FU) in terms of EER and minDCF. The

current ensemble approach helps the current modeling procedures such as JFA and MVE.
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Surprisingly, the MVE optimization obtains the best results for this specific noise condition.

Figure 8.4 shows the results of the AUC of the ROC curve for all possible cases.

Figure 8.4: Integration approach: AUC results for babble noise condition by scoring method.

We comment on the improvements in terms of the scoring selection methods. For every

set of results the greatest AUC was obtained by the MVE-related approaches, supporting

the potential of this method in noise condition.

Figure 8.5 shows once again the results of the AUC, but it considers the optimization

methods employed. Note that the highest results are obtained for the scoring methods:

combination(CO) and fusion (FU). As expected, the results show that considering the prior

information is of great benefit to any of the approaches. Moreover, for the unsupervised

method, the improvements are still noticeable.

Figure 8.5: Integration approach: AUC results for babble noise condition by optimization
approach.

Lastly, Figure 8.6 shows the relative improvements with respect to the most successful

scoring methods: combination (CO) and fusion (FU). We observe that the MVE-based

approaches outperform the current baselines such as MVE and JFA. In addition, the
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ensemble modeling alone improves the results within its optimization method, specially

when the prior information is known. Note also that the results considered here are a

cocktail of noise samples with 0 to 15 dB SNR.

Figure 8.6: Integration approach: relative improvements ( babble noise condition)

8.6 Summary

In this chapter we described the integration of both techniques, the AUC of the ROC

curve optimization and the ensemble modeling. We provided some insight into how the

process takes place and gave some experimental examples. We observed that performing

the integration the two can improve the actual baselines especially under noisy conditions.

We concluded that by including the ensemble approach, the models become more specific.

Furthermore, considering the AUC optimization, the ROC curve is optimized at every point

producing in improvements for every modeling scheme.
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Chapter 9

Discussion

Sin que nadie se las haya dicho, el indio sabe muchas

cosas. El indio lee con sus ojos tristes lo que escriben

las estrellas que pasan volando...

- Antonio Mediz Bolio La tierra del Faisán y

del Venado

In our aim to investigate the performance of our proposed methodologies in other

scenarios, we extended our analysis to other databases. In this chapter, first we give a brief

overview of the databases used, including the baseline results. Next, we show results for

the AUC of the ROC curve, the Ensemble Modeling and the integration approaches. The

databases employed are YOHO, MOBIO and Ahumada/Gaudi. They involve challenges

such as different languages and mismatched condition.

9.1 MOBIO database

MOBIO [142] is a large bi-modal (audio/visual) database divided into two phases. For the

purpose of this thesis we just included Phase I [143]. It comprises both speech and face

recognition of 161 participants in six sessions (57 female, 104 male). The combined signals

were recorded and saved in mp4 format from which we extracted the speech signals.

The database was recorded as follows:

A) Set responses: the users were asked questions such as: What is your name? (around 7

seconds)

B) Read Speech from a paper: the users read 3 fixed sentences (maximum 30 seconds)

C) Free speech: the users provide five to ten second answers to random questions.
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The phrases were recorded in six sessions. Each session included 21 questions: 5 set

responses, 1 read speech sample and 15 free speech recordings. The evaluation data split

in: enrollment, development and testing. The training of the UBM included the set (B) of

response questions, (we employed a total of 4893 audio files for male and 1764 for female).

The enrollment of the target users is composed of set of responses (A). Each target speaker

then has 5 training files. The testing set includes the free speech answers, set (C) for sessions

2 to 6 (we used a total of 1040 female and 1120 for male).

Other databases used in this work, particularly for the discriminative training (as in

previous sections) are Switchboard-1 (SW1) and Switchboard-2 (SW2) [117]. These two

databases contain telephone recordings and were used in the same manner as in the training

of JFA (see Section 5.4).

9.1.1 MOBIO Results

MOBIO database represents our first attempt to extend our findings to a new database.

Although, belonging to a multimodal database, we just used the speech signal to perform

the experiments.

9.1.2 Experimental Setup

The traditional front-end process was employed for two setups:

• System 1: Feature vector of 33 attributes: 16 static Cepstral, 1 log Energy, and 16

delta Cepstral coefficients. We selected a single file from each target user (the average

time of these utterances is 7 seconds) for training phase.

• System 2: Feature vector of 49 attributes: 16 static Cepstral, 1 log Energy, 16 delta

Cepstral coefficients, and 16 double delta Cepstral coefficients. The complete set of

target files were included to compute the target models (5 files).

For a first approach, a gender-dependent and target-independent 512-mixture GMM UBM

was trained employing a pool of the MOBIO speech database. For the second system, a 512-

mixture GMM UBM was trained using the NIST-setup, as described in Section 5.3 ( NIST

databases: 2004, 2005, 2006, 2010). For both approaches, the target-dependent models were

then obtained employing MAP. JFA experiments used the basic training scheme, employing

90 eigenchannels for the latent variables U and 200 for the eigenvoices V .

The discriminative training for MVE, the maximization of the ROC curve, and the

ensemble used a selection of cohort samples: 500 phrases from NIST 2004, 2005 2006,

switchboard 1, switchboard 2 and 500 phrases from NIST 2010 microphone. A total of

3000 phrases were used as imposter samples. For ensemble modeling, we just used a five
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partitions of the imposter data space, the partition was performed blindly, just the k-means

was used for this experiments and the different scoring methodologies’ outcomes were fused

to obtain a final score. For the integration, we partitioned the imposter space into five

different regions, the partition was performed blindly once again, and just the score fusion

is presented.

The noise-conditions experiments used babble noise extracted from the Aurora 2

database at different SNRs: 0,5,10,15 and 20 dB. The ensemble training used five partitions;

the same is applied to the integration (for every SNR-region the new data space is partitioned

into two new regions).

9.1.3 Results

Table 9.1 presents baseline results for the proposed systems. These results are just

informative. We observe how difficult it is for the system to update the parameters for

very short utterances. However, when training the models with the complete data available,

the verifier performance improved.

The main purpose of System 1 is to test MOBIO database in the worst scenario (baseline)

following the same rules as in NIST evaluations, using one file to train the target model.

For System 2, we considered all the phrases available per speaker and the improvement is

evident.

Male Female Average

System 1 20.55 25.23 22.89
System 2 15.45 17.41 16.43

Table 9.1: Explorative results (EER) on the Test set for the MOBIO database.

The results obtained by our approaches for MOBIO database are summarized in Table

9.2. We used System 2 as our baseline. JFA provides the greatest improvements. Although,

there is a gain from the maximization of the ROC curve, the improvements are not as great

as for the JFA case. The optimization performed using the integration presents the best

results. The specificity of the trained models for every channel and the optimization of the

ROC curve improved the current results.

Table 9.2 shows results for noise conditions as well. Note that although they follow

similar trends as the clean results, the discriminative optimizations work better than the

FA approaches in general. The best result was obtained using the integration method. Once

again, the optimization of the AUC of ROC curve improves the MVE and FA analysis based

approaches.

Figure 9.1 shows the results for the actual AUC as a metric for several cases. We
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Clean Noise
EER minDCF EER minDCF

Baseline MAP 16.43 9.2 21.68 14.5
MVE 14.55 8.4 15.21 10.4
JFA 11.81 7.6 18.45 12.3

MVE-AUC 12.32 8.0 14.06 9.7
JFA-AUC 10.27 7.2 13.1 8.5

Ensemble Modeling 11.33 7.3 12.41 8.3
Integration 9.96 6.8 10.97 6.6

Table 9.2: Final results (EER and minDCF) on the Test set for MOBIO database.

observe that although the result are better for clean speech, the noisy conditions did benefit

from this optimization. Note that FA-based approaches performed better for the clean

condition.1 However, when the experiments were performed under noisy conditions, best

results are obtained by the MVE-based approaches.

Figure 9.1: AUC of the ROC summary results for the MOBIO database.

Figure 9.2 describes the relative improvements. The relative improvement for the noisy

conditions are higher than the ones observed for the on clean condition. The integration

method for both clean and noisy conditions obtained the best results. Note that we are

comparing the MVE-AUC with the MVE baseline and the rest of the approaches, JFA-

AUC, ensemble, and integration with the JFA-baseline. The reason is to provide a fair

comparison for the approaches that does not consider FA as an initial point.

1This observation was also true for the NIST database in previous Chapters.
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Figure 9.2: Relative improvement summary for MOBIO database.

9.2 Ahumada/Gaudi databases

The Ahumada/Gaudi data are other interesting databases in Spanish [144]. Both databases

were recorded in Castilian Spanish under controlled conditions and include 200 male users for

Ahumada and 200 female users for Gaudi. The signals were recorded over six sessions, three

sessions for a microphone scenario (different microphones were used), and three sessions for

telephone. The phrases recorded consisted of isolated digits, concatenated digits, balanced

phrases, reading text, and spontaneous speech.

This database represents our first attempt to extend our knowledge beyond languages.

For this database, we selected a subset of speakers to perform the experiments.

9.2.1 Experimental Setup

We followed the description in [145, 144], but we selected 100 users from each gender, from

which imposters and target trials belong to matched and/or mismatched conditions. All the

files were downsampled (if needed to 8 kHz). We focused mainly on channel mismatch in a

text-independent context. The feature vectors include 49 components: 16 static Cepstral,

1 log Energy, 16 delta Ceptral coefficients, and 16 double delta Ceptral coefficients. A

gender-dependent and target-independent 512-mixture GMM UBM model was used as a

baseline. The initial GMM UBM was obtained from NIST databases: 2004, 2005, 2006,

2010 (microphone recordings). The target speakers were initially computed using MAP (all

data available for the 200 users was used to compute the models). The JFA experiments

employed 50 eigenchannels for the latent variable U and 100 for the eigenvoices V .

All the approaches that require a discriminative optimization (MVE, the optimization

of AUC of the ROC curve, and the ensemble) used the usual selection of cohort samples:

500 phrases from each NIST 2004, 2005 2006, switchboard 1, switchboard 2 and 500 phrases

from NIST 2010 microphone (3000 phrases were used as imposter samples). For ensemble
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modeling, we limited to five partitions of the UBM data space. The partitioning was

performed blindly, and the score outputs for the different scoring strategies were fused.

For the integration approach, as for the ensemble, the region was blindly divided in to five

partitions and a final fusion score was employed.

We used babble noise, extracted from the Aurora 2 database at different SNRS: 0,5,10,15

and 20 dB for the following experiments. The ensemble training used five partitions; the

same is applied to the integration (for every SNR-region the new data space is partitioned

into two new regions).

9.2.2 Results

Table 9.3 and 9.4 describe performance for the verification task using different approaches.

Separate results for males and females were computed to analyze the current performance.

For both cases we can observe that the results follow the same trend. Adaptation from a

general UBM from another database caused the EERs and minDCF to be higher than usual.

However, when optimizing the AUC of the ROC curve, including negative and positive

examples of the current database, improved the results. Moreover, when applying ensemble

modeling the results outperformed the MVE-AUC approach, but not JFA-AUC. Finally, the

integration approach produced the best results. The integration approach includes just the

fusion of scores.

Tables 9.3 and 9.4 show the same trend for the noise conditions. The discriminative

optimizations improve better than the FA approaches in general. Once again, the best

result was obtained using the integration method. The optimization of the AUC of the

ROC curve improves the MVE and FA-related approaches.

Clean Noise
EER minDCF EER minDCF

Baseline MAP 17.35 9.6 22.52 15.3
MVE 15.24 8.9 18.64 11.0
JFA 13.82 7.7 20.32 13.1

MVE-AUC 13.56 7.6 16.16 10.3
JFA-AUC 9.53 6.1 14.20 8.6

Ensemble Modeling 10.3 6.8 12.18 7.2
Integration 8.4 5.3 10.92 6.6

Table 9.3: Final results (EER and minDCF) for the Ahumada database.

Figure 9.3 shows the results for the AUC of the ROC curve as a metric. We observe

that including the AUC optimization improves the current baselines. For clean case, the

graph shows that FA-related techniques outperform approaches such as ensemble modeling.
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However, for the noise conditions, ensemble and integration modeling improved the JFA and

MVE methods.

Figure 9.3: AUC of the ROC curve: summary results for the Ahumada database.

Figure 9.4 describes the relative improvements for Ahumada database. Note that MVE-

AUC is compared against the MVE-baseline. Although the method improved the baseline,

it did not showed any improvement against FA-related methods. Moreover, ensemble

modeling did worse compared to JFA-AUC. Ensemble and Integration resulted in greater

improvements for the noise conditions, following the same trend of previous databases.

Figure 9.4: Relative improvement summary for the Ahumada database.

The results for the Gaudi (female) database are slightly better than the ones presented

for Ahumada, but they follow the same tendency.

Figure 9.5 depicts the results of the AUC metric for this database. Integration modeling

provides the greatest AUC values for both cases. For the clean case, the FA-related

approaches obtained better results compared to the MVE approaches. However, under

noise conditions, the MVE schemes provide better performance compared to FA-related

optimizations.

Figure 9.6 shows the relative improvements for the clean and noise conditions. Once

again, we compare MVE-AUC with the MVE baseline (the results if compared to the current
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Clean Noise
EER minDCF EER minDCF

Baseline MAP 16.5 9.3 21.26 14.7
MVE 14.4 7.9 17.45 10.6
JFA 12.4 6.6 19.1 12.4

MVE-AUC 12.6 6.4 15.12 9.1
JFA-AUC 8.3 5.2 13.31 7.2

Ensemble Modeling 9.2 6.0 11.08 6.6
Integration 7.8 4.7 9.71 5.4

Table 9.4: Final results (EER and minDCF) for the Gaudi database.

Figure 9.5: AUC of the ROC curve summary results for Gaudi database.

FA are slightly worse). For the clean condition, JFA-AUC and integration modeling provide

the most noticeable improvement. Every proposed methodology provides a gain; moreover,

we observe that the relative improvement is higher for the noise condition.

9.3 YOHO database

The YOHO database is one of the first data sets used for SV. It was recorded over telephone

channels. Although the vocabulary seems quite small, (the dictionary consists of limited

compound numbers), its simplicity make it easy to address issues like noise.

The database [49] has the following properties: it contains clean voice utterances of 138

speakers of different nationalities. It is a combination of lock phrases (for example, ”Thirty-

Two, Forty-One, Twenty-Five”), with 4 enrollment sessions per subject and 24 phrases

per enrollment session; 10 verification sessions per subject and 4 phrases per verification

session. Given 18768 sentences, 13248 sentences were used for training and 5520 sentences

for testing.



9.3 YOHO database 131

Figure 9.6: Relative improvement summary for Gaudi database.

9.3.1 Experimental Setup

We used the whole database (138 users) to obtain results based on our different approaches.

We used only the current users of the database as target speakers and never developed

imposter models. The basic UBM was generated using the NIST databases: 2004, 2005,

2006, 2010 (including the microphone). We tested the performance for a feature vector of

33 attributes: 16 static Cepstral coefficients, 1 log Energy, and 16 delta Cepstral coefficients

(the same configuration as presented for MOBIO). Once again, a gender-dependent and

target-independent 512-mixture GMM imposter model was used as a baseline. The initial

GMM models were obtained from the NIST database plus the MOBIO data set used for

training. For the test, we chose users from the database but also random users from other

databases, such as NIST2004. JFA employed 50 eigenchannels for the latent variable U and

100 for eigenvoices V .

The discriminative approaches (MVE, the optimization of the AUC of the ROC curve,

and the ensemble) use the usual selection of negative samples: 500 phrases from NIST 2004,

2005, 2006, switchboard 1, switchboard 2 and 500 phrases from NIST 2010 microphone

(3000 imposter phrases). For the clean experiments of ensemble modeling, we limited the

UBM space to five partitions. The partitions were blindly computed and the final outcome

is the fusion of the scores. For the integration approach, the region was blindly divided into

five partitions and a final fusion score is obtained.

For the noise-condition experiments we used babble noise extracted from the Aurora 2

database. It was added to the training and test files at different SNRS: 0, 5, 10, 15 and

20 dB. For the ensemble training we used a five-partitions scheme. The same is applied to

the integration. For every SNR-dependent region the new data space is partitioned into two

new regions.
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9.3.2 Results

Table 9.5 shows the results for clean speech. The integration approach obtains the best

results. Moreover, the system shows improvements for every approach. It is interesting that

the ensemble modeling outperforms the optimized AUC for MVE, but not the optimized

AUC for JFA. The JFA with the AUC optimization converges rapidly giving a good

estimation of the parameters. Although the optimization of the ROC curve obtains a low

misverification measure in the training stage, was not enough to compute an adequate model

estimation.

Table 9.5 also shows the results for babble cocktail noise. They follow the same trend

as the clean experiments. Note that even for small vocabularies, the proposed approaches

lowered both the EER and the minDCF.

Clean Noise
EER minDCF EER minDCF

Baseline MAP 3.29 2.1 7.24 5.8
MVE 2.93 2.1 6.53 5.2
JFA 1.54 1.1 4.39 3.9

MVE-AUC 1.64 1.2 5.58 4.8
JFA-AUC 0.81 0.5 3.23 2.1

Ensemble Modeling 1.33 0.9 3.51 2.3
Integration 0.62 0.4 2.62 1.6

Table 9.5: Final results (EER and minDCF) on the Test set for the YOHO database.

Figure 9.7 shows the AUC of the ROC curve metrics. Because of the small number of

speakers and the high EER, results of the AUC are very small. We observe best results for

the integration approach. The JFA and JFA-AUC methods performed better than MVE

and MVE-AUC for the clean case (following the same trend as in previous databases). The

AUC values are smaller for the noise conditions. All of them seem competitive, except that

integration modeling clearly outperforms the rest.

In Figure 9.8 we show the relative improvement obtained using the proposed approaches.

Integration modeling outperforms the rest of the approaches for clean and noise conditions.

MVE-AUC is compared to MVE as the baseline, and JFA-AUC, ensemble and integration

are compared to JFA as baseline. The ensemble modeling optimization shows the smallest

improvements for this specific database.
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Figure 9.7: AUC of the ROC curve summary results for YOHO database.

Figure 9.8: Relative improvement summary for YOHO database.

9.4 Summary

This chapter described the final set of results for the proposed optimization methods. We

note that the optimization of the area under the ROC curve is beneficial in any case. Even for

the state-of-the-art approaches, MVE and JFA, the AUC optimization reduces the EER and

the minDCF. The ensemble approach was mainly focused to alleviate the channel mismatch

problem and noise conditions. Nevertheless, it is shown that the ensemble approach is

also beneficial for clean conditions, obtaining fair results. Moreover, the integration of

all approaches shows a significant improvement, especially when fusion of the results is

performed. The AUC of the ROC curve summary graphs show also significant results

that support the contributions of the proposed approaches. Finally, the relative trends of

improvements emphasize the potential of the techniques for new scenarios.
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Chapter 10

Conclusions and Future Work

Finally, from so little sleeping and so much reading, his

brain dried up and he went completely out of his mind.

- Miguel de Cervantes Saavedra Don Quijote

The theory and experiments in the previous chapters show the improvements obtained

by optimizing the modeling of different methodologies using a discriminative approach.

First, the AUC-based optimization is competitive with conventional training methods in

the worst case (usually for a clean scenario) and can outperform them greatly under other

circumstances (noise conditions). The first sign of this improvement is the decrease of the

EER, minDCF results and the increase of the actual AUC of the ROC curve. Moreover, we

support our initial hypothesis by providing examples where the AUC optimization actually

improves the performance at all operating points. Presumably, if one were to consider the

combined results at all operating points, the benefits of AUC-based learning would be even

greater. Another lesson to be derived from our experiments is the direct optimization of an

objective function that directly relates to the actual task being performed. This is not an

epiphany – this fact has always been known; all we provide is some confirmation. Besides,

if the only objective is the performance at a specific operating point (as specified by the

ratio of FA and FR), then the AUC objective function could be modified to consider only

that operating point. It is to be expected that the performance at that operating point will

improve at the cost of performance at other operating points.

The AUC optimization with noise has provided another research branch, and the

results are consistently significant. Clearly, a learning paradigm that optimizes the entire

ROC curve results in better performance than that obtained with conventional maximum-

likelihood of discriminative training methods. Is clearly seen not only in the ROC

curve but also in the score distribution, the DET curve, and every metric. What is

interesting, however, is that the improvements obtained from AUC optimization are actually
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significantly greater for noisy speech than for clean speech. One reason is that AUC

optimization naturally accounts for any shift in the data away from the intended operating

point where performance is measured. More curiously, the performance of every method

(JFA, MVE and i-vector), which function over the entire space of data, benefits significantly.

It is important to point out the better performance of MVE in the noise conditions. Thus,

the final improvement of AUC-optimized MVE on noisy data is superior to that obtained

with similarly trained JFA. Moreover, the gains increase with increasing noise level.

We also presented an ensemble approach to partition the signal space into specific

attributes. We found that partitioning and refining the space by speaker or by environment

both improve performance over the baseline significantly. An interesting finding was the

extent to which fusion and combination of the different scoring schemes outperform the

baseline. Moreover, partitioning the space not only benefits a single methodology, but once

again for both the MVE and FA approaches, the gain improves when the models become

specific and refined. Even more interesting is the research under noise conditions. We found

that having some prior knowledge of the noise (SNR in our case) improves the current

results, and that performing a blind estimation of the attribute gives competitive results.

The integration of both algorithms was initially proposed for a robust system that can

benefit from both approaches. However, the scheme can be applied to a broader range

of possibilities, where not just noise is the most important factor. We also showed that

establishing a hierarchical structure is useful, where each level acts only on a single problem

improves the performance. The blind solution to obtain this structure is still a matter

of research, but if some assumptions are made, like the type of noise and the amount of

channels, the challenge becomes feasible. The main drawback of this approach is the amount

of data needed in practice to optimize the models correctly. However, with the development

of technology this is not longer a problem at the moment.

We extended our research not just to the NIST databases used to develop the system,

but also to other databases that present their own challenges. We found that our proposed

approaches improved the results consistently for each one of them ( clean and noise

condition), as in previous findings. Besides, it was interesting to consider databases in

different languages, such as Ahumada and Gaudi and we obtained competitive results for

them. Other small databases such as YOHO and MOBIO gave us confidence on the model

refinements, but also supports the contention that the method is useful for more than just

the NIST evaluations. The general models obtained from baseline databases can be adapted

to new sets of data. Both of them showed improvements for every case.

The current state-of-the-art systems were outperformed by our proposed discriminative

techniques. Although discriminative training is computationally expensive, we found that

discarding the parts of the samples that do not provide valuable information to the models

alleviates the problem.
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Under controlled conditions, we showed that MVE and our discriminative optimization

approach performed better than the ML approaches, specifically for systems that employ

less than 512 GMM models. FA-based algorithms depend on the amount of data available to

perform a suitable parameter estimation. Our approaches based on discriminative training

mitigate this issue, when included as the last stage of the optimization procedure. The same

occurs for noise conditions, where discriminative optimization given by either the ensemble

or the AUC under the ROC curve, provide a better estimation of the noise models, specially

for low SNRs.

10.1 Future Research

We presented different approaches of discriminative model optimization. Although each of

them present improvements for every shown scenario, there are still challenges that may be

addressed such as different noise types at different SNRs, real channel mismatches, training

with just a few seconds of speech, as well as trials with just a few samples.

As noted earlier, AUC-optimization can also be employed for other learning and modeling

techniques, e.g. i-vector based representations [14] and PLDA [121, 73]. Generalizations

can also consider multi-class classification results such as those employed for speaker

identification. These too are current areas of research. For the AUC optimization, it would

be also interesting to select a region of interest of the curve, depending on the application,

and optimize accordingly. For future research we can think of optimizing the DCF directly

and calibrate according to this new scheme. As part of the future research, we will also

investigate other objective functions that assigns weights to the ROC/DET curve so that

we can control not only the area under the curve, but also the curve at each operating point.

For the ensemble approach, we found that the best results were obtained when a priori

knowledge of the factor in the partitioning is available. We conjecture that much of this

benefit may be obtained if this information is correctly estimated in the training stage. We

will investigate this in future work. We also propose to investigate methods for identifying

partitions when multiple factors must be considered concurrently, and particularly when they

must be estimated. We will also investigate methods for formally optimizing the partitions

for verification.

The integration approach was investigated for the particular cases of clean speech and

babble noise. As for the other techniques, this approach can also be used for other type of

noise types and channels. It is also interesting to find suitable techniques that can provide

the appropriate hierarchical structure for each application.

Finally, our findings can also be extended and applied to other fields as speaker

identification or language recognition.
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Appendix A

Traditional approaches preliminaries

Nothing is absolute. Everything changes, everything

moves, everything revolves, everything flies and goes

away.

Frida Kahlo

This Appendix provide the readers with some details some of the classic algorithms used

along the thesis.

A.1 Expectation Maximization

EM is a machine learning tool that works for point estimation. Then, for a set Xt where

t = 1...T and a hidden (latent) variable Z, we can estimate the parameters Λ. Let us

consider define the following,

`(Λ) = log p(x|Λ) = log
∑
z

p(x, z|Λ)

= log
∑
z

Q(z|x,Λ)
p(x, z|Λ)

Q(z|x,Λ)

>=
∑
z

Q(z|x,Λ) log
p(x, z|Λ)

Q(z|x,Λ)
≡ F (Q,Λ), (A.1)

where Q(z|x,Λ) is the density of z. Knowing the inequality, the task is to find the lower

bound of F (Q,Λ). Hence,

E− step Qt+1 = arg max
Q

p(Q,Λt) (A.2)

M− step Λt+1 = arg max
Λ

p(Qt+1,Λ). (A.3)
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Consider Qt+1 = p(z|x,Λt), then the distribution Q will just depend on Λ. Under this

argument,

`(Λ) >=
∑
z

Q(z|x,Λ) log p(x, z|Λ)−
∑
z

Q(z|x,Λ) logQ(z|x,Λ) (A.4)

>= Q(Λ|Λt) + S(Q). (A.5)

Finally, we can obtain suitable expressions for the expectation and maximization steps:

E− step Q(Λ|Λt) = E(log p(x, z|Λ) (A.6)

M− step Λt+1 = arg max
Λ

E log p(x, z|Λ). (A.7)

A.2 Support Vector Machine

The Support Vector Machine (SVM) is widely used in pattern recognition. In this research,

it is employed as a classifier that can transform feature data into a binary key. SVM was

first developed by Vapnik and Chervonenkis [146]. Although it has been used for several

applications, it has also been employed in biometrics [147].

Given the observation inputs and a function-based model, the goal of the basic SVM is

to classify these inputs into one of two classes. Afterwards, the following set of pairs are

defined {ρi, yi}; where ρi ∈ Rn are the training vectors and yi = {−1, 1} are the labels.

The method relies on a linear separation of the data previously mapped in a higher

dimension space H, by using φ : Rn → H;φ → φ(ρ). For generalization, let the margin

between the separator hyperplane be,

{h ∈ H|〈w,h〉H +$0 = 0}, (A.8)

and the data φ(ρ) is maximized. Moreover, The SVM learning algorithm finds an hyperplane

(w, b) such that,

min
ρi,b,ξ

1

2
w>w + C

l∑
i=1

ξi (A.9)

subject to yi(w
>φ(ρi) + b) ≥ 1− ρi (A.10)

ξi ≥ 0,

where ξi is a slack variable and C is a positive real constant known as a tradeoff parameter

between error and margin. Equations A.9 and A.10 can be transformed into a dual problem

represented by the Lagrange multipliers αi,
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l∑
i=1

αi −
1

2

l∑
i=1,m=1

αiαmyiym〈φ(ρi), φ(ρm)〉 (A.11)

l∑
i=1

αiyi = 0, C ≥ αi ≥ 0. (A.12)

αi can be solved as a quadratic programming (QP) problem. The resulting values αi ∈ R
have a close relation with the training points ρi.

To extend the linear method to a nonlinear technique, the input data is mapped into

a higher dimensional space by function φ. However, exact specification of φ is not needed;

instead, the expression known as kernel K(ρi, ρj) ≡ φ(ρi)
>φ(ρm) is defined.

There are different types of kernels: linear, polynomial, radial basis function (RBF) and

sigmoid, among others. For our research, we just employed the linear kernel that is defined

as,

K(ρi, ρj) ≡ φ(ρi)
>φ(ρm), (A.13)

which is equivalent to learn the weights discriminatively.
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Appendix B

Review of Factor Analysis

At the end of the day, we can endure much more than

we think we can.

Frida Kahlo

This Appendix provide the readers with some details about Factor Analysis that will be

helpful to understand the state-of-the-art techniques.

B.1 Factor Analysis

Factor analysis establishes that continuous factors can control data. In other words, these

factors can model the covariance structure of the high-dimensional data. So we can think of

the data as being generated by first, locating a point in a subspace and then adding noise.

If that is the case, we can consider the following:

X − µ = LZ + ε, (B.1)

where X is a random variable of dimensions P ×1 (observation), µ is the data mean vector,

L refers to the loading matrix of P ×R dimensions, Z is a latent random variable (known as

a factor vector) of R× 1 dimensions and ε is random noise with diagonal covariance matrix

ψ.

The following assumptions are to be considered as well,

E(X) = E(Z) = E(ε) = 0 (B.2)

E(ZZ>) = Ω = I (B.3)
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E(εε>) = Ψ = diag(Ψ) (B.4)

E(XZ>) = L (B.5)

Σ = E(XX>). (B.6)

We consider that Z and ε are independent and that X = LZ + ε is a linear combination

of common factors and Σ is full rank.

Moreover, we can show that,

E(XX>) = E[(LZ + ε)(LZ + ε)>] (B.7)

= E[LZZ>︸ ︷︷ ︸
I

L> + L Zε>︸︷︷︸
0

+ εZ>︸︷︷︸
0

LT + εε>] (B.8)

= LL> + Ψ (B.9)

and,

E(XF>) = E[(LZ + ε)Z>] (B.10)

= E(LZZ>︸ ︷︷ ︸
I

+ εZ>︸︷︷︸
0

)] (B.11)

= L (B.12)

LL> are called commonalities and ψi is the uniqueness.

Σ = LL> + Ψ =


`1`
>
1 + ψ1 `1`

>
2 + ψ1 · · · `1`

>
R + ψ1

`2`
>
1 + ψ2 `2`

>
2 + ψ2 · · · `2`

>
R + ψ2

...
...

. . .
...

`P `
>
1 + ψP `P `

>
2 + ψP · · · `P `

>
R + ψP

 (B.13)

A special note: FA analysis exhibit several solutions:

E(LZ + ε) = E[(L

I︷ ︸︸ ︷
OO> Z + ε)Z>] (B.14)

= E[(LO︸︷︷︸
L∗

O>Z︸ ︷︷ ︸
Z∗

+εZ>] (B.15)

= E(L∗Z∗> + εZ>)] (B.16)

Is not possible to distinguish between L∗ and L.

B.2 Joint Factor Analysis computation in detail

The steps presented in the following sections are based on the work described in [60].
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For the set feature vectors χ1, χ2, ..., χt, ... and speaker s, let

M = m+ V y + Ux+Dz. (B.17)

1. Assuming that U and D are zero, train the loading matrix V ,

M = m+ V y. (B.18)

(a) Compute the Baum-Welch Statisitcs 0-th, N , the 1-st, F , and 2-nd, S, order

statistics of speaker s and Gaussian component c employing observations T :

N(s) =
∑
t

γt(c) (B.19)

F (s) =
∑
t

γt(c)χt (B.20)

S(s) = diag
∑
t

γt(c)χtχ
∗
t , (B.21)

where γ is the posterior probability of component c of a GMM for a specific

observation t and certain speaker s. Also note that the sum is computed over all

conversation sides for speaker s.

(b) Center the 1-st, F , and 2-nd, S, order statistics:

F̃ (s) = Fc(s)−N(s)mc (B.22)

S̃(s) = Sc(s)− diag(F (s)m∗c +mcF (s)∗ −N(s)mcm
∗
c). (B.23)

where mc is the mean of a specific component in the GMM.

(c) Expanding the matrices,

N =


N1(s)I

. . .

Nc(s)I

 (B.24)

F(s) =


F̃1(s)

...

F̃c(s)

 (B.25)

S(s) =


S̃1(s)

. . .

S̃c(s)

 (B.26)
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(d) Using Baum-Welch statistics, estimate the posterior of the hidden factor y. First,

let

l(s) = I + V ∗Σ−1N(s)V, (B.27)

where Σ is the covariance matrix of the UBM and V can use a random

initialization. The posterior of y(s) is given by

y(s) ∼ N (l−1V Σ−1F̃(s), l−1
v ). (B.28)

Hence, the expected value, E(y), is

ỹ(s) = l−1V Σ−1F̃(s), l−1
v . (B.29)

(e) Compute the statistics across speakers using information about the posterior

distributions of the estimated y:

Nc =
∑
s

Nc(s) (B.30)

A =
∑
s

Nc(s)l
−1
v (s) (B.31)

C =
∑
s

F(s)(l−1V Σ−1F̃(s))∗ (B.32)

N =
∑
s

N(s) (B.33)

Note that l−1
v (s) is the posterior distribution of y(s), and E[y∗(s)] =

(l−1V Σ−1F̃(s))∗.

(f) Compute V and the update of the covariance.

V =


V1

...

VC

 =


A1C1

...

A1CC

 (B.34)

where

C =


C1

...

CC

 (B.35)

and

Σ = N−1

(∑
s

S(s)− diag(CV ∗)

)
. (B.36)
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(g) Iterate from d to f between 15 to 25 times. In every iteration substitute the

estimated V .

2. Assume D is zero, train the loading matrix U given the estimate of V .

M = m+ V y + Ux.

(a) After estimating y for each speaker, compute the Baum-Welch statistics, NH and

FH , for each H (conversation side or channel) of each speaker S:

Nc(h, s) =
∑
t∈h,s

γt(c) (B.37)

Fc(h, s) =
∑
t∈h,s

γt(c)χt. (B.38)

(b) Calculate the shift for each speaker using R(s) = m + V y and compute the

Gaussian posteriors. Subtract them from the first-order statistics F . The new

FH(s) depends on the channel and the speaker,

F̃c(h, s) = Fc(h, s)−R(s)Nc(h, s). (B.39)

(c) Expand the matrices:

N(h, s) =


N1(h, s)I

. . .

Nc(h, s)I

 (B.40)

F(h, s) =


F̃1(h, s)

...

F̃c(h, s)

 . (B.41)

(d) Use the new statistics N(h, s) and F(h, s) to train U and x in the same way as

the training of V and y (refer to step 4).

(e) Iterate 15 to 20 times to obtain U and x using the updated N(h, s) and F(h, s).

3. Train the residual D given the estimates of V and U ,

M = m+ V y + Ux+Dz.
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(a) Compute the speaker shift of R(s) = m+ V ys, and the channel shift, W(h, s) =

Uxh,s. Compute the Gaussian posterior of the shifts and subtract them from the

first order statistics, Fh,s,

F̃c(h, s) = Fc(h, s)−R(s)Nc(s)−
∑
h∈s

W(h, s)Nch, s. (B.42)

(b) Expand the matrices:

N(h, s) =


N1(h, s)I

. . .

Nc(h, s)I

 (B.43)

F(h, s) =


F̃1(h, s)

...

F̃c(h, s)

 . (B.44)

(c) Estimate the initial factor z and. Let D be a random,

lD(s) = I +D∗Σ−1N(s)D. (B.45)

The posterior of z(s) is given by

z(s) ∼ N (l−1
D DΣ−1F(s), l−1

D ). (B.46)

Hence, the expected value, E(z), is

z̃(s) = l−1
D DΣ−1F(s), l−1

D . (B.47)

(d) Update the statistics across the speakers:

Nc =
∑
s

Nc(s) (B.48)

A =
∑
s

Nc(s)l
−1
D (s) (B.49)

B =
∑
s

F(s)(l−1
D DΣ−1F̃(s))∗ (B.50)

N =
∑
s

N(s). (B.51)

(e) Calculate D
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D =


D1

...

DC

 =


A1B1

...

A1BC

 , (B.52)

where

C =


C1

...

CC

 . (B.53)

(f) Iterate from b to c 15 to 20 times.

Compute factors

• Compute the final factors x (channel), y (speaker) and the residual z.

Scoring

• Compute the final score by a simplified version of the log-likelihood ratio. Given a

new utterance (referred here as tst), the loading matrices and the factors (referred

here as tar), compute the product,

θs,H = (V ytar +Dztar)Σ
−1(Ftst −Ntstm−NtstUxtst).

B.3 i-vectors

Train the Loading matrix

1. Train the loading matrix T ,

M = m+ Tw.

(a) As in JFA, compute the Baum-Welch statistics 0-th, N , the 1-st, F , and 2-nd,

S, order statistics of speaker s and Gaussian component c. Collect the phrases

belonging to specific channels and speaker, treat each channel-set collection as

belonging to different speakers:

N(s) =
∑
t

γt(c) (B.54)

F (s) =
∑
t

γt(c)χt (B.55)

S(s) = diag
∑
t

γt(c)χtχ
∗
t . (B.56)
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(b) Using Baum-Welch statistics, estimate the posterior of the hidden factor w.

(c) Compute statistics across speakers using the information of the posterior

distributions of the estimated w.

(d) Compute T and the update of its covariance.

(e) Iterate from b to d between 15 to 25 times. In every iteration substitute the

estimated T .

Channel compensation

Two approaches have provided successful results:

1. Compute the linear discriminant analysis (LDA) to reduce the dimensionality of the

i-vectors.

Afterwards, use Probabilistic Linear Discriminant Analysis (PLDA) as a the target

trainer

2. Compute LDA of the i-vectors followed by with-In-class covariance normalization

(WCCN).

Scoring

• Compute cosine distance scoring (CDS) on the updated i-vectors (after channel

compensation).



Appendix C

Notes about MVE

Most people believe the mind to be a mirror, more or

less accurately reflecting the world outside them, not

realizing on the contrary that the mind is itself the

principal element of creation.

Rabindranath Tagore

This Appendix provides the readers with some details about Minimum Verification

Approach and its extensions.

C.1 Minimum Verification Error

To update the model parameters for a speaker S a GMM defined as, Λ =

{wCk , µCk ,ΣC
k ; ∀k},where C is the class (target, S or impostor speaker, S̄) and k is the

GMM component.

Let us consider a dimension optimization, where µCk = [µCkz]
D
z=1 , σCk = [σCkz]

D
z=1 and∑M

k=1w
C
k = 1 .

Then, for µCkz we perform the following,

µ̃Ckz =
µCkz
σCkz

(C.1)

For simplicity, we dropped the subindex z considering the optimization of just one

dimension (keep in mind that the optimization is performed dimension by dimension),

µ̃Ck (t+ 1) = µ̃Ck (t)− ε∂`C(χ; Λ)

∂µ̃Ck
|Λ=Λt , (C.2)
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where
∂`C(χ; Λ)

∂µ̃Ck
=
∂`C(χ; Λ)

∂dC

∂dC
∂µ̃Ck

, (C.3)

∂`C(χ; Λ)

∂dC
= γ`C(dC)(1− `C(dC)), (C.4)

∂dC
∂µ̃Ck

= −∂gn(χ; Λ)

∂µ̃Ck
+
∂Gn(χ; Λ)

∂µ̃Ck
χ ∈ Cn (C.5)

∂gC(χ; Λ)

∂µCk
=

1

p(χ; ΛC)

∂ p(χ; ΛC)

∂µCk
, (C.6)

∂GC(χ; Λ)

∂µCk
=

1

p(χ; Λ̄C)

∂ p(χ; Λ̄C)

∂µCk
. (C.7)

Consider for a specific k, dimension d, the speaker C and to avoid bias, let µCk = σ µ̃Ck .

To compute the mean,

∂p(χ; Λ)

∂µ̃k
=

wkN (χ|µ̃k, σk)∑
k′ wk′ N (χ|µ̃k′ , σk′)

(
χ

σk
− µ̃k

)
. (C.8)

The computation for ΣC
k and wCk adopts the same procedure.

Let σ̃Ck = log(σCk ),

σ̃Ck (t+ 1) = σ̃Ck (t)− ε∂`C(χ; Λ)

∂σ̃Ck
|Λ=Λt , (C.9)

where
∂`C(χ; Λ)

∂σ̃Ck
=
∂`C(χ; Λ)

∂dC

∂dC
∂σ̃Ck

, (C.10)

∂`C(χ; Λ)

∂dC
= γ`C(dC)(1− `C(dC)), (C.11)

∂dC
∂σ̃Ck

= −∂gn(χ; Λ)

∂σ̃Ck
+
∂Gn(χ; Λ)

∂σ̃Ck
χ ∈ Cn (C.12)

∂gC(χ; Λ)

∂σ̃Ck
=

1

p(χ; ΛC)

∂ p(χ; ΛC)

∂σ̃Ck
, (C.13)

∂GC(χ; Λ)

∂σ̃Ck
=

1

p(χ; Λ̄C)

∂ p(χ; Λ̄C)

∂σ̃Ck
. (C.14)

The final solution to compute σ is

∂p(χ; Λ)

∂σk
=

wkN (χ|µk, σk)∑
k′ wk′ N (χ|µk′ , σk′)

(
χ− µk
σ̃k

− 1

)
. (C.15)

For the weights, w, we proceed as follows,
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w̃Ck (t+ 1) = w̃Ck (t)− ε∂`C(χ; Λ)

∂w̃Ck
|Λ=Λt , (C.16)

where
∂`C(χ; Λ)

∂w̃Ck
=
∂`C(χ; Λ)

∂dC

∂dC
∂w̃Ck

, (C.17)

∂`C(χ; Λ)

∂dC
= γ`C(dC)(1− `C(dC)), (C.18)

∂dC
∂w̃Ck

= −∂gn(χ; Λ)

∂w̃Ck
+
∂Gn(χ; Λ)

∂w̃Ck
χ ∈ Cn (C.19)

∂gC(χ; Λ)

∂w̃Ck
=

1

p(χ; ΛC)

∂ p(χ; ΛC)

∂w̃Ck
, (C.20)

∂GC(χ; Λ)

∂w̃Ck
=

1

p(χ; Λ̄C)

∂ p(χ; Λ̄C)

∂w̃Ck
. (C.21)

Finally, for the set of weights wk and to ensure that
∑K

k=1wk = 1, let, w = exp(w̃)∑K
k=1 exp(w̃)

.

∂p(χ; Λ)

∂w̃k
=

N (χ|µk, σk)∑
k′ wk′ N (χ|µk′ , σk′)

. (C.22)

C.2 AUC optimization using FA

The optimization of the parameters for FA has two stages (as in the usual JFA) to decouple

the estimation of V, U,Ψ.

1. Start by V maintaining U fixed, considering that Q = V V > + Ψ, where Ψ = DD>

and is diagonal. The computation of µ, for a specific k, dimension d and to avoid bias,
is straightforward using, µk = qk µ̃k; hence,

∇φΥ(χ, µ̃k) =−
∑
S∈S

∑
χ∈XS

∑
χ∈XS̄

γR(1−R)

|XS ||XS̄ |
wkN (χ|µk, qk)∑
k′ wk′ N (χ|µk′ , qk′)

(
χ

qk
− µ̃k

)
. (C.23)

2. To estimate Q, we formulate first for V and then Ψ.

We use the following identities to solve for Q. Let,

∂(log |qk|)
∂qi,jk

= (qki.j)
−1 (C.24)

∂(qko.p)
−1

∂qi,jk
= (qko.i)

−1(qkp.j)
−1 (C.25)
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We will also make the matrix dimensions explicit, assuming that Ψ is diagonal. Then,

qk, let q̃ = log(q).

Then, for V ,

∇φΥ(χ, ṽij) =−
∑
S∈S

∑
χ∈XS

∑
χ∈XS̄

γR(1−R)

|XS ||XS̄ |
(C.26)

wkN (χ|µk, qk)∑
k′ wk′ N (χ|µk′ , qk′)

{
[Q−1(x− u)]i[(x− u)>Q−1V ]j − [Q−1V ]ij

}
. (C.27)

3. for ψ,

∇φΥ(χ, ψ̃i,j) =−
∑
S∈S

∑
χ∈XS

∑
χ∈XS̄

γR(1−R)

|XS ||XS̄ |
wkN (χ|µk, qk)∑
k′ wk′ N (χ|µk′ , qk′)

{
1

2

(
Q−1
ii − [Q−1x− µ]2i

)}
.

(C.28)

Now, for U , we fix the current Q and estimate accordingly.

∇φΥ(χ, Ũk) =−
∑
S∈S

∑
χ∈XS

∑
χ∈XS̄

γR(1−R)

|XS ||XS̄ |
wkN (χ|µk, qk)∑
k′ wk′ N (χ|µk′ , qk′)

{(
χ− µk
Ũk

)2

− 1

}
. (C.29)

Finally, for the set of weights wk and to ensure that
∑K

k=1wk = 1, let w = exp(w̃)∑K
k=1 exp(w̃)

,

∇φΥ(χ, w̃k) =−
∑
S∈S

∑
χ∈XS

∑
χ∈XS̄

γR(1−R)

|XS ||XS̄ |
w̃kN (χ|µk, qk)∑
k′ wk′ N (χ|µk′ , qk′)

. (C.30)
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[3] C. Hanilçi, T. Kinnunen, R. Saeidi, J. Pohjalainen, P. Alku, F. Ertas, J. Sandberg, and

M. Hansson-Sandsten, “Comparing spectrum estimators in speaker verification under

additive noise degradation,” in Acoustics, Speech and Signal Processing (ICASSP),

2012 IEEE International Conference on. IEEE, 2012, pp. 4769–4772.

[4] T. Weigold, T. Kramp, and M. Baentsch, “Remote Client Authentication,” IEEE

Security & Privacy, vol. 6, no. 4, pp. 36–43, 2008.

[5] L. O’Gorman, “Comparing passwords, tokens, and biometrics for user authentication,”

Proceedings of the IEEE, vol. 91, no. 12, pp. 2021–2040, 2003.

[6] A. Jain, A. Ross, and S. Pankanti, “Biometrics: a tool for information security,” IEEE

transactions on information forensics and security, vol. 1, no. 2, pp. 125–143, 2006.

[7] J. P. Campbell, W. Shen, W. M. Campbell, R. Schwartz, J.-F. Bonastre, and

D. Matrouf, “Forensic speaker recognition,” Signal processing magazine, IEEE, vol. 26,

no. 2, pp. 95–103, 2009.

[8] P. J. Barger and S. Sridharan, “On the performance and use of speaker recognition

systems for surveillance,” in Video and Signal Based Surveillance, 2006. AVSS’06.

IEEE International Conference on. IEEE, 2006, pp. 109–109.

[9] T. Herbig, F. Gerl, and W. Minker, “Simultaneous speech recognition and speaker

identification,” in Spoken Language Technology Workshop (SLT), 2010 IEEE. IEEE,

2010, pp. 218–222.



156 BIBLIOGRAPHY

[10] Q. Li, B. Juang, C. Lee, Q. Zhou, and F. Soong, “Recent advancements in automatic

speaker authentication,” IEEE Robotics & Automation Magazine, vol. 6, no. 1, pp.

24–34, 1999.

[11] J. Campbell et al., “Speaker recognition: A tutorial,” Proceedings of the IEEE, vol. 85,

no. 9, pp. 1437–1462, 1997.
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[91] T. Kinnunen, V. Hautamäki, and P. Fränti, “On the use of long-term average spectrum

in automatic speaker recognition,” in 5th Internat. Symposium on Chinese Spoken

Language Processing (ISCSLP’06), Singapore, 2006, pp. 559–567.

[92] K.-A. Lee, C. You, H. Li, T. Kinnunen, and D. Zhu, “Characterizing speech utterances

for speaker verification with sequence kernel svm.” in INTERSPEECH, 2008, pp.

1397–1400.



BIBLIOGRAPHY 163

[93] A. Solomonoff, W. M. Campbell, and I. Boardman, “Advances in channel

compensation for SVM speaker recognition,” in Proc. ICASSP, vol. 1, 2005, pp. 629–

632.

[94] O. Glembek, L. Burget, N. Dehak, N. Brummer, and P. Kenny, “Comparison of

scoring methods used in speaker recognition with joint factor analysis,” in Acoustics,

Speech and Signal Processing, 2009. ICASSP 2009. IEEE International Conference

on. IEEE, 2009, pp. 4057–4060.

[95] S. J. Prince and J. H. Elder, “Probabilistic linear discriminant analysis for inferences

about identity,” in Computer Vision, 2007. ICCV 2007. IEEE 11th International

Conference on. IEEE, 2007, pp. 1–8.

[96] M. A. Przybocki, A. F. Martin, and A. N. Le, “NIST speaker recognition evaluation

chronicles-part 2,” in Speaker and Language Recognition Workshop, 2006. IEEE

Odyssey 2006: The. IEEE, 2006, pp. 1–6.

[97] C. S. Greenberg and A. F. Martin, “NIST speaker recognition evaluations 1996-

2008,” in SPIE Defense, Security, and Sensing. International Society for Optics

and Photonics, 2009, pp. 732 411–732 411.

[98] A. F. Martin and C. S. Greenberg, “The NIST 2010 speaker recognition evaluation.”

in INTERSPEECH, 2010, pp. 2726–2729.

[99] N. Scheffer, L. Ferrer, M. Graciarena, S. Kajarekar, E. Shriberg, and A. Stolcke,

“The sri NIST 2010 speaker recognition evaluation system,” in Acoustics, Speech and

Signal Processing (ICASSP), 2011 IEEE International Conference on. IEEE, 2011,

pp. 5292–5295.

[100] R. Saeidi, K. Lee, T. Kinnunen, T. Hasan, B. Fauve, P. Bousquet, E. Khoury, P. S.

Martinez, J. Kua, C. You et al., “I4u submission to NIST sre 2012: A largescale

collaborative effort for noise-robust speaker verification,” in Proc. Interspeech, 2013.

[101] S. Boll, “Suppression of acoustic noise in speech using spectral subtraction,” IEEE

Trans. on Acoustics, Speech, and Signal Processing, vol. 27, pp. 113–120, 1979.

[102] L. Ferrer, H. Bratt, L. Burget, H. Cernocky, O. Glembek, M. Graciarena, A. Lawson,

Y. Lei, P. Matejka, O. Plchot et al., “Promoting robustness for speaker modeling in the

community: the PRISM evaluation set,” in Proceedings of SRE11 Analysis Workshop,

2011.



164 BIBLIOGRAPHY

[103] M.-W. Mak and H.-B. Yu, “A study of voice activity detection techniques for NIST

speaker recognition evaluations,” Computer Speech & Language, vol. 28, no. 1, pp.

295–313, 2014.

[104] L. Buera, “Normalización y adaptación a entornos acústicos para la robustez en
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