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Abstract

Due to the increase of multimedia content, there is a significant interest in

multimedia analysis. This thesis aims at providing information extracted

from non-speech audio to retrieve and identify multimedia documents.

The thesis focuses on the detection of complex multimedia events using su-

pervised techniques. For this purpose, the non-speech sounds can be critical

since they contain information about the context or the activities where the

action is developed. The non-speech sounds are composed of segments of

noise or music and small informative sounds known as “Acoustic Concepts”

in the literature. The variability of the non-speech sounds, however, is very

high and compensation techniques are required.

First of all, we study different supervised techniques for Multimedia Event

Detection and propose a solution where the recognition lattices of an HMM-

based acoustic concept recognition are used to extract posterior N-gram

counts. This approach is compared with an unsupervised technique and

merged with a spoken concepts approach. The fusion shows the tremendous

importance of having a good segmentation system and a good acoustic

concepts detector.

Therefore, secondly we propose a segmentation-by-classification system based

on Factor Analysis with two clear advantages. The system does not need

class-dependent features with hierarchical structure to classify different classes

and the algorithm compensates the within-class variability with high accu-

racy being able to classify well-defined classes in generic tasks. The proposed

method is applied to segment and classify audios coming from TV shows

and it is compared with a hierarchical system with specific acoustic features

achieving a significant error reduction.



Finally, we study the variability compensation for the detection of acous-

tic concepts. We compare the performance of the Factor Analysis system

proposed for segmentation with baseline approaches widely used. The first

approximation to the problem is done by classifying isolated concepts that

have been generated artificially. Then, the classification and the detection

of the concepts spontaneously generated are studied and we point out the

drawbacks of the proposed system.



Resumen

Debido al aumento de los contenidos multimedia, existe un interés significa-

tivo en el análisis multimedia. Esta tesis tiene como objetivo proporcionar

información extráıda del audio sin habla para recuperar e identificar docu-

mentos multimedia.

La tesis se centra en la detección de eventos multimedia complejos utilizando

técnicas supervisadas. Con este fin, los sonidos que no provienen del habla

pueden ser cŕıticos, ya que contienen información sobre el contexto o las

actividades donde se desarrolla la acción. Los sonidos sin habla se com-

ponen de segmentos de ruido o música y de pequeños sonidos informativos

denominados “ Conceptos Acústicos ” en la literatura. Sin embargo, la

variabilidad de los sonidos sin habla es muy alta por lo que se requieren

técnicas de compensación.

En primer lugar, se estudian diferentes técnicas supervisadas para detección

de eventos multimedia y proponemos una solución en la que se utilizan

las celośıas (lattices) del reconocimiento de conceptos acústicos basados en

HMM para extraer recuentos de N-gramas. Este enfoque se compara con

una técnica no supervisada y se fusionó con una solución basada en concep-

tos hablados. La fusión muestra la tremenda importancia de tener un buen

sistema de segmentación y un buen detector de conceptos acústicos.

Por lo tanto, en segundo lugar, se propone un sistema de segmentación por

clasificación basada en el análisis factorial con dos ventajas claras. El sis-

tema no necesita caracteŕısticas dependientes de la clase ni tampoco precisa

de una estructura jerárquica para clasificar las diferentes clases y el algo-

ritmo compensa la variabilidad dentro de la clase con una alta precisión,

por lo que es capaz de clasificar clases bien definidas en tareas genéricas.



El método propuesto se aplica para segmentar y clasificar audios prove-

nientes de programas de televisión y se compara con un sistema jerárquico

con caracteŕısticas acústicas espećıficas logrando una reducción de errores

significativa.

Por último, se estudia la compensación de variabilidad para la detección

de conceptos acústicos. Comparamos el rendimiento del sistema de análisis

factorial propuesto para la segmentación con soluciones ampliamente uti-

lizadas. La primera aproximación al problema se realiza mediante la clasi-

ficación de conceptos aislados que han sido generados artificialmente. A

continuación, la clasificación y la detección de los conceptos generados

espontáneamente son estudiados y se señalan los inconvenientes del sistema

propuesto.
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1. INTRODUCTION

1.1 The Need for Audio Indexation in Multimedia Infor-

mation Retrieval

Over the last few decades, Information and Communication Technologies (ICT) have

evolved dramatically and some of them are worthy of consideration. The number of

radio stations and TV channels is increasing day by day and their content is available

on the Internet to be accessible from all around the world. Furthermore, the material

is replicated on different platforms to ensure its diffusion. Consequently, audio and

multimedia materials have rapidly increased their presence due to the popularity of

video-sharing websites and audio and video on demand (AVOD) systems. As an exam-

ple, 100 hours of video are uploaded to YouTube every minute, 1 billion1 unique users

search for content every month and 6 billion hours are watched every month. Likewise,

these figures represent a 50% increase over last year’s2.

Videos on sharing websites are defined by text tags chosen by the users to allow other

users to access the video they want to watch. In most cases, this information about the

video is incomplete and, therefore different methods are needed to improve the retrieval

accuracy by giving additional information even when the tags are present. Recently,

there has been a growing demand for high-accuracy multimedia indexing and retrieval

systems and, due to the nature of the material, research in this field is distributed

into different directions which include video information retrieval, audio information

retrieval, image search, multimedia indexing and human-computer interactions, among

others. According to (Lew2006), all these fields try to meet the two main needs for a

multimedia information retrieval (MIR) system: (1) searching for a media item, and

(2) summarizing and indexing a media collection. A generic multimedia information

retrieval system can be seen in Figure 1.1 where the two main needs are represented.

The difficulty in the tasks of an MIR system can be increased depending on the

nature of the material and the final application. For example, applications to search

for trademarks, to find pictures with identical visual content or applications to search

music to protect the copyright make use of constrained and well-defined material. These

fields of applications are defined in the literature as narrow domains and are comprised

of materials with limited and predictable variability. In this domain, feature-based

1billion is understood with the English semantic (109)
2http://www.youtube.com/yt/press/statistics.html
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Figure 1.1: Generic block diagram of a multimedia information retrieval (MIR) system.

algorithms describe a homogeneous semantic with a clear interpretation of the features.

Antagonistically, these algorithms are not suitable for broad domains where material

is unconstrained and variability is unpredictable and extremely high. A broad domain

can be defined as a set of many domains with very different conditions. This domain

presents an important gap between the features and their computational description

and, therefore, low-level feature-based computational models are not suitable because

the number of variables would be very large. This gap is known as sensory gap and is

defined in (Smeulders2000) as:

the gap between the object in the world and the information in a computa-

tional description derived from a recording of that scene.

Moreover, users do not find the exact information that they want because there is a

gap between the linguistic description (or the user interpretation) and the information

of the data. This gap is known as semantic gap and is also defined in (Smeulders2000)

as:

the lack of coincidence between the information that one can extract from

the audiovisual data and the interpretation that the same data have for a

user in a given situation.

Neuroscience researchers know that multiple senses increase human perception as

described in (Stein2008). For an MIR task, video features can determine the general

content of a video. However, the audio track of the video can also be critical and

3



1. INTRODUCTION

Generic Audio Signal
Speech / NonSpeech

Automatic Speech 

Recognition
Speaker ID Language ID Age / Gender Emotional State

Acoustic Environment

Acoustic event

Detection/Classification

YES

NO

steps, music, ...

train station,

airport ...

< TEXT> Who is? Spanish, English, ... Male ,46

Female, 32
angry, sad, ...

Figure 1.2: Information that can be extracted from a generic audio signal by an audio

indexation system. The outputs contribute to provide a Rich Transcription of a multimedia

document.

it can be very useful to understand the semantics of a user request (this is called

“bridging the semantic gap”). Therefore, audio processing reduces the semantic and

the sensory gaps in image/video features and it helps to find some specific events easier

than other features. Also, audio processing improves the detection of concepts in MIR

with complex backgrounds. Consider the case of a video of a tennis match where a

special concept, like a new point, may occur. Audio analysis provide complementary

information to detect this specific concept (detecting applause or cheering) that would

be significantly more difficult to detect with image/video analysis. In other words,

the audio indexation systems in MIR compensate the noise and clutter of multimedia

collections in broad domains.

Figure 1.2 provides a general block diagram with the information that can be ex-

tracted from the audio track of a video by an audio indexation system. The first step is

to determine if the audio has speech content or not. If there is speech, the audio will be

processed by an Automatic Speech Recognition (ASR) system to obtain the automatic

transcription of the video. Also, other systems can identify the speaker, the language,

the age and the gender of the speaker and, even, the emotional state of the speaker. If

there is no speech, the audio can still be processed to provide additional insight like the
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acoustic environment and the acoustic events presented in the scenario (steps, music,

...). Audio indexation systems collect and store all this information in the form of

metadata to be used by MIR systems. The extraction process of all available informa-

tion from an audio signal is known as Rich Transcription, since the transcription is not

limited to speech, but also to the extra-information. These rich transcriptions allow

video search in the same way that current search engines do with text documents and

archives.

In the next section, we discuss the use of Audio Segmentation and Classification as

part of Rich Transcription for Multimedia Event Detection.

1.2 Audio Segmentation and Classification for Multime-

dia Event Detection

Multimedia Event Detection (MED) is an important technology for MIR systems. The

goal of MED is to assemble detection technologies into a system that can search for

multimedia documents that have not been tagged. Those documents must contain the

event that the user wants to retrieve. The systems generate metadata based on the

event to search in a multimedia database. Therefore, the metadata must be sufficiently

general to be re-used for different events requested by the users. Some of the metadata

(but not all of them) are given by the Rich Transcription of the audio.

To be able to process the audio in the different subsystems of the Rich Transcription,

the first step is audio segmentation. Given an audio document, audio segmentation is

the delineation of a continuous audio stream into acoustically homogeneous regions.

When the audio segmentation is followed by a clustering or classification system, the

result is a system that is able to classify an audio stream into different classes chosen

for a specific task. This process is known as audio segmentation and classification1 in

the literature (Reynolds2005) and it can be defined as the determination of occurrences

(in time and class) in an audio signal. The audio segmentation and classification can

be comprised of several subtasks as speaker diarization - it aims at answering the

question “who spoke when?” - or music diarization - it can be focus on different

music styles, instruments or tunes - to give two concrete examples. The segmentation

1Also known as audio diarization
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and classification systems work in two different fashions: (a) unsupervised and (b)

supervised.

Unsupervised segmentation and classification is comprised of a segmentation system

followed by a clustering system without prior knowledge of the classes. In a first step,

the segmentation system finds the boundaries between different acoustic sources to

delimit homogeneous segments. In a second step, the segments are grouped together

into similar classes. If the clusters are generated from one class that is fragmented

in more classes, the strategy is known as top-down clustering. On the other hand, if

the clusters are generated as the agglomeration of classes, the strategy is known as

bottom-up clustering.

Supervised segmentation and classification systems employ models trained with

classes that might be present in the audio signal. The delineation of segments can be

carried out in two different ways. In the first one, the segmentation and classification

are performed in two steps: first, the segments are delimited by a segmentation system

and then, each segment is classified into a predefined class with trained models. This

fashion of supervised segmentation and classification is known as classification-after-

segmentation. However, segmentation can be performed as a result of frame-by-frame

classification. Therefore, the boundaries of the segments are defined by the transitions

between classes and the method is known as segmentation-by-classification. These

methods have advantages and disadvantages that will be discussed in the following

chapters.

Some of the activities on MED are reflected in a rich variety of sounds and noises

that we call Acoustic Concepts (ACs) (also known as Acoustic Events1) produced by

humans, objects or animals among others. The segmentation and classification of these

concepts (different than speech) may help to detect and describe the multimedia event

increasing the robustness of the MIR systems.

This thesis focuses on audio segmentation and classification to improve MED. More

precisely, the thesis aims at advancing in the segmentation-by-classification of broad

classes and the detection of ACs to produce metadata to improve the detection of

multimedia events on a database comprised of videos from the Internet.

1We will call them Acoustic Concepts (ACs) in this thesis to avoid confusion with Multimedia

Events
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1.3 Objectives and Methodology

This thesis aims at providing a set of tools to analyze the audio of multimedia docu-

ments as a part of a MED system. Following this idea, the objectives of this work are

divided into three tasks as described below.

1.3.1 Audio Processing in Multimedia Event Detection

The main goal is to improve the MED providing audio information. More specifically,

the framework proposed is:

• Study the classification of broad ACs on a very noisy and cluttered domain.

• Due to the fact that most of the videos have their ACs overlapped with speech,

music or noises, a supervised segmentation is needed to detect between speech,

music or ACs.

• State-of-the-art in MED with ACs is considered. The improvements in this area

will be validated with previous systems in order to provide a clear idea about our

approaches.

• We propose two different approaches to describe the temporal behavior of the

multimedia documents based on the transitions between ACs.

• Finally, a fusion of AC approaches with ASR will show how the proposed ap-

proaches improve the MED task with non-speech information.

As we will show in Chapter 3, the ACs performance and the segmentation is basic

for MED. Therefore, this work explores methods to improve the segmentation of a con-

tinuous audio stream and the AC detection in a spontaneous generation environment.

1.3.2 Segmentation-by-Classification

We propose an approach to be able to segment and classify and audio stream in broad

classes based on Factor Analysis (FA) with two clear advantages: 1) the system uses

common audio features and 2) the algorithm compensates the high variability present

in each class. The proposed framework is evaluated in a broadcast news domain. This

domain is very challenging because it has a very large number of speakers in different

environments with background noises. The objectives are:
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• State-of-the-art with classic HMM segmentation-by-classification system.

• Explanation and evaluation of the proposed approach based on FA.

• Comparison of the proposed approach with a hierarchical approach with specific

features for each class.

1.3.3 Audio Concepts Detection

As we have stated in the last subsection, the ACs are often overlapped with speech,

music, noises or other ACs. As a result, the difficulty of detecting the concepts correctly

increases. We propose this framework to study AC detection:

• State-of-the-art with isolated ACs.

• AC classification and detection with spontaneous generation. The evaluation of

the proposed approaches will be evaluated in a meeting-room domain.

1.4 Outline

The remainder of the thesis is organized as follows.

Chapter 2 describes the state-of-the-art in MED and more specifically the audio

technologies in the MED task. The chapter shows the importance of the audio segmen-

tation and classification of acoustic concepts for MED and presents the most common

algorithms to model the classes on this task.

Chapter 3 presents a set of systems based on ACs for MED. Firstly, the chapter

shows the difficulty in classifying and segmenting the ACs that can be found in MED

due to the high variability in the videos from the Internet. Secondly, the chapter de-

scribes a baseline system with fixed segmentation and GMMs. This system is compared

with a natural evolution system where the segmentation is produced as a result of the

transitions among GMM/HMM models. Finally, a novel MED system based on the

lattice counts of the ACR is proposed. This system improves the detection of the

multimedia events and is also compared with unsupervised approaches for the same

dataset. Finally, the results of this system are merged with an ASR approach to take

advantage of the performance of both systems since the information is complementary.

8



1.4 Outline

Chapter 4 shows a novel segmentation-by-classification system based on FA with two

clear advantages. The system does not need class-dependent features with hierarchical

structure to classify different classes and the algorithm compensates the within-class

variability with high accuracy being able to classify well-defined classes in generic tasks

as MED. The proposed method is applied to segments and classifies audios coming

from TV shows, and it is compared with a hierarchical system with specific acoustic

features, achieving significant error reduction.

Chapter 5 considers the particular problem of the ACD that can be found in a

meeting room. The chapter shows the performance of the FA system proposed for

segmentation and compares the system with baseline broadly used approaches. The

first approximation to the problem is done by classifying isolated ACs that have been

generated artificially. Then, the chapter shows the classification and the detection of

spontaneously generated ACs. Even if the boundaries of the ACs are given, the systems

achieve an extremely high error rate since the ACs are overlapped with speech and have

low SNR.

Finally Chapter 6 concludes the work. The main conclusions are summarized in

this chapter and several future research lines are highlighted.
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2. STATE OF THE ART

2.1 Chapter Overview

This chapter compiles and summarizes the most relevant works in multimedia event de-

tection (emphasizing the approaches based on audio information), audio segmentation,

acoustic event detection and the most relevant technology employed in these areas.

The sections of this chapter are organized as follows: section 2.2 presents the MED

task, a review of the most important datasets and evaluations and a general structure of

a MED system with special interest in audio processing. Section 2.3 shows the most im-

portant approaches for audio segmentation and classification, speech/non-speech clas-

sification and acoustic concept recognition and the relevant technology (features and

statistical modeling) for these fields. Finally, a chapter summary is presented in Section

2.4.

2.2 Multimedia Event Detection

Multimedia event detection (MED) is a challenging task due to the high variability in

the databases used to generalize the task (for example, videos on the Internet). The

goal of the task is to detect events of interest for users in very large video collections.

A good definition of an event was given by Jiang et al. in (Jiang2012a) as:

a long-term spatially and temporally dynamic object interactions that happen

under certain scene settings.

Each event is defined as high-level content like “wedding ceremony” or “landing a fish”

and are comprised of a complex collection of objects, people or sounds. Detecting the

desired events is an extremely difficult problem especially from wild videos (recorded

under unconstrained conditions by non-professional users). For example, Figure 2.1

shows three different images from TRECVid MED 2011 database (NIST2011) repre-

senting the same event: “feeding an animal”. As it can be seen, the event can be

represented by different animals and the action may take place indoor or outdoor. The

high variability comes, not only from the different visual/audio elements present in the

clip, but also because the videos are recorded with different cameras/microphones and

in different scenarios. In addition, the videos can be edited by users with filters that

can modify the original colors or add effects and background music. All these artificial

elements increase intra-class variability and, therefore, the difficulty of the problem.
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Figure 2.1: Three images of different animals (a squirrel, a dog and a horse) representing

the same event “feeding an animal” defined in TRECVID MED 2011 (NIST2011). The

clips shows the high intra-class variability present in the task. The pictures have been

extracted from (Jhuo2013).

Due to the challenging task of MED, some evaluations have been recently pro-

posed. The evaluations can be divided into two groups: the first group is comprised

of datasets captured in controlled environments such as KTH (Schuldt2004), UCF-

Sports (Rodriguez2008a), Hollywood2 (Marszalek2009), Weizmann (Gorelick2007) or

MSR action (Yuan2009). These datasets are very useful to advance the technology

on MED but some approaches may be very specific for a database and may present

limitations in unconstrained environments. Therefore, the second group is comprised

of unconstrained videos. MediaEval is a cluster of evaluations dedicated to test new

algorithms for multimedia access and retrieval. Social event detection is a task inside

the MediaEval 2012 (Papadopoulos2012) and MediaEval 2013 (Reuter2013) to discover

social events and detect related media items. The evaluations proposed some challenges

such as supervised clustering, finding technical events, finding soccer events or classi-

fications between specific events (concert, conference, exhibition or protest as some

examples). Columbia consumer video (CVV) dataset (Jiang2011) was created in 2011

with Internet consumer videos without professional edition. The database is comprised

of 20 categories divided into 3 groups: objects (such as “dog” or “birds”), scenes (such

as “beach” or “parade”) and events (such as “biking” or “birthday”). Probably, the

most famous datasets for MED are sponsored by the National Institute of Standards

and Technology (NIST) in the TRECVid Evaluations (Smaeton2006). These evalua-

tions have been carried out from 2003 until today. The challenge difficulty and the

events increase year after year and, therefore, it provides a good benchmark for MED.

The TRECVID MED 2011 database (NIST2011) is used in this thesis and it will be

described in more detail in the next chapter.
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State-of-the-art technologies in MED are presented in following subsections. Nowa-

days MED systems have a typical structure based on audio/video features, clustering,

different classification approaches and a fusion. All these elements will be presented in

2.2.1 divided into thematic subsections. More specifically, an in-depth review about the

audio processing in MED will be shown in 2.2.2 to present the most recent approaches

in supervised and unsupervised audio concepts recognition.

2.2.1 MED systems

A common factor in all competitive MED systems is the need for multimodal ap-

proaches. Most of the videos are recorded with an audio track that can provide useful

audio patterns for event detection and, quite often, these audio patterns provide clear

information about an event that could be fuzzy, using only video features. On the other

hand, some events have clear video characteristics like predominant color distributions

or distinctive objects. A considerable amount of literature has been published on MED

recently (Jiang2010a, Jiang2012, Jiang2012a, Ballan2010, Jiang2012b, Tamrakar2012,

Natarajan2012, Smith2003). All these approaches have a widespread structure based

on multimodal feature extraction, clustering/classifying methods and fusion methods

as can be seen in Figure 2.2.

2.2.1.1 Multimedia Features in MED

The behavior of a video event can be captured choosing the right features. Good

features are robust against variability and are able to describe the same event under

different conditions of noise or scenario and therefore good feature selection becomes

critical in MED. The features can be divided into two groups depending on their source

of information: video or audio. The visual channel has information related to color,

movement and texture. The features to describe the visual source can be divided into

frame-based visual features (also called appearance features) and spatio-temporal visual

features (also called motion features). The audio channel may contain important infor-

mation about object interactions (known as acoustic concepts), environmental sounds,

music or speech that can be described with audio features. This subsection summarizes

a collection of representative features of both information sources used in multimedia

tasks.
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Figure 2.2: An MED generic multimodal system extracts the information from video and

audio sources. The typical process presents a feature extraction block for each source, a

codification of the features and a classification block. Finally, a fusion block merges the

information from the video and the audio.

• Frame-based Visual Features:

The frame-based visual features are extracted from frame to frame without consid-

ering the temporal relations between them. The features can be computed to represent

the whole frame providing a global representation of the frame (global features) or they

can represent local regions to provide stable patches that can be employed to identify

an event (local features).

The global features represent the distribution of colors and textures. As an ex-

ample, GIST feature (Oliva2001) is one of the most popular global features for video

analysis. The feature is a set of perceptual dimensions (naturalness, openness, rough-

ness, expansion, ruggedness) that represents the dominant spatial structure of a scene

(spatial envelope). The feature is computed in a grid-structure to take into account

the spatial distribution of the scene.

The local features locate interest points in a first step. This step is known as

interest point detection. Once the interest points are detected, the next step is to link

them in a useful way to describe the frame in an invariant manner and, therefore,
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the description is robust against rotations, illumination changes or partial occlusions.

Several local features can be read in the literature (Mikolajczyk2005) with different

interest-point-detection algorithms or different approaches to describe the points. The

most widely used is the scale-invariant feature transform (SIFT) (Lowe2004) that has

recently been used in many MED systems (Jiang2012, Natarajan2012, Jiang2010a,

Marin-Jimenez2013, Snoek2007) among others. The feature divides an interest point

region into equal-sized grids, each described by the histogram of gradient orientations so

the interest point is represented relative to its dominant orientation. Some other local

features have also been recurrently used in MED context. For example, the histogram

of oriented gradients (HOG) (Dalal) represents the edge distributions in images or

video frames. Local binary pattern (LBP) (Ojala2002) is another texture feature that

compares the value of each pixel of a frame with its neighborhood pixels.

Frame-based visual features are discriminative enough if the videos do not have

rapid content changes. However these features do not model the temporal information

or the motion, which are very important in video tasks.

• Spatio-temporal Visual Features:

Unlike frame-based features, spatio-temporal features use time as another dimension

to describe the motion and this information is critical to detect the events because the

motion is invariant to changes of color and lighting. The motion is often represented

as a histogram/phase correlation or model parameters for global motion description.

Some spatio-temporal features have been developed following the same procedure

as described for frame-based local features but extending the concepts to work in 3D

(x, y, t). These features are known as spatio-temporal descriptors. For example, SIFT

(Lowe2004) has been adapted to 3D in (Scovanner2007). Another feature to locate

space-time interest points (STIPs) is described in (Laptev2005). This feature has been

frequently used in MED systems. The feature computes space-time volumes in which

pixel values have significant variations in both space and time. The spatio-temporal

behavior of a video can also be described by tracking frame-based local features. The

procedure is based on the detection of an interest point and sustains the detection of

a period of time. The main disadvantage of these procedures is the expensive com-

putational cost. A famous tracking approach can be read in (Wang2008) where the
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authors extract SIFT key-point trajectories, and create a feature to be able to model

the motion between every trajectory pair.

• Audio Features:

As we have stated in previous paragraphs, audio information is very useful especially

when the video is recorded under realistic environments. There are considerable number

of audio features to describe the acoustic signals in short-term windows and long-term

windows and several works have summarized the most recurrent features throughout

history as in (Mckinney2003, Liu1998, Peeters2004, Mporas2007, Lavner2009). Each of

the audio features describes the sound in different ways but, due to the unconstrained

dataset presented in MED, the sound taxonomy to describe the acoustic environment

is very chaotic. For that reason it becomes very difficult to select a group of features

to characterize the audio in a general context (as in MED) without the undesirable

phenomena of the “curse of dimensionality”. Moreover, the authors in (Eronen2006)

evaluated a set of audio features using realistic audio context and the conclusion was

that the Mel-frequency cepstrum coefficients (MFCC) perform better than the rest of

the features.

Therefore, there are not so many differences between the audio feature extraction

methods in MED. The most popular audio features are the MFCCs. A complete de-

scription with a comparison of different implementations of MFCCs can be found in

(Zheng2001). MFCCs will be described in 2.3.3.1 as part of the commonly used audio

features in speech and audio technologies. An important number of MED systems are

using MFCCs as the main audio features. In (Baillie2003), the authors propose an

audio-based MED system to detect events in sports broadcast data. In (Jiang2010a),

the MFCCs are computed to detect events in TRECVid 2010 database and, more re-

cently, the systems presented in (Myers2013, Oh2013, Jhuo2013) merge MFCCs with

visual features to detect events in TRECVid 2011.

2.2.1.2 Bag-of-Words

The features presented in the last subsection (2.2.1.1) have different dimensionality

and size due to their dependence on the video content, complexity or duration which

increases the complexity to compare similarities. One solution for that is to segment
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the information and directly match the local features, but this approach becomes com-

putationally expensive.

A well-known approach to compare elements is bag-of-words (BoW) that was adapted

from text retrieval to video processing in (Sivic2003) by treating features as words. In

text retrieval, a bag-of-words is a vector representing the distribution of words over

the vocabulary. The adaptation for multimedia can be seen as the distribution of fea-

tures over an “audio/visual vocabulary” (also called codebook) that is generated by

clustering features and treating each cluster as a “word”.

The implementation of BoW has been performed in different ways, which has

been proposed in several works. A quite famous variation of BoW was proposed in

(Jiang2007) where the authors proposed a soft-weighting scheme to reduce the quanti-

zation error due to the hard assignment of each segment to the clusters. Other works

like (Philbin2008) or (VanGemert2010) propose other approaches to alleviate the effect

of quantization loss by soft assignment or using kernel codebooks, respectively.

The BoW is known as bag-of-audio-words (BoAW) or bag-of-frames in speech tech-

nologies and it has been recently proposed by Liu in (Liu2010) to detect video copies

by the audio information on TRECVid 2009. The process is similar to the process used

in video but with some differences due to the information source. For example, the

video scene persists a few seconds but the audio signal changes very quickly and it is

considered stable only for a few milliseconds. Therefore, firstly the audio features are

segmented into frames and each frame is considered an audio word. The number of

codewords is determined by a clustering algorithm. This parameter is known as the

codebook size, and its value is a trade-off between system effectiveness and efficiency.

If the codebook size is very small, the computational time to generate the codewords

decreases and the codebook becomes more general. On the contrary, a large codebook

increases the computational cost but it is more discriminative. Finally, the audio is

represented by the histogram of the codebook (which is known as the bag) where each

element represents the count of occurrences of a word. Histogram normalization is a

common step because the audio signals vary in length. Figure 2.3 shows a general

framework of BoAW representation from the audio signal extraction to the histogram

with a codebook size of 4 words.

This representation has been used in several works for MED, where the imple-

mentation choices slightly differ like in (Mertens2011, Natarajan2012, Pancoast2012,
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Audio Signal Features Segmentation Clustering Histogram

Figure 2.3: Bag-Of-Audio-Words system: after the feature extraction, the vectors are

segmented into frames. These frames are clustered and the clusters are represented by

histograms.

VanHout2013, Myers2013) among others. Some systems slightly modify the represen-

tation of the bag-of-words like in (Lee2010, Aucouturier2007) where the authors used

Gaussian Mixture Models (GMM) to represent the bag of words or in (Lu2008) where

words were generated using spectral clustering.

Once the event is represented by the features, a set of annotated events are given

to train a model for the classification step like a typical machine learning process.

Applying the “No free lunch” theorem (Wolpert1997) to classifiers we can conclude

that there is not one classifier that outperforms all the others. Depending on the data,

the task or the final application, a classifier may be beaten by another classification

approach and the classifier selection is given for the interpretability, the easy-to-use

algorithm and the performance. The end of this chapter summarizes the most widely

used classification algorithms in this field.

2.2.1.3 Fusion

Fusing multiple information sources is generally useful because the video is analyzed

from different aspects and thus they may complement each other. In other words,

audio and visual features are not independent except in some cases where the users

edit the original video with soundtrack or audio effects. In these cases, the original

audio channel can be replaced by an entirely different audio content or the original

audio can be overlapped with other audio. In the last case, the audio still contains

some useful information but it is very difficult to process. On the other hand, if the

original audio has not been modified, the co-occurrence or the correlation between

audio and video can be exploited to perform a better multimedia analysis.

The fusion can be done in two ways, which are known as early fusion and late fusion.

In early fusion, the feature vectors from different sources are concatenated into a long
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vector. For example, in (Beal2003), the authors combine audio and visual variables to

be used in graphical models. This method was developed for a constrained environment

and may not be applicable to MED where the videos are unconstrained. In (Jiang2009),

Jiang et al. proposed an approach to create audio-visual joint representation called

audio-visual atom (AVA). An AVA is an image region trajectory associated with both

regional visual features and audio features. This approach differs from the simple

concatenation of audio-visual features but it can be considered early fusion because

the unconstrained videos are represented by a bag of AVA before the classification.

The approach was extended in (Jiang2011a) with an audio-visual grouplet (AVG).

The sets of audio and visual codewords are grouped together if there is a temporal

correlation between them. These approaches are computationally expensive because a

foreground/background separation is required. An alternative for them was proposed

by Jhuo in (Jhuo2013) where a bi-modal audio-visual codewords are generated using a

normalized cut on a bipartite graph which captures the co-occurrence relations between

audio and visual words.

Early fusion may amplify “the curse of dimensionality” (Bellman1957) problem

and, therefore, late fusion has been more frequently used for MED. As an example,

in (Jiang2010) and (Inoue2011), SIFT, STIP, and MFCC features were lately fused.

Equal weights (average fusion) were used in (Jiang2011b) and (Natarajan2011). There

are several late fusion methods involved with a weighted average of scores from the

individual classifiers. The choice of a specific fusion method depends on the appli-

cation problem. A good compilation of fusion models is described and evaluated in

(Myers2013). The conclusion was that the simplest fusion methods were very effective

compared with more complex fusion methods.

2.2.2 Audio Processing in MED task

As we have stated in the previous sections, the audio component of videos and the

potential contribution of audio content analysis is critical in a MED task due to the

unconstrained domain of the video.

The classification of the audio features (low-level features) described in 2.2.1.1 can

not provide the structure or the semantic understanding present in a complex event.

For example, the event “landing a fish” may have a sequence of semantic sounds like

“wind blowing”, “water splashing”, some “laughter”, etc. Therefore, a complex event
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can be represented by a sequence of semantic units of sounds that we know as acoustic

concepts. These concepts can characterize a scene (beach, park, etc.), a moving object

(chair moving, a car, etc.) or a certain audio sound (metallic noise, cheering, etc). In

contrast to the direct classification approaches of low-level features, the concept-base

classification improves the detection of complex events. In addition, the event is divided

into semantically meaningful entities where the variability of the low-level features is

lower. (Haitsma2002)

Audio concept extraction approaches explored under different multimedia retrieval

and content analysis projects, such as multimedia event detection (MED), can be

grouped into two categories: (1) unsupervised and (2) supervised approaches from

the perspective of modeling acoustic concepts. In the first group, one popular unsuper-

vised approach is the Bag-of-Audio-Words (BoAW) method which has been described

in 2.2.1.2. In this approach, all frame-level features are clustered via vector quantization

(VQ), and then VQ indices are used as features within a classifier to model audio con-

tent ((Pancoast2012, Li2012, Pancoast2013)). Other unsupervised approaches focus on

segmenting the audio track, and clustering the segments to form atomic sound units and

then word-like units (Byun2012, Chaudhuri2012), or on modeling the segments with

total variability factors (Zhuang2012) or GMM super-vectors (Mertens2011), which are

methods borrowed from speaker identification.

In the second group of approaches, audio concept/event models are trained using

annotated data. These approaches have been successfully applied for other tasks. For

example, in (Haitsma2002), the authors propose an audio retrieval system based on a

robust audio fingerprint approach. However, the audio fingerprint is sensitive to noise

and, therefore, it may not be suitable for representing concepts. In (Reed2009), the

authors propose an approach based on music segment models for music genre clas-

sification. In (Tsao2010), the authors propose acoustic segment models to describe

the temporal information between units for speaker recognition. In multimedia, the

audio information has been modeled recently with these techniques. For example, in

(Jiang2010), authors model acoustic concepts by training Support Vector Machines

(SVM) on 10-sec audio segments, which are annotated with generic concept labels

(e.g., indoor vs. outdoor), and they use detected acoustic concept labels as features for

multimedia event detection task. In (Pancoast2012a), fixed-duration segments are rep-

resented with segmental-GMM vectors where each element in the vector is a GMM score
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calculated from a pre-trained GMM that corresponds to an annotated concept label.

More recently, Oh proposed HMM models to capture the diverse temporal structure of

audio concepts in (Oh2013).

Speech is another important source of audio information in MED and automatic

speech recognition (ASR) can be considered as an audio supervised approach where the

words play the role of the annotated concepts. ASR started becoming an important part

of multimedia projects since spoken content provides information that is both discrimi-

native and complementary to video imagery features. Before MED, speech recognition

was applied to constrained domains where the audio was fairly homogeneous in terms of

acoustic conditions. Speech information, however, is very difficult to extract since the

speech comes from several speakers in noisy environments. In addition, speech may be

overlapped with other sources and it is generated in a very natural way. All these draw-

backs increase the difficulty of training suitable and robust models to transcribe speech.

Segmentation and classification systems greatly help with the speech recognition. For

example, segmentation would allow searching for words spoken by a speaker or aiding

speaker adaptation techniques for the speech recognition system. Sources may also be

non-speech concepts like music, where segmentation could help find a structure or be

used by speech recognition systems to skip sections for faster processing. Despite the

difficulty, any properly recognized speech can be critical to detect a multimedia event.

An early work can be seen in (Chang1996) where the authors studied the importance

of speech understanding and the conclusion was that speech is even more useful than

video analysis for sport event recognition. ASR has been extensively used in TRECVid

evaluations because it may provide extra information about some events. Natarajan et

al. (Natarajan2011) found ASR helpful for a few events (e.g., narrative explanations in

procedural videos) but not for general videos in TRECVid 2011. Some systems employ

a combination of different approaches like in (VanHout2013), where authors combine

automatic speech recognition with broad-class acoustic concepts.

Although unsupervised approaches have the advantage of not requiring labeled

acoustic event/concept data, these approaches do not present semantic labels to al-

low for semantic searches. This is an important aspect for tasks such as multimedia

event detection when the number of examples for multimedia event types becomes

quite small. Therefore supervised acoustic concept detectors are useful to tackle this

problem because these approaches provided detailed information about the event. On
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the other hand, an inaccurate detection of the concepts could worsen the detection of

the multimedia event. An essential process to make the supervised approaches more

robust is audio segmentation and classification, which identifies the segments of speech

or acoustic concepts to characterize the multimedia events and, therefore, it will be

analyzed in depth in this thesis.

2.3 Audio Segmentation and Classification

Audio segmentation and classification is the process of delimiting an input audio stream

into temporal regions with predefined information to identify specific sources in time

and class. These sources can include speakers, music, background noises or other

characteristics.

As mentioned above, this is useful to search for and index audio archives and it

is very important in the characterization of multimedia events through audio. As

an example, an audio segmentation and classification for MED can detect the audio

streams containing speech to extract the words being spoken, or meta-data like acoustic

concepts that provide context and information beyond the words.

There are four application domains for audio segmentation and classification re-

search, which can be sorted from highest to lowest entropy: multimedia sharing web-

sites, broadcast news domain, recorded meetings and telephone conversations. The

data from each domain differ in the amount of audio sources, the quality of sound, the

number of environments, the number of speakers and the style of speech. Even if the

challenges are different for each domain, the system techniques tend to generalize well

and this permits choosing the domain to study a specific technique in more controlled

domains. For example, telephone conversations are suitable to study the speaker di-

arization of two speakers like in (Vaquero-AvilesCasco2011) while recorded meetings are

suitable to study the detection of acoustic concepts like in (Temko2009a, Butko2011c).

The most relevant information about the audio segmentation and classification ap-

proaches and their applications can be found in (Reynolds2005).

This section summarizes relevant works in two relevant areas. The first one is audio

segmentation and classification for the broadcast news domain where the main goal

is to detect segments of speech (pure speech, speech with music, speech with noise,

etc...) versus non-speech (music, noise acoustic concepts or silence). The second one is
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to detect acoustic concepts in meeting rooms where the presence of non-speech sounds

can help to describe the scene.

2.3.1 Speech/Non-speech Classification

Many different approaches have been proposed for speech/non-speech audio classifica-

tion because it can be useful in many ways. The detection of speech segments may

help speech recognition systems aiding speaker adaptation techniques if the speech is

overlapped with noise or music. On the other hand, non-speech segments (most of them

comprised of music, noise and silence) can provide a document structure or enrich the

transcription of the documents with meta-data. In (Lavner2009), the authors present

a review of several solutions for speech/music classification that make use of different

acoustic features and classification methods. The studies that can be found in the lit-

erature focus on either the feature extraction method or on segmentation/classification

strategies.

Audio segmentation/classification systems can be divided into two different groups

depending on how the segmentation is performed. The first group detects the bound-

aries in a first step and then classifies each delimited segment in a second step. We refer

to them as classification-after-segmentation approaches. For example, in (Nguyen2011),

an approach using a temporally weighted fuzzy C-means algorithm was proposed.

The Bayesian Information Criterion (BIC) is used extensively in many studies, like

that of (Chen1997) to generate a break-point for every speaker change and environ-

ment/channel condition change in BN domain. The main idea is to compute the dis-

tance between two continuous segments to determine if there is a change between

them. (Wu2006a) and (Kotti2008) also utilize BIC to identify mixed-language speech

and speaker change respectively. However, BIC has several shortcomings that have to

be considered. It can only set one break-point for each analysis window, so a small

window involves more precision but the Gaussian estimation may be inaccurate due to

the scarcity of data. Although BIC is the most popular segmentation strategy, other

approaches have been proposed in the literature with different distance metrics. For

example, Generalized Likelihood Ratio (GLR) was described in (Willsky1976) and it

is obtained as a likelihood ratio between the likelihood of the assumption that both

segments belong to the same class and the likelihood of each segment belongs to differ-

ent classes. In (Siegler1997), a Kullback-Leibler Divergence (KL) was used for acoustic
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segmentation and speaker segmentation in broadcast news environments. In (Wu2006)

the authors propose a Minimum Description Length (MDL) approach that permits

multiple breakpoints for any generic data.

The second group is known as segmentation-by-classification and consists of classi-

fying consecutive fixed-length audio segments. The segmentation is produced directly

by the classifier as a sequence of decisions. This sequence is usually smoothed to im-

prove the segmentation performance. An example of this procedure can be found in

(Misra2012) where the author combines different features with a Gaussian Mixture

Model (GMM) and a maximum entropy classifier. The final decisions were smoothed

with a Hidden Markov Model (HMM) to avoid sudden changes. In (Lu2003), an audio

stream is segmented by classifying each window into five broad-classes. The solution

combines Support Vector Machines (SVM) and evaluates the classification over some

new proposed features.

The different strategies outlined in the preceding paragraphs have their advan-

tages and disadvantages. Long-time features (segment-based features) are not suit-

able for training statistical models (Huang2006) in a segmentation-by-classification

strategy. However, they provide great discriminative power for audio classification

in classification-after-segmentation systems (Lu2002). On the other hand, short-time

features (frame-based features) allow statistical models to make decisions over short-

duration windows in segmentation-by-classification strategies (Foote1997) but they are

usually less discriminative for audio classification since they were mainly designed for

speech related tasks such as Automatic Speech Recognition (ASR) (Huang2006). The

most common solution to avoid the shortcomings and enjoy the benefits of each strategy

is to create hierarchical systems with multiple steps where each level is designed with

class specific features and segmentation systems as in (Gallardo2010) and (Castan2011).

Nevertheless, these systems become very specific for the intended task and are quite

difficult to adapt for other databases.

2.3.2 Acoustic Concept Recognition

The Acoustic Concept Recognition (ACR) (also known as Acoustic Event Detection

in the literature) is the task entailing the identification of any class of sounds which is

caused by different sources and their temporal position. The classes are not related to

speech but they can be produced by humans and they are meaningful.
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Figure 2.4: Taxonomy proposed by (Casey2002) suitable for MED.

The ACR has been implemented in hospitals (Vacher2003), kitchens or restaurants

(Lukowicz2003), public places (Lee2009) and even in bathrooms (Chen2005) to give a

few examples. The applications for ACR are very diverse but they include following

major areas: audio indexing and retrieval in multimedia documents, meetings descrip-

tion and surveillance. The taxonomy1 of the sound for each application or area is

very different. As we have already shown in the last subsections of this chapter, the

MED task presents a very unconstrained taxonomy and the detection of concepts in

this area becomes very difficult. For example, Figure 2.4 shows a larger classification

scheme including animal sounds, musical instruments, people and sound effects (Foley)

proposed by (Casey2002) that could be considered suitable for any multimedia appli-

cation due to its wide structure. Recently, researchers are making significant efforts to

provide support systems to identify multimedia events by acoustic concepts recognition

(Pancoast2012a, Castan2013b, Castan2013, Elizalde2013). However, the recognition of

the concepts on this wild environment is far from optimal.

A selection of a more constrained taxonomy can be useful to develop technology

because the number of the concepts is limited and with reduced variability. Figure 2.5

proposes a taxonomy suitable for acoustic concepts detection in meeting rooms. This

taxonomy was described by Temko in (Temko2009a) for the CHIL project (Temko2006).

The project deals with the detection of acoustic concepts produced in meeting room

environments to describe the human and social activity in the room.

1The taxonomy of the sound shows the audio structure by different semantic levels
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Figure 2.5: Taxonomy proposed by (Temko2009a) for acoustic concepts recognition in

meeting rooms.

Under the framework of the CHIL project, the CLEAR 2007 Evaluation campaign

(Stiefelhagen2007) was proposed to evaluate systems for the perception, activities and

interaction of people in meetings. Two important conclusions were drawn from this

evaluation: first, the performance of the classification of single acoustic concept is

relatively high. As an example, (Temko2009) and (Zieger2008a) developed an SVM

based system and an HMM-based system, respectively, to classify different acoustic

sounds (e.g., steps, door slams, or paper noise) in the meeting room environment using

the CHIL-2007 database in which the acoustic concepts are isolated and recorded in a

controlled environment (Mostefa2008a).

Secondly, the time overlapping of acoustic concepts with speech or other acoustic

concepts has not yet been solved. This situation produces the major source of detec-

tion errors (70%) and, therefore, it is still under study. The winner of the evaluation

(Zhou2008) proposed a system based on Kullback-Leibler distance with an AdaBoost

to select a set of discriminative features to identify the segments of speech and the

acoustic concepts because they have notable spectral differences. But in spite of this

intelligent system, the results are far from satisfactory.

Recently, researches have tried to approach the meeting-room overlapping concept

problem. The approaches proposed merge the information from different sources. For

example, in (Butko2011c) the information coming from video helps to detect the acous-

tic concept based on the position of every person in the scene. In (Chakraborty2013),
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the overlapping problem is tackled by exploiting the signal diversity that results from

the use of multiple array beamformers. Both approaches improve the detection of over-

lapped acoustic concepts but, on the other hand, the systems are not as general as

desired because a clear video information or multiple microphones are required.

The ACR is quite important in the field of applications for monitoring and surveil-

lance. Some of these applications are developed to assist disabled people because image-

based systems could not be applied due to privacy reasons. For example, Chen et al.

(Chen2005) proposed an automated bathroom monitoring system to detect the activ-

ity of elderly people based on acoustic concepts. In surveillance, most of the systems

detect abnormal situations by the analysis of visual clues, but some specific situations

are easier to detect by audio clues. For example, in (Clavel2005) the authors devel-

oped an automatic gun shot detection system. In (Atrey2006), the authors proposed

an approach for detecting various normal and excited state human activities with four

different audio features and Gaussian Mixtures Models.

2.3.3 Audio Segmentation and Classification Technology

Segmentation and classification systems in the literature are characterized by the set

of features and classifiers employed for each approach. This section shows a summary

of the most widely used technology for audio segmentation and classification. First, a

compilation of the common features is described in section 2.3.3.1. Then, section 2.3.3.2

shows some common approaches to model the statistical behavior of the features for

each class.

2.3.3.1 Audio Features Extraction

Here, we summarize the most typical features for speech and audio recognition tech-

nologies:

• Mel-frequency cepstrum coefficients (MFCC): Representation of the re-

lationship between short-term power spectrum sub-bands equally spaced on the

mel scale of frequency which approximates the human auditory system’s response

more closely than linearly-spaced frequency bands. Perceptual Linear Prediction

(PLP) features are another popular acoustic features with a lot of similarities
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with MFCC. The main differences lie in the filter-banks and in the application of

a linear prediction among others.

• Frequency Filtering (FF): These features can be seen as another technique to

represent the spectral envelope, such as the MFCC, but with less computational

cost and with a clearer idea about the behavior of the frequencies in the final

result. It consists of filtering the frequency sequence of filter-bank energies with

a filter that equalizes the variance of the cepstral coefficients (Nadeu2001).

• Zero Crossing Rate (ZCR): Defined as the number of zero crossing in a frame.

In other words, ZCR is the average number of times the signal change its sign

within a frame. There are many variations of this feature like the High Zero-

Crossing Rate Ratio (HZZCR) which is defined as the ratio of the number of

frames whose ZCR is above 1.5 times the average zero-crossing rate.

• Short-time Energy (STE): Representation of the amplitude variation over

time. This feature also has some variations like the Low Short-Time Energy Ratio

(LSTER) that is defined as the ratio of the number of frames whose short-time

energy is less than 0.5 times the average STE.

• Spectral Flux (SF): This feature provides an idea about the changes that occur

in the shape of the spectrum frame by frame. It is typical to compute the variation

of the spectral flux (VSF) over consecutive frames.

• Amplitude Modulation Ratio (AMR): Relationship between local minima

and local maxima in the envelope signal. The envelope can be obtained by fil-

tering the signal with a lowpass filter. The alternation of high energy and low

energy segments (vowels and consonants) in a speech signal causes the amplitude

modulation ratio to be higher for speech and lower for music signals.

• Chroma: Representation of the energy spectrum onto 12 bins representing the

12 distinct semitones of the musical scale. This feature has been widely used in

music recognition applications.

The choice of proper features is a crucial step in the design of automatic audio recog-

nition systems and it impacts directly on the robustness of the system. Many types of

29



2. STATE OF THE ART

audio features has been proposed for different tasks of sound description, like speech

recognition (Yapanel2008, Gonzalez2010, Sarikaya2000, Mporas2007), speaker verifi-

cation (Barras2003), multimedia content analysis (Liu1998), audio segmentation and

classification (Mierswa2005, Mckinney2003) and emotion identification (Luengo2010)

among others. However, a proper set of features for a system does not necessarily work

well in other systems. For example, the Mel Frequency Cepstrum Coefficients (MFCC)

or Perceptual Linear Prediction (PLP) features become the standard front-end in many

speech applications but audio segmentation and classification in general is not so clear

yet because the authors mix the MFCC with other features very often. Therefore, re-

searchers have not clear arguments in favor of a particular set of features and the final

decision about feature selection is mainly based on their prior knowledge.

Features can be grouped in several ways. Some authors group the features by

domain: time-domain and frequency-domain like in (Chu2009). Time-domain features

are computed directly over the waveform and characterize the temporal behavior of the

audio signal. Frequency-domain features are computed over the spectrum of a segment

and describe the distribution of the signal in frequency bands.

The acoustic features can also be classified into frame-based and segment-based ac-

cording to the portion of time analyzed. Frame-based features are extracted within

short periods of time (between 10 and 30 ms) and are commonly used in speech related

tasks where the signal can be considered stationary over that short period. MFCC or

PLP are generally used as frame-based features as proposed in (Imai1983, Vergin1996,

Vergin1999, Wong2001, Hasan2004), and more recently in (Dhanalakshmi2011) where

these features are classified with an autoassociative neural network. Frame-based fea-

tures have been also proposed for audio segmentation and classification into broad-

classes of broadcast news. Among others, in (Xie2010) two pitch-density-based features

are proposed, in (Saunders1996, Li2001, Lu2002) the authors use Short-Time Energy

(STE) and Harmonic features are used in (Nwe2005, Hauptmann2003, Dhara1999).

Frame-based features can be used directly in the classifier. However, some classes are

better described by the statistics computed over consecutive frames (from 0.5 to 5

second long). These characteristics are referred to in the literature as segment-based

features (Gallardo-Antolin2010, Butko2011). For example, in (Markaki2011) a content-

based speech discrimination algorithm is designed to exploit the long-term information
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inherent in modulation spectrum. In (Huang2006) the authors propose two segment-

based features: the variance of the spectrum flux (VSF) and the variance of the zero

crossing rate (VZCR).

2.3.3.2 Statistical Modeling

This subsection shows a review of the most widely used classification algorithms in this

field.

• Support Vector Machines (SVM):

Kernel classifiers have become very popular for multimedia applications and, among

all kernel-based classifiers, the Support Vector Machine (SVM) is the most common

algorithm due to its balanced performance across different tasks and its efficiency in

high dimensional problems especially in non-linear classification (Scholkopf2002). The

data from the classes are mapped into a higher-dimensional space in a first step. This

procedure is known as the kernel trick. In the new high-dimensional space, the data can

be classified using linear discriminant functions (also called hyperplane) because the

classes are divided by a gap that is defined by the closest training data to the decision

surface. The test data are then mapped into the same high-dimensional space and the

belonging class is determined by the side of the decision surface where they are located.

Let’s assume the typical MED task where two classes, target event (+1) and non-

target event (-1), are defined. The decision function for a feature vector x of a test

video has the form:

f(x) =
∑
i

αiyiK(xi,x)− b, (2.1)

where f(x) represents the distance (in general sense) of the feature vector from the

hyperplane, b is the threshold parameter, xi are the support vectors, αi is the support

vector weight and yi is the corresponding label such that
∑
i
αiyi = 0 and αi > 0. The

kernel function K(., .) is the inner product between feature vectors:

K(x,y) = Φ(x)TΦ(y), (2.2)

where Φ : RN 7→ RM represents the mapping from input space into a higher-dimensional

space where the classes can be linearly separated by an hyperplane. In the training
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Figure 2.6: Two-class classification example with Support Vector Machine. The original

data (2-dim) are mapped into a high-dimensional space (3-dim). The support vectors are

highlighted in the figure.

phase, the algorithm searches for the hyperplane that maximizes the margin between

target and non-target events in the high dimensionality space. The training events

closer to the boundaries are known as support vectors.

Choosing a suitable kernel function K(x,y) is critical to perform a good classifica-

tion. The optimal kernel depends on the task and the nature of the features. Possible

choices of kernel functions include the polynomial kernel, the Gaussian radial basis

function (RBF), the histogram intersection kernel or the multilayer perception kernel.

Among them, the polynomial kernels and especially the RBF kernel are widely used in

the literature. The polynomial kernel is defined as:

K(x,y) = (x · y + c)d, (2.3)

where the parameter d is the degree of the polynomial. If d = 1 the kernel is known as

linear kernel. The Gaussian RBF is defined as:

K(x,y) = exp

(
−(x− y)2

2σ2

)
, (2.4)

where the parameter σ is the width of the Gaussian function. Gaussian kernel has

been used recently in event recognition systems with good performance (Jiang2010,

Natarajan2011, Myers2013, Jhuo2013).

The features are usually accumulated into a single vector to be used in the SVM

classifier. While this approach seems reasonable, the temporal information is not de-

scribed and, therefore, other approaches are implemented as a middle step to model
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the temporal behavior of the events with graphical models. The graphical model ap-

proaches combine the likelihood of the data and the graph theory to find structures

in sequential data. A popular graphical model method is the Hidden Markov Model

which will be described deeply below.

• Gaussian Mixture Models (GMM):

A Gaussian Mixture Model (GMM) is a mixture distribution that represents the

probability distribution as a weighted sum of Gaussian component densities. The GMM

were proposed by Liporace (Liporace1982) and introduced in speech technologies by

Juang (Juang1985) to the problem of speech recognition of isolated digits. It is an effi-

cient way of modelling multimodal distributions which is the case in speech processing

and audio segmentation and classification.

For a feature vector x the GMM distribution is defined by

P (x|λ) =

K∑
k=1

ωkN(x|µk,Σk), (2.5)

where K is the number of Gaussian components in the mixture and λ = {ω, µ,Σ} are

the model parameters collectively represented, ωk, µk and Σk are the weight, mean

and covariance matrix associated with component k, the weights satisfy the constraints

ωk ≥ 0 and
∑K

k=1 ωk = 1, and the Gaussian distribution is defined as

N(x|µk,Σk) =
1

(2π)D/2|Σk|
e−

1
2

(x−µk)T Σ−1
k (x−µk). (2.6)

The most popular method for training GMM parameters is the maximum likelihood

(ML) estimation. This estimation technique tries to find the parameters λ of the model

that give the maximum log-likelihood 1. The logarithm of function 2.5 for a dataset X

of N points is given by

lnP (X|λ) =
N∑
n=1

ln{
K∑
k=1

ωkN(xn|µk,Σk)}, (2.7)

To obtain the maximum likelihood we derive the log-likelihood function with re-

spect to the parameters but, in the case of the GMM, the derivation is complex. The

1The logarithm is used to reduce the numerical dynamic range because the product of very low

probabilities can underflow the numerical precision of the computer, and the computation of sums of

log probabilities instead of product solves this problem
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most commonly used alternative ML approach is the expectation-maximization (EM)

algorithm than can followed in (Bishop2006).

In the verification phase for audio segmentation and classification, the log-likelihood

of a test utterance for each GMM (one model for each class) is computed. The class

whose GMM gives the highest likelihood is considered the correct one. Another ap-

proach to verify the classes in the test phase is the log-likelihood ratio (LLR) between

a specific class model (called target class) and a universal model (known as universal

background model (UBM)) which represents the class independent distribution of fea-

tures. The target class model is usually estimated by adapting the means from the

UBM using a maximum a posteriori (MAP) criterion and the LLR is computed as:

LLR =
1

T

T∑
t=1

lnP (xt|λtarget)− lnP (xt|λUBM ) (2.8)

• Hidden Markov Models (HMM):

Before defining the Hidden Markov Models (HMM) we have to define the Markov

chain because within an HMM lies a hidden Markov process. Therefore, a Markov

chain is a sequence of states and their probability depends only on the immediately

preceding state. An HMM represents stochastic sequences (like audio concepts, words

or segments) as Markov chains. The states of this process are not directly observed (the

states are hidden). The sequence of states can only be observed through the stochastic

processes defined into each state. Therefore, the true sequence of states is hidden by a

first layer of stochastic processes.

An HMM is characterized by:

- the emission probabilities which are given by the probability density function (pdf)

that characterize each state p(x|qi) denoted by bi(x) in the literature. They are usually

Gaussians or GMM but it could be any other kind of pdf.

- the transition probabilities which are the probability to go from state i to state j

(P (qj |qi)) where the states are defined as Q = {q1, ..., qk}. They are stored in matrices

where each term aij denotes a probability P (qj |qi).
- the initial state distribution can be seen as a discrete event to model the “start”

of a sequence and it is denoted as πi.

There are multiple types of topologies for an HMM, which include:

- Ergodic: the transitions go from any emitting state to any other emitting state.
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2.3 Audio Segmentation and Classification

- Left-to-right : the transitions only go from one state to itself or to a unique follower.

In audio segmentation and classification, every class is modeled by an HMM trained

following the Baum-Welch algorithm. The initial emission probabilities and transition

probabilities are chosen randomly and the initial state distributions are uniformly dis-

tributed for each class. After training, we have all the parameters for each class Θk

where k represents each acoustic classes. For each testing sequence XT , the likelihood

P (X,Θk) is computed for each class, and the testing sequence is classified to the class

with the maximum likelihood following the Viterbi algorithm.

• Joint Factor Analysis (JFA):

Joint factor analysis (JFA) is a generative model to estimate the class GMM taking

into account the different sources of variability. In this model the means of all the

components of the GMM are concatenated to build high-dimensional supervectors and

modelled as a sum of factors. As in the classical MAP of Reynolds (Reynolds2000), the

most commonly used implementation adapts the means of the GMM-UBM to the class

while the weights and variances are shared among all the classes. In other words, the

means are not fixed and can vary from segment to segment due to several sources that

increase the within-class variability (Kenny2007). The JFA for audio segmentation and

classification can be written as:

m = tc + V y +Ux, (2.9)

where m is the supervector of means for class c, tc is the class-location vector obtained

by MAP adaptation from the UBM. The term V is known as the eigenvoices matrix,

y as class factor vectors and they model the class variability. Usually the term V y is

not used in language ID or segmentation approaches and the variability is restricted to

be modeled in a channel subspace. U is known as the within-class variability matrix

that we use to compensate that variability of the channel and xs is the channel factor,

a low-dimension hidden variable whose role is to give the channel information of the

utterance. While tc is obtained with all the training data of class c (it is fixed once

calculated), the channel factor is utterance-dependent, and is the term that moves the

class-specific model for each utterance s.

Figure 2.7 shows a simplified vector representation of Factor Analysis in three di-

mensions without the term V y. For simplicity we only show one component of the
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tc(s)

ms

Uxs

Figure 2.7: Vector representation of the within-class variability compensation

GMM. The non-compensated mean of the class comes from the UBM and is obtained

via MAP adaptation to end in the corresponding mean of class c given by tc. This

mean is further adapted to compensate for the channel by the within-class variability

term Uxs to determine the final vector location ms for utterance s.

The JFA model is also trained via ML, and like the GMM, there is no closed form

solution for the derivatives of the log-likelihood function over the parameters. The

adopted solution is again the application of the EM algorithm.

Different scoring techniques for JFA have been developed in the literature. In

(Glembek2009), the most common techniques are compared in terms of performance

and speed. All of them have in common that the final scores obtained for each class are

given in terms of the log-likelihood ratio between the log-likelihoods given by the model

of each class and the UBM. Also, the log-likelihoods are normalized by he number of

frames in the utterance, being an average of the log-likelihoods of all the frames.

• Total Variability Subspace (i-Vectors):

In the JFA framework, the class and the channel variability are modeled separately

by two different factors. In (Dehak2010), the authors find that the speaker information

was not completely removed from the channel subspace in a speaker identification

problem with speaker and channel subspace. Therefore, they redesign an FA model

with a single factor, including both the speaker and channel information. The training

procedure of this new model is the same as for JFA but, in this case, the model is

class-independent. The new mean supervector of equation 2.9 becomes

ms = m0 + Tws. (2.10)
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2.3 Audio Segmentation and Classification

As we can see there is no MAP adaptation to the class and the model is centered

at the UBM. The subspace is spanned by matrix T , and the point in the subspace

of utterance s is given by the latent variable ws (we just renamed U and xs of JFA,

which were defined for the channel subspace). The new defined subspace contains all

the variability of the signal.

The same EM procedure defined for JFA can be used by removing the dependence

on the class. In practice, we pool the files of all the classes and calculate a single JFA

model as if all the utterances belonged to the same class.

The i-Vector approach presented is used as a front-end to extract fixed-length low-

dimension features (known as i-Vectors in the literature). One i-Vector is obtained per

utterance from the class-independent factor ws. From this point, the i-Vectors become

our features, and several approaches can be used to classify each vector into classes.

• Classification Trees:

A classification tree is a model where the decision structure is a tree with edges

and nodes. The intermediate nodes are labeled by a single attribute, and the edges

extending from the intermediate node are predicates on that attribute. The leaf nodes

are labeled by the predefined classes.

Figure 2.8 shows an example of a classification tree. In this specific example, the

tree was trained to classify music frames and speech frames with five different features

previously described (VSF, LSTER, HZCRR and Minimum Energy). The intermediate

nodes are represented by purple squares and the leaf node is represented by an orange

circle. As a general description, each frame is classified by checking the current test

and then falling down the appropriate branch until a leaf is reached.

The classification trees have two important advantages: firstly, they can be imple-

mented very efficiently and, secondly, they are very easy to interpret because the tree

is comprised of individual classifiers for each dimension of the feature space. This easy

interpretation can be seen as a feature space partition recursively as it can be read in

(Breiman1984) or (Quinlan1986) where the authors describe the CART and the C4.5

trees respectively.

Instead of classifying the frames into a predefined class, it can be useful to provide

class probabilities especially in problems involving noise. In these cases, each leaf node
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M

Figure 2.8: Classification tree example.The branches represent different acoustic features

and the leave represents an audio class (in this exmaple, the leave is “Music”).

has a vector of class probabilities. In (Buntine1992) the authors show how a tree

learning algorithm can be derived using Bayesian statistics.

2.4 Chapter Summary

In this chapter we have briefly reviewed the state of the art in MED and the most rele-

vant approaches in audio segmentation and classification. Firstly, the multimedia event

detection task is described with the most widely used techniques for multimodal fea-

tures extraction (image, video and audio), event characterization and fusion techniques.

Secondly, the chapter has delved into the audio segmentation and classification and,

more precisely, into speech/non-speech techniques and acoustic concepts recognition

with the most relevant audio features and statistical models.
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3. MULTIMEDIA EVENT DETECTION

3.1 Chapter Overview

Previous chapters have summarized a set of common solutions for MED: unsupervised

approaches where the events are detected by clusters of low-level features, and super-

vised approaches where the acoustic concepts are used as high-level features to identify

the event.

This chapter examines two solutions to model multimedia audio content with a

supervised acoustic concept extraction technique. Firstly, we describe baseline systems

where the acoustic concepts are evaluated with fixed segmentation (Pancoast2012a)

or by HMM-based acoustic concept recognition (ACR) (Castan2013). Secondly, we

propose a novel approach where the recognition lattices of the ACR are used to extract

posterior N-gram counts (Castan2013b). The N-gram counts are used as features in

SVM-based classification for MED task. Given the high variability present in user-

submitted Internet videos, this approach improves the MED performance based only

on ACR because 1-best hard-decisions are less informative. This approach will be

compared with ACR and Bag-of-Audio-Word approaches to compare the behavior with

a baseline supervised approach and unsupervised approach. Finally, we propose a fusion

with spoken concepts since the information captured by the spoken concepts is different

to the information captured by the acoustic concepts and the systems can be combined.

The remainder of this chapter is organized as follows: the TRECVid2011 dataset

is described in 3.2. Section 3.3 evaluates and describes the acoustic concepts annota-

tions, the audio features and the acoustic concepts classification, detection and recog-

nition. Section 3.4 deals with the two baseline systems for MED: segmental-GMM and

ACR. Section 3.5 shows the lattices N-grams counts approach and its comparison with

segmental-GMM, ACR and BoAW. A fusion system with spoken and acoustic concepts

is proposed in Section 3.6 where the importance of acoustic concepts for MED is shown.

Finally, Section 3.7 summarizes the most relevant aspects of this chapter and briefly

points out some conclusions.

3.2 TRECVid2011 Dataset

The Text Retrieval Conferences Video Retrieval Evaluation (TRECVid) is an annual

conference sponsored by the National Institute of Standards and Technology (NIST)

and the goal of the conference is to encourage research in information retrieval. The
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3.2 TRECVid2011 Dataset

TRECVid2011 (NIST2011) focuses on the problem of Multimedia Event Detection

(MED) in website quality videos for hard-to-detect events (e.g., Landing a fish). The

evaluation dataset consists of non-professional videos collected from various social net-

works on the Internet with high variability (each video is recorded with different devices

in a different acoustic context) and short duration (a couple of minutes). Fifteen differ-

ent video event categories can be found in the database with only five of those categories

available for testing purposes in this study.

To develop and evaluate our proposed approaches, we use three sets of data: first set

(train-1) is for training the acoustic concept models, second set (train-2) is for training

the MED classifiers after extracting acoustic concept indexes on this data and using

them as MED features, and the third set (test) is for testing the system. These sets

are the same sets used in (Pancoast2012) and (Pancoast2012a) to be able to provide

fair comparison with previously published works. The videos are provided in MP4

format. We extract the audio components with a sampling rate of 16KHz. There is a

total of 2640 videos in the test set and 7881 in the training set. Table 3.1 shows, for

each of the five video events, the numbers of positive samples in the test and training

sets. Note that the categories group several videos. For example “feeding an animal”

includes animals from different species and therefore, different animal sounds, while

“attempting a board trick” includes people skateboarding, snowboarding and surfing.

The remainder of the videos in the test set are random videos that do not belong to

any of the event categories.

Table 3.1: Video event class abbreviations (Abbr.) and full names along with the number

of positive samples appearing in the training and test sets

Abbr. Full Name # Train # Test

E001 Attempting a board trick 91 32

E002 Feeding an animal 81 30

E003 Landing a fish 69 26

E004 Wedding ceremony 66 25

E005 Woodworking project 77 25

— None 7497 2502
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Table 3.2: Broad and specific acoustic concepts proposed in (Pancoast2012a). The specific

concepts are subgroups of the broad concepts.

5 Broad Concepts 20 Specific Concepts

Air traffic Individual applause

Birds Individual yells

Crowds/audience Crowd applause Large crowd

Animal sounds Crowd cheers Scraping-Sanding

Repetitive sounds Crowd laughter Sewing

Machine noise Crowd yells Skateboard

Environmental sound Farm animals Small party

Ground traffic Water running

Hammer Water splashing

Wind Home appliances

3.3 Acoustic Concepts

This section presents the acoustic concept annotations and the results with respect

to the classification and recognition of the concepts. The section can be seen as a

preliminary study to show the difficulty of creating a well-trained model for these

acoustic concepts due to the high variability of the audio. This section is organized as

follows: firstly, two sets of concepts annotations are presented in section 3.3.1. Secondly,

we describe the front-end audio features used in this approach in section 3.3.2. Finally,

the experiments of classification and segmentation of the acoustic concepts are reported

in sections 3.3.3 and 3.3.4 respectively.

3.3.1 Acoustic Concepts Annotations

Because the ultimate goal of the system is to detect multimedia events on the videos

using acoustic concept recognition, an initial set of labels of acoustic concepts has been

created that will be useful in discriminating the five video event classes presented in

Table 3.1 while also being clear and understandable for the annotators.

The acoustic concepts are divided into five broad classes as Table 3.2 shows. These

classes can be extended with more specific acoustic concepts. In (Pancoast2012a) the

five broad classes were extended to twenty specific classes as can be seen in Table 3.2.
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3.3 Acoustic Concepts

These classes have been extended with Speech and Music classes because most of the

videos contain speech or music as the predominant audio. In fact, some of the acoustic

concepts are overlapped with speech or music that is barely audible in the background.

However, those segments were annotated as that acoustic concept.

3.3.2 Front-End Audio Features

This section is a summary of the front-end audio feature extraction method used in

(Castan2011). We extract 16 MFCCs (including C0) computed in a 25ms frame length

with a 10ms frame step and their first and second derivatives. Due to the high variabil-

ity of every acoustic concept, the fact that the segments are overlapped with speech and

music, and the different devices used to record the video, a normalization of these fea-

tures is needed. In an attempt to generalize the features, a cepstral mean normalization

is computed over the whole video and the mean and standard deviation are computed

over 1-second windows with an overlap of 0.75 seconds. Thus, the system uses 96 fea-

tures (48 for the mean and 48 for the standard deviation of the MFCC + ∆ + ∆∆

features) every 0.25 seconds.

3.3.3 Acoustic Concept Classification Experiments

To model the acoustic concepts we used an HMM/GMM-based system. As described in

the previous section, to train and test these models, a subset of the National Institute of

Standards and Technology (NIST) is provided for the TRECVid2011 evaluation. This

set is comprised of 1536 videos (47 hours approximately) with an average length of 1.8

minutes per file.

The goal of this experiment is to classify a set of segments extracted with the

ground truth boundaries in one of the broad classes. The segments are overlapped with

speech and music in the background in some cases. However, the classification is done

with the five broad classes (without speech and music models) keeping the seven broad

classes (with speech and music models) for the recognition task. The segments are

extracted from the video database generating 13,520 segments of different durations.

Each concept is modeled as one state HMM/GMM with 256 Gaussians. Table 3.3

shows the results of a first approximation experiment using the same subset of data to

train and test. As it can be seen, the task is very difficult due to the high within-class

variability of each concept. The system classified 71.1% of the segments correctly.
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Table 3.3: Confusion matrix of a first approximation classification experiment using the

same set of data for training and testing. Each row of the matrix represents the ratio of

segments in an actual class and each column represents the ratio of segments in a predicted

class.

CA AN RS MN ES

CA 0.77 0.04 0.04 0.06 0.09

AN 0.08 0.80 0.04 0.02 0.06

RS 0.08 0.04 0.75 0.05 0.08

MN 0.11 0.04 0.09 0.61 0.16

ES 0.12 0.09 0.08 0.07 0.63

To test the system, a 4-fold cross-validation was performed using 3 quarters to train

the models and 1 quarter to test. Table 3.4 shows the confusion matrix and how the

classification rate is reduced compared with Table 3.3 getting 45.9% of the segments

correctly classified. It can be seen that “Animal Noise” and “Environmental Sounds”

are the concepts with the highest error rate. This can be easily explained by two major

aspects: firstly, neither of the two classes have enough data to train the models and

secondly, the audio of these concepts presents low energy levels.

Table 3.4: 4 Folds cross-validation confusion matrix for acoustic concept classification.

Each row of the matrix represents the ratio of segments in an actual class and each column

represents the ratio of segments in a predicted class.

CA AN RS MN ES

CA 0.61 0.03 0.06 0.12 0.18

AN 0.18 0.12 0.20 0.19 0.31

RS 0.11 0.05 0.45 0.18 0.21

MN 0.17 0.02 0.16 0.40 0.25

ES 0.24 0.07 0.15 0.21 0.33

3.3.4 Acoustic Concept Recognition Experiments

In the MED task, a recognition system is needed to be able to detect and classify the

acoustic concepts related to the video. Due to the fact that most of the acoustic con-

cepts are overlapped with speech and music, two extra models are required to identify

the segments where there is no acoustic concept and to be able to produce a clear
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segmentation. In addition, these models can be useful to describe the video in the

MED task. Using the same models trained for the classification task, a segmentation is

executed over the whole video where the segments were extracted for the classification

and detection system.

In this experiment, every concept (speech and music included) is modeled by an

HMM/GMM of one state. The main difference is that a segmentation is produced when

there are transitions between the models in the Viterbi algorithm. Table 3.5 shows the

recognition result per concept independently of the segment duration. As it can be

seen, “Crowds” and “Repetitive Sounds” have the better results in comparison with

“Animal Noise” or “Environmental Sound” because “Crowd” and “Repetitive Sounds”

were trained with more data than “Animal Noise” or “Environmental Sound”. The

following sections show how the multimedia events related to the acoustic concepts

“Animal Noise” or “Environmental Sound” have a bad detection rate due to the fact

that the models are not well-trained.

Table 3.5: Segmentation confusion matrix for the 5 broad classes of acoustic concepts

plus speech and music models. Each row of the matrix represents the ratio of frames in an

actual class and each column represents the ratio of frames in a predicted class.

CA AN RS MN ES SP MU

CA 0.41 0.03 0.03 0.04 0.04 0.20 0.23

AN 0.11 0.01 0.01 0.05 0.07 0.52 0.20

RS 0.07 0.02 0.35 0.09 0.09 0.16 0.20

MN 0.14 0.10 0.10 0.26 0.16 0.07 0.15

ES 0.23 0.02 0.07 0.05 0.11 0.12 0.13

3.4 Acoustic concepts as features for MED. Baseline Sys-

tems

3.4.1 Methods

The acoustic concepts can determine some properties of the audio to facilitate the detec-

tion of a multimedia event easier than other features. For example, a video where some-

one is fishing is strongly correlated with “environmental sounds” like “water splashing”
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Attempting a board 

trick

Feeding an animal

Landing a sh

Wedding cerermony

Woodworking project

User-submitted 

Video
Audio Concept Video Events

Figure 3.1: Diagram of a supervised MED approach where the acoustic concepts are used

as high-level features.

or “wind” as Figure 3.1 shows. This section shows two different approaches using

acoustic concepts to detect the multimedia event.

3.4.1.1 Segmental-GMM Approach

The first approach is described in (Pancoast2012a) and it is known as Segmental-

GMM. In this approach, each selected concept is trained with a GMM. Then, the

audio of a video is divided into fixed-length segments to generate score vectors where

each element in the vector corresponds to a likelihood of a GMM concept. These

score vectors are known as Segmental-GMM feature vectors. In our experiments the

segmental GMM vectors are 7-dimensional (the 5 broad classes, speech and music).

We generate segmental GMM vectors for every T second segment within each video.

In (Pancoast2012a) different values of T were used getting the best results for T = 5

seconds. If K = bMT c, a video that is M seconds long will therefore be represented by a

7xK dimensional matrix with each column corresponding to a segmental GMM vector.

Therefore, the video is currently represented by a non fixed-length matrix. However,

we need to have constant length features that are independent of the video length in

order to be used with an SVM classifier to detect the final multimedia event. The

solution proposed in (Pancoast2012a) is to represent the video with a co-occurrence
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Figure 3.2: Co-occurrence segmental GMM matrix representation (Pancoast2012a). Each

row of A corresponds to the likelihoods of a given acoustic concept occurring at every T -

second fixed-length segment.

matrix where each element represents the probability that a pair of acoustic concepts

occur in the video. If A is the segmental-GMM matrix, the co-occurrence matrix is

computed as AAT as Figure 3.2 shows.

3.4.1.2 Acoustic Concept Recognition Approach

The second approach is described in (Castan2013) and it is known as Acoustic Concept

Recognition (ACR). In this approach, each concept is modeled as an HMM/GMM of

one state. The main difference with the Segmental-GMM approach is that the length

of the segments is not fixed anymore and the segmentation is based on the transitions

among the HMM models according to the Viterbi algorithm. The score vector is the

accumulated likelihood for each model. Therefore, a video is represented by a 7xK

dimensional matrix with each column corresponding to a different-length segments.

Then, the elements of the original likelihood matrix are normalized with the sigmoid

function:

S(xi,j) =
1

1 + exi,j/a
(3.1)

where xi,j is the likelihood score corresponding to acoustic concept i in segment j.

The value a was chosen empirically from the training data. The resulting values are

therefore normalized to be greater than 0 and less than 1.

Finally, the matrix is vectorized to generate SVM feature vectors to be able to

perform the event detection (one-against-all) for each video event class with an SVM

classifier with a linear kernel.
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3.4.2 Results

To measure the system performance we use Detection Error Tradeoff (DET) curves

(Martin1997) which are commonly used to show the tradeoff between false alarm errors

and missed detections. We generated the DET-curves with plotting software available

from the NIST website (NIST). From these curves we also extracted the equal error

rate (EER) as the point where the probability of false alarm (pFA) is equal to the

probability of a miss (pMiss). Since TRECVid MED 2011 simulates a retrieval task

from wild videos on the Internet, the assumption is that high miss rates can be tolerated

in favor of low false alarm probabilities. A rate of 6% false alarms has been widely used

in the literature as a low false alarm probability. Therefore, the benchmark compares

the number of misses at a given false alarm rate of 6%. However we also calculate the

EER because it provides a clear idea about the performance of the system.

Figure 3.3 shows the DET curves for every acoustic event. The blue curves repre-

sent the performance of the Segmental-GMM approach and the red curves represent

the performance of the ACR approach. As it can be seen, system performance varies

across video events. “Wedding ceremony” and “Woodworking project” show the best

results while “Feeding an animal” and “Landing a fish” show the worst results. These

behaviors are consistent with the previous results presented in section 3.3. It can be

seen that the concepts, “Animal sounds” and “Environmental sound”, have the highest

error rate and those concepts are more related to “Feeding an animal” and “Landing

a fish” videos, respectively. On the other hand, the concepts “Crowds and audience”

and “Repetitive sounds” have the best results and they are more related with “Wed-

ding ceremony” and “Woodworking project” events respectively. Likewise, “Feeding an

animal” and “Landing a fish” videos contain short bursts of sounds overlapping with

a widely varying background noise, which make detection much more difficult.

Table 3.6 shows the EER and the benchmark given a false alarm rate of 6% for both

approaches. The EER is better using Segmental-GMM for almost all the events except

for the “Wedding ceremony” event. However, the benchmark is better using ACR with

the exception of E002 event where the model is under trained and E005 where the

difference between Segmental-GMM and ACR is not very significant as it can be seen

on Figure 3.3. Leaving aside these subtle differences, both approaches are very similar

so it can be said that there is not a very big improvement using ACR. However, the
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Figure 3.3: DET curves of Segmental-GMM approach versus ACR approach with the 5

broad classes, speech and music. The marks for EER and the benchmark for 6% pFA on

the same curves

lattices of the recognition process can be used to provide context information about

the video as is shown in the following section.

3.5 Acoustic Concept Lattices as features for MED - Con-

text Information

3.5.1 Method

In this section, we propose an approach to model multimedia audio content with a

supervised acoustic concept extraction technique. First, we employ an HMM-based

acoustic concept recognition (ACR) system (the one described previously in 3.4.1.2) to

convert the audio signal into a recognition lattice, which we refer to as acoustic concept

lattice. Next, we create an acoustic concept index for each file from the ACR lattice

by extracting posterior N-gram counts. The main idea is that a sequence of acoustic

concepts can be indicative of a specific multimedia event. This approach has been

successfully applied to identify different languages (Campbell2007, Richardson2008) or
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3. MULTIMEDIA EVENT DETECTION

Table 3.6: EER and benchmark of 6% pFA for segmental-GMM and ACR approaches

Segm-GMM ACR

EER BM-6% EER BM-6%

E001 0.343 0.906 0.406 0.843

E002 0.500 0.933 0.533 1.000

E003 0.384 0.923 0.461 0.846

E004 0.360 0.800 0.280 0.800

E005 0.320 0.640 0.360 0.680

Mean 0.381 0.840 0.408 0.833

different dialects (Akbacak2012) by using phonetic N-gram counts. Finally, the acoustic

concept indexes are used as features in an SVM-based classification for multimedia event

detection (MED) task.

This approach is different to the previously mentioned supervised techniques like

(Pancoast2012a, Jiang2010, Castan2013) in several ways. First, we do not use any fixed

segmentation, but instead use recognition to dynamically extract acoustic concept seg-

ments. More importantly, in this approach, soft-decisions for the acoustic concept

extraction are used as MED features via lattice-based representations to consider al-

ternative recognition hypotheses, creating rich representations to be used for the MED

task. Given the amount of variation in audio characteristics of user-submitted Internet

videos, this becomes critical since 1-best hard-decisions will very often obtain errors and

this will degrade MED performance. And the last difference is that context information

is used (via N-gram representations) in our work during MED modeling.

Figure 3.4: An example of 3-gram extraction from a sample acoustic concept recognition

(ACR) lattice

The method can be described carefully in this way: lattices represent alternative

hypotheses resulting in a richer representation compared with the 1-best recognition
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3.5 Acoustic Concept Lattices as features for MED - Context Information

output. These hypotheses can be seen as multiple paths with different likelihood for

every node of the path. In our approach, each node represents an acoustic concept.

The N-gram counts are the accumulated likelihoods of co-ocurrence concepts as shown

in Figure 3.4.

Let us explain the N-grams counts with an easy example. Suppose we have a

hypothesized string of concepts, C = c1, · · ·, cn. As an example, bigrams are created

by grouping two tokens at a time to form, C2 = (c1c2), (c2c3), · · ·, (cn−1cn). The count

function for a given bigram, di (count(di|C2)) is the number of occurrences of di in

the sequence C2. To extend counts to a lattice, L, we find the expected count over all

possible hypotheses in the sequence:

count(di|L) = EC [count(di|C)] =
∑
CεL

p(C|L)count(di|C) (3.2)

3.5.2 Results

We evaluate the performance of the lattice-based acoustic concept indexing with the

DET curves, the EER and the benchmark given a false alarm rate of 6% as we did

in the previous section. The HMM models described in section 3.4.1.2 were used to

generate lattices across the train and the test data sets. As an initial experiment, the

SVM vectors were produced by stacking 1-grams, 2-grams and 3-grams of the 5 broad

acoustic concepts with speech and music, obtaining 520 dimension vectors. To get a

sense of how well the lattice-based acoustic concept indexing approach (denoted as

A.C. Latt.) performs, we compare the DET curves with ACR and Segmental-GMM

approaches (denoted as ACR and seg-GMM in the plots respectively) for the same

acoustic concepts. This is shown in Figure 3.5. It can be seen how the DET curve

for the ACR-lattice approach is below the segmental-GMM approach curve for most

of the events. Table 3.7 shows the improvement of the lattice count approach in terms

of EER and a benchmark of 6% pFA. The proposed approach, ACR-lattices, improves

the detection in almost all the events. The table shows that ACR-lattices is the best

performing approach for a retrieval system because it has the lowest pMiss for the

benchmark of 6% pFA. However, E002 and E003 still have the worst behavior due to

the reduced amount of data to train the acoustic concept models that appear in these

video event categories.
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Figure 3.5: DET curves of Segmental-GMM, ACR and Lattice Count approaches. The

marks for EER and the benchmark for 6% pFA on the same curves

Table 3.7: EER and benchmark of 6% pFA for segmental-GMM, ACR and Lattice Count

approaches

Segm-GMM ACR Latt

EER BM-6% EER BM-6% EER BM-6%

E001 0.343 0.906 0.406 0.843 0.312 0.812

E002 0.500 0.933 0.533 1.000 0.500 0.833

E003 0.384 0.923 0.461 0.846 0.423 0.846

E004 0.360 0.800 0.280 0.800 0.280 0.640

E005 0.320 0.640 0.360 0.680 0.280 0.480

Mean 0.4354 0.8404 0.408 0.833 0.359 0.722
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Figure 3.6: DET curves of Segmental-GMM, ACR and Lattice Count approaches. The

marks for EER and the benchmark for 6% of pFA on the same curves

The SVM vector dimensions grow exponentially as we increase the order of the

N-grams. Fortunately, Figure 3.6 shows the curves increasing the SVM vector with the

counts of 4-grams and 5-grams obtaining 3,656 and 25,608 dimensions respectively. It

can be seen that the curves are overlapped for all the events and this means that the

entropy to detect the events is located in the first order of the N-grams.

3.5.3 Comparison of the Lattice Count approach with other approaches

Next, we compare the proposed ACR-lattices approach with other approaches out-

side this thesis. We use the 20 acoustic concepts and the segmental-GMM approach

used in (Pancoast2012a). We also compare the proposed approach with an unsuper-

vised approach which is a bag-of-audio-words (BoAW) (Pancoast2012). For all of these

approaches, the same train and test sets are used. Because the segmental-GMM ap-

proach is evaluated with 20 acoustic concepts instead of the broad acoustic concepts

used previously, we extend the ACR-lattices approach with the specific acoustic con-

cepts presented in Table 3.2 using 1 state HMM with 256 Gaussians for every acoustic

concept as we did for the broad acoustic concepts. The SVM vectors in this experiment
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Figure 3.7: DET curves of segmental-GMM with 20 acoustic concepts, Lattice Count

with 20 acoustic concepts and BoAW approaches. The marks for EER and the benchmark

for 6% of pFA on the same curves

use 3-grams because increasing the order of the N-grams further shows a slight improve-

ment in the detection performance, but vector dimensions increase exponentially. For

the BoAW approach, a codebook size of 1000 is used as this was found to yield the best

BoAW results in (Pancoast2012).

Figure 3.7 shows the DET curves for these approaches. As it can be seen, for almost

all the events, the curve corresponding to ACR-lattices has better behavior than the

BoAW and segmental-GMM curves. Also, the performance of the BoAW for events

E002 and E003 is very bad even if the BoAW creates unsupervised clusters. This

shows the difficulty in detecting that multimedia events using the audio of the video.

Table 3.8 summarizes the EER and the pMiss for a benchmark of 6% pFA. Also for

these marks, the ACR-lattice approach shows very good behavior.

The next section shows the benefit of this approach as part of a complete audio

processing system with spoken and acoustic concepts to detect multimedia events.
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3.6 Spoken and Acoustic Concept Fusion for MED

Table 3.8: EER and benchmark of 6% pFA for segmental-GMM with 20 acoustic concepts,

Lattice Count with 20 acoustic concepts and BoAW approaches

Segm-GMM Latt BoAW

EER BM-6% EER BM-6% EER BM-6%

E001 0.343 0.812 0.281 0.718 0.300 0.800

E002 0.400 0.900 0.433 0.800 0.413 0.827

E003 0.346 0.807 0.346 0.846 0.416 0.708

E004 0.320 0.760 0.240 0.640 0.440 0.640

E005 0.320 0.520 0.280 0.600 0.280 0.480

Mean 0.345 0.759 0.316 0.720 0.369 0.691

3.6 Spoken and Acoustic Concept Fusion for MED

Speech content is rich in information since some keywords will provide invaluable clues

for detecting certain events. Words like “water”, “boat” or “fish” are closely related

to the event “Landing a fish”. The purpose of this section is to explore using acous-

tic concepts and spoken concepts extracted via audio segmentation/recognition and

speech recognition respectively for Multimedia Event Detection (MED). The fusion of

both approaches can improve the detection rate since the information provided by the

systems is complementary.

We first present the Automatic Speech Recognition (ASR) system used to extract

spoken concepts. The ASR lattices are used to get expected counts (as we did in

the previous section with the ACR) since the counts provide a more robust measure of

word appearance than 1-best ASR, and use them as features for MED. To model spoken

concepts, we consider a linear SVM. Various feature processing techniques are presented

to improve the performance of the spoken concepts: word counts weighting and feature

dimension reduction by stemming. Finally, we merge the information coming from the

spoken concept system with the information coming from the acoustic concept system

described in section 3.5 to improve the detection rate. An exhaustive description of

the system can be read in (VanHout2013) and an overview of our system is shown in

Figure 3.8.
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Figure 3.8: Extracting acoustic and spoken concepts as features for MED

3.6.1 Extracting Spoken Concepts

Since audio from multimedia events is so heterogeneous in nature, a good segmentation

is essential in order to determine which segments need to be fed to the ASR system.

Here, we describe the ASR system that was chosen to generate spoken concepts. For

this task, we ran an English ASR system trained on data with channel and speaker

characteristics related as much as possible to those of the observed TRECVid MED

data. The system used 12 cepstral coefficients, energy, first-, second-, and third-order

time-derivatives, and 2× 5 voicing features over a 5-frame window.

The 1-best ASR output is the most likely word sequence extracted from the lattice,

while expected word counts are computed similarly to the concept N-gram counts with

N = 1. Because of the relatively low accuracy (28%) of the 1-best ASR due to the noise

and overlapped audio, lattice-based counts are expected to be more reliable than 1-best

ASR. For each video, these counts are aggregated into a feature vector of dimension

54484, the size of the ASR vocabulary.

Since some words are inherently more frequent than others, their counts can be

several orders of magnitude larger than counts of rarer but potentially discriminative

words. We tried a weighting scheme by which we boost counts of infrequent words

over frequent ones. The weighting approach (WLog) maps raw expected counts c(w|L)

to log counts clog(w|L) as follows: clog(w|L) = log(c(w|L) + f) where f is a flooring

parameter that was optimized to 10−4 limiting the impact of infrequent words.
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3.6 Spoken and Acoustic Concept Fusion for MED

3.6.2 Results

MED results are shown in Table 3.9 for each of the five events in terms of Average

Pmiss (APM), which measures the area under a Detection-Error Tradeoff curve.

Table 3.9: Average-Pmiss by event for the proposed MED systems

System Event

ASR Lattice SVM E001 E002 E003 E004 E005 Avg.

no-stem 0.30 0.37 0.50 0.23 0.29 0.34

stem 0.30 0.38 0.45 0.23 0.28 0.33

no-stem WLog 0.26 0.27 0.23 0.20 0.16 0.22

stem WLog (1) 0.26 0.27 0.21 0.19 0.14 0.21

ACR Lattice SVM E001 E002 E003 E004 E005 Avg.

5 broad concepts (2) 0.22 0.41 0.32 0.25 0.28 0.30

20 specific concepts (3) 0.17 0.30 0.23 0.15 0.20 0.21

Fusion ASR + ACR E001 E002 E003 E004 E005 Avg.

(1) + (2) 0.21 0.23 0.22 0.17 0.15 0.20

(1) + (3) 0.16 0.23 0.15 0.11 0.13 0.15

(1) + (2) + (3) 0.14 0.23 0.16 0.12 0.13 0.15

We observe that stemming the words and adding the counts to those sharing the

same stem results in a relatively small improvement since the APM decreases by 0.1

when stemming is applied, with and without log-weighting. The MED system based

on ACR performed significantly better with 20 events (0.21 APM) than with 5 events

(0.30) as we pointed out in the previous section. Note that the level of performance is

similar to that of the best ASR-based MED system. This clearly shows the tremendous

importance of ACR approaches for MED.

In order to leverage information from both Acoustic and Spoken concepts, we per-

form score-level fusion of these two or three systems by normalizing their prediction

scores to have zero-mean and unit variance and adding them with equal weighting. The

best performing combination was obtained by combining the ASR MED system with

the 20-concepts ACR MED system. The combined system performed better than both

of the original systems for all five events, and provided a relative 28% improvement in

APM (from 0.21 to 0.15) in average over all events. This result shows that acoustic and
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3. MULTIMEDIA EVENT DETECTION

spoken concepts capture different kinds of information that can easily be combined to

build a significantly more robust MED system.

3.7 Chapter Summary

In this chapter, we have presented a robust approach to build an audio-based Multime-

dia Event Detection system using N-gram counts from the lattices of acoustic concept

recognition. This approach has been compared with other supervised and unsupervised

approaches showing an improvement in terms of event detection. A similar approach

has been used to extract spoken concepts. Both systems have been merged since the

information is complementary. After score-level system combination of both MED sys-

tems, we leverage the complementarity of both approaches and obtain a 28% relative

decrease in APM.

It has become apparent that a good segmentation and a good concept classifier

are crucial for MED. Therefore, these systems must be robust enough to compensate

the enormous variability that is presented in Internet videos. In the next two chap-

ters, we will present different approaches to compensate this variability at model level,

introducing techniques based on Factor Analysis.
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4. AUDIO SEGMENTATION-BY-CLASSIFICATION

4.1 Chapter Overview

The previous chapter has shown the importance of a proper segmentation to identify

the speech/non-speech segments to provide speech transcription or acoustic concept

transcription respectively. An important issue to segment and classify speech/non-

speech segments is the high variability that can be found in each class. This chapter

will present a novel system to segment and classify audios into broad classes with

techniques to compensate the variability. The approach will be tested in a broadcast

TV news (BN) domain since this is a challenging scenario because the audio is comprised

of several materials with a non-homogeneous style. Therefore, it becomes suitable to

propose systems that are able to work with unconstrained databases as MED. Some

examples of the audio sequences in BN in different conditions are as follows:

• News Anchor Speech: Traditional news anchor reading text in clean condi-

tions.

• Interviews: Conversations between two people with spontaneous speech.

• Debates: Conversations between two or more people with overlapped speech.

• Reporter in the Field: The audio comes from a wide range of noises generally

overlapped with speech.

• Advertising: Speech with music in the background and a variety of acoustic

noise effects (slams, explosions, cars, screams ...).

• Jingles: Jingles are commonly used as a short tune to introduce different topics

during the news.

• Broadcasting of sports events: Speech with a strong background noise, diegetic

music and sounds.

• Telephone Connections: Commonly used when reporters do not have a camera

or microphone.

Recently, an audio segmentation task in the BN domain in the context of the Al-

bayzin 2010 evaluation campaigns was proposed in (Butko2010a). The proposed evalu-

ation task consisted of segmenting a broadcast news audio document into five acoustic
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classes: speech (SP), speech with noise (SN), speech with music (SM), music (MU), and

others (OT). The main difficulty in this database is the classification among the classes

with speech because these classes have some very homogeneous segments (especially,

between SP and SN). In this context, we introduce a novel and generic segmentation-

by-classification system based on factor analysis (FA) with two clear advantages: (1)

the system does not need class-dependent features with a hierarchical structure to clas-

sify different classes and (2) the algorithm compensates the within-class variability with

high accuracy being able to classify well-defined classes in generic tasks. The FA tech-

nique has been successfully applied in speaker ID (Kenny2005, Kenny2006, Kenny2007),

speaker diarization (Vaquero2010a, Vaquero2011, Vaquero2013), and language recog-

nition (Brummer2009) with significant improvements with respect to previous ap-

proaches. However, the system proposed in this thesis has several differences from those

systems. In contrast to a segmentation task, the speaker ID or language recognition

has well-delimited segments (usually in separate files) and, therefore, FA is applied over

the whole file. Unlike speaker ID, speaker diarization, or language recognition tasks,

we can find here the same speaker in two different acoustic classes, for example, the

situation where an anchor is inside the studio with clean conditions (SP) and outside

the studio with noise in the background (SN). Due to all these factors, we propose an

extension of a FA segmentation system proposed in (Castan2013a) and (Castan2013c)

with a new and more discriminative scoring using class/non-class parameters and with

a set of back-end systems that perform a better segmentation than the traditional FA

systems for language recognition or speaker ID.

The remainder of the chapter is organized as follows: the database and metric of

Albayzin 2010 evaluation is presented in Section 4.2. Section 4.3 shows the theoretical

approach based on FA and the smoothing back-end subsystem. The experiments are

presented in Section 4.4. Finally, a chapter summary is presented in Section 4.5.

4.2 Dataset & Metric

4.2.1 Database

The Albayzin campaigns are internationally open evaluations organized by the RTTH1

every 2 years. A complete description of the Albayzin 2010 audio segmentation and clas-

1Spanish Thematic Network on Speech Technologies: http://www.rthabla.es.
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sification evaluation can be found in (Butko2011) where the participant’s approaches

and the results are presented. We describe the database and the metric used in the

evaluation in the following subsections.

The database consists of BN audio in Catalan recorded by the TALP1 Research

Center. It includes approximately 87 h of annotated audio divided into 24 files. Five

audio classes were defined for the evaluation. The classes are distributed as follows:

clean speech, 37%; music, 5%; speech over music, 15%; speech over noise, 40%; others,

3%. The class ‘others’ is not evaluated in the final test. The database for the evaluation

was split into two parts: for training (two thirds of the total amount of data divided

into 16 files) and testing (the remaining one third divided into 8 files).

Each segment is labeled with one previously described class. Most of the segments

are between 10 and 20 s long. However, there is a considerable amount of long segments

(longer than 60 s). More details about the database and the labeling process can be

found in (Butko2011).

4.2.2 Metric

The metric that was proposed for the evaluation represents the relative error averaged

over all acoustic classes (ACs):

Error = averagei

(
dur(missi) + dur(fai)

dur(refi)

)
, (4.1)

where dur(missi) is the total duration of all deletion errors (misses) for the ith acoustic

classes (AC), dur(fai) is the total duration of all insertion errors (false alarms) for the

ith AC, and dur(refi) is the total duration of all the ith AC instances according to

the reference file. The incorrectly classified audio segment (a substitution) is computed

both as a deletion error for one AC and an insertion error for another. A collar of 1 s

is not scored around each reference boundary to avoid the uncertainty about when an

AC begins or ends.

Since the distribution of the classes in the database is not uniform, the errors from

different classes are weighed differently (depending on the total duration of the class

in the database). Therefore, the system has to correctly detect not only the best

1The Center for Language and Speech Technologies and Applications (TALP) is a specific interde-

partmental research center at the Technical University of Catalonia (UPC).
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Table 4.1: The five acoustic classes defined in the Albayzin evaluation for audio segmen-

tation in BN

Class Description

Music [MU] Music is understood in a general sense (as jingles

or diegetic music)

Speech over music [SM] Overlapping of speech and music classes or

speech with noise in background and music

classes. This class can be found mostly in spots

Speech over noise [SN] Speech not recorded in studio conditions or over-

lapped with some type of noise. Several simul-

taneous voices belong to this class and also the

telephone connections.

Speech [SP] Clean speech from a close microphone without

any kind of background sound. This class is typ-

ically composed of anchor speeches.

Others [OT] This class refers to any type of audio signal (like

silence and noises) that does not correspond to

the other four classes

represented classes (‘speech’ and ‘speech over noise,’ 77% of total duration) but also

minor classes (like ‘music,’ 5%). This metric is different to other segmentation tasks

such as the conventional NIST metric (NIST2009) for speaker diarization, where the

score is defined as the ratio of the overall segmentation error time to the sum of the

durations of the segments that are assigned to each class in the file. In this work, we

will present the final results with both metrics.

4.3 Novel Factor Analysis audio segmentation system

We propose a framework for automatic audio segmentation-by-classification. The sys-

tem deals with the problem of assigning a class label to each fixed-length window

using factor analysis (FA) models. In tasks like speaker verification, speaker diariza-

tion or language recognition, the systems have to face several sources of variability such

as speaker, channel, and environment. The variability of the same class segments is

known as within-class variability. The goal of these systems is to model (in the case
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Figure 4.1: Block Diagram of Factor Analysis Segmentation-by-Classification System for

Broadcast News Classes

of (Vaquero2011)) or compensate the within-class variability to reduce the mismatch

between training and test. As we presented in the first section, there are some differ-

ences between those systems and the segmentation-by-classification system proposed

in this work. The main difference is that in this task, the classes may contain the

same speaker. However, in speaker ID, speaker diarization, or language recognition,

the speakers define an independent class. As a result, the within-class variability is

more difficult to compensate in our task. Therefore, we introduce a novel approach

with class/non-class parameters that compensate the within-class variability more ac-

curately. Figure 4.1 illustrates the proposed framework where each block is described

in the following subsections.

4.3.1 Acoustic Feature Extraction

In this work, we extract 16 MFCCs (including the zeroth-order cepstrum) computed in

25-ms frames with a 10-ms frame step and their first and second order time-derivatives.

The audio features are packed in windows of 3 s long with 0.1- or 0.5-s window steps

depending on the desired computational load and resolution.

4.3.2 Statistics Computation

The fixed-length windows are mapped to sufficient statistics by using a universal back-

ground model (UBM) (Reynolds2000) which is a class-independent GMM with C Gaus-
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sians estimated with the expectation-maximization (EM) algorithm (Bishop2006) on

the training data set. The UBM parameters are the mean vectors, µk, and the di-

agonal covariances matrices, Σk, where k is the Gaussian component index. Let

Pksi = P (k|φsi) represent the posterior probability of the kth UBM component, given

the feature vector φsi, for a window s with feature vectors indexed i = 1, 2, . . . , Ns, we

define the zeroth- and first-order statistics, respectively, as

nsk =

Ns∑
i=1

Pksi, (4.2)

f sk =

Ns∑
i=1

PksiΣ
−1/2
k (φsi − µk), (4.3)

assuming frame independence (Kenny2010a). These statistics are normalized in mean

and standard deviation to the UBM (which defines the center of an affine space).

4.3.3 Theoretical Background

Data from a particular class are modeled by a GMM defined by a set of mean vec-

tors m1,m2, . . . ,mC , weights w1, w2, . . . , wC , and covariance matrices Σ1,Σ2, . . . ,ΣC ,

where C is the number of Gaussians. We can concatenate all GMM mean vectors to

one mean supervector m of dimension CF × 1 where F is the feature vector length:

m = [mT
1 ,m

T
2 , . . . ,m

T
C ]T . (4.4)

The factor analysis model is the adaptation of the UBM model where the super-

vector of means is not fixed and it can vary from segment to segment due to several

sources that increase the within-class variability (Kenny2007). We assume that these

GMMs have segment- and class-dependent means but fixed weights and covariances

chosen to be equal to the UBM weights and covariances. Specifically, we use a factor

analysis model for the mean vector of the kth component of the GMM for segment s:

ms
k = t

c(s)
k +Ukxs, (4.5)

where c(s) denotes the class of segment s. Uk is the factor loading matrix that defines

the subspace of the within-class variability and xs is a vector of L segment-dependent-

within-class-variability factors assumed to follow a normal distribution (N(0, IL)). The
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class location vector t
c(s)
k is obtained by using a single iteration of relevance MAP

adaptation from the UBM (Reynolds2000). This adaptation is expressed, in terms of

statistics, as

t
c(s)
k =

∑
s f sk

r +
∑

s nsk
, (4.6)

where r is the relevance factor.

We stack the component-dependent vectors into supervectors ms and tc(s) and the

component-dependent Uk matrices into a single tall matrix U , so Equation 4.5 can be

expressed as

ms = tc(s) +Uxs, (4.7)

where U is known as the within-class variability matrix that we use to compensate

that variability. The columns of the U matrix are the basis spanning the subspace of

the within-class variability, and the within-class variability factors are the coordinates

defining the position of the supervector in the subspace. The within-class variability

factor dimension (L) is smaller than CF , so U has low rank (CF × L dimensions).

Depending on the application, the value of L is between 50 and 200 and CF can be

98,304 if we have 2,048 Gaussians and 48-dim feature vector (with the MFCC-UBM).

4.3.4 Estimation of the Within-Class Variability Matrices

U can be estimated using the EM algorithm, where the x factors of each window are

treated as hidden variables. In the E step, the expected value of x (denoted by x̂) are

estimated for each window, using the current parameters as

x̂s =
(
I +

∑
k

nskU
T
kUk

)−1
UTf s. (4.8)

In the M step, we obtain U that maximizes an auxiliary function involving the old

and new parameters as

Uk =
[∑
c

∑
s

(f sk − t
c(s)
k nsk)x̂

T
s

]
A−1
k , (4.9)

where

Ak =
∑
s

[
x̂sx̂

T
s

]T
nsk. (4.10)

This chapter does not aim to go into the training process of U in depth; more

details and an exhaustive description can be found in (Kenny2007) and in Appendix A

of this thesis.
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4.3.5 Class model vs alternative model U matrices

The approach proposed in this thesis has several differences with language recog-

nition in the way within-class variability is compensated. Most of the approaches

based on FA for language recognition are implemented with a single U matrix be-

cause the segments are well-delimited (typically in separated files) and the nature

of the within-class variability is similar for all the languages as it can be seen in

(Li2012, Castaldo2007, Vogt2008, Kenny2007). In this case, the variability subspace

defined U is mostly due to the different speakers of a same language. In (Castan2012),

a segmentation system was proposed with five class location vectors (one vector per

class) and a single compensation matrix U for all the classes. The paper compared

the FA system with the winner of the Albayzin 2010 evaluation, and the conclusion

was that the FA system is better as a classification system with oracle segments. On

the other hand, the compensation matrix had a bad behavior in a segmentation-by-

classification system for the music class due to the different nature of the rest of the

classes. In (Castan2011), a hierarchical system was proposed with different features and

different techniques at each level depending on the class. Firstly, the system decides

between MU, SM, and the rest of the classes by using HMM/GMM and a smoothed

combination of MFCC and Chroma as feature vectors. Next, the system classifies SP

and SN by using FA and MFCC as acoustic features to improve the performance of

the speech classes because the confusion between these two classes is very high. The

error rate achieved was lower than the one obtained by the best system presented in

the Albayzin 2010 evaluation showing a clear advantage when the classes are homoge-

neous (like SN and SP), since U models the variability across speakers and phonemes.

The background noise is, then, the discriminative information for the classification and

segmentation. Nevertheless, hierarchical systems can be very specific for an intended

task and are difficult to adapt to other databases with new classes.

Therefore, we propose here a non-hierarchical segmentation-by-classification system

with ten class-specific vectors (one class vector and one non-class vector for each class)

and five matrices modeling the within-class variability of each pair of class/non-class.

Let

T = [tMU, tMU, tOT, tOT,

tSM, tSM, tSN, tSN, tSP, tSP] (4.11)
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and

Ξ = [UMU−MU,UOT−OT,

USM−SM,USN−SN,USP−SP], (4.12)

where T represents the locations of classes (tC) and non-classes (tC) in the GMM

space and Ξ the within-class variability matrices. This approach will be compared to

the classic formulation with a single U matrix in ‘Experimental results’ section for the

classification over the oracle segments and the final segmentation system.

4.3.6 Scoring

Here, we study the two most commonly used scoring approaches: integration over the x

factors distributions and linear scoring, both of which are summarized in (Glembek2009).

Score 1 : The score based on the integration over the x factors distributions is a

marginalization using a point estimate of the class ms, integrated only over the x

factors, when the statistics are centered around the point estimate ms as defined in

(Kenny2007).

Score 2 : The linear scoring, which is faster than the previous one, is an approxi-

mation that makes use of the first-order Taylor expansion (Glembek2009).

In (Kenny2005a, Glembek2009) and (Kenny2007), the score used to detect the

speaker is the log-likelihood ratio test (LLR)

LLRclass = log
P (χ/class)

P (χ/UBM)
, (4.13)

where the numerator is the likelihood for the class model and the denominator the

likelihood for the UBM. Note that the UBM is used as a general model to describe

the alternative hypothesis which is appropriated for speaker identification where the

hypothesized speaker is not in the UBM. However, our problem has a small number of

classes, and therefore, each class is highly represented by the UBM and may corrupt

the test statistics especially with the larger classes.

Here, we propose a compensated log-likelihood ratio test (CLLR) scoring:

CLLRclass = log
P (χ/class)

P (χ/class)
, (4.14)

where the alternative hypothesis is the likelihood for the non-class model which is also

compensated with the with-in class variability matrix. The CLLR is expected to be
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more discriminative than the LLR for a segmentation task because the hypothesized

class is not present in the denominator and, also, because the non-class model is com-

pensated in the same way as the class model.

4.3.7 Back-end systems

Here, we propose three different back-end systems to combine, smooth, and improve

the classification performance of the FA:

1. Maximum a posteriori (MAP): This well-known method has been widely used

in the literature (Castan2013a, Castan2013c). To increase the detection perfor-

mance, we optimize the prior probabilities in a Viterbi algorithm over the training

files. Later, these priors are used in the Viterbi over the test files.

2. Derivative HMM/GBE : There is an apparent correlation between the likelihood

ratios of different classes. For example, if a segment is a jingle, the likelihood

ratio for the MU class (music) should be the biggest, but it is very likely that

the second one is the SM (speech with music). Furthermore, SN (speech and

noise) and SM (speech with music) are more correlated to each other than to the

SP class (speech) because both classes have background audio. The classification

and, therefore, the segmentation can be improved by combining the outputs of

each class-dependent subsystem (Kittler1998).

Figure 4.2 shows the combination and smoothing back-end system proposed here.

In a first step, a calibration of scores is made by a multi-class logistic regression

(Brummer2010) estimated using the training partition of the database. In order

to benefit from the use of the dynamic behavior of the scores, we compute the

first- and second-order time derivatives of the scores. To smooth the decisions

after the calibration and the dynamic description, one Gaussian/HMM back-end

is used for each class. A left-to-right topology was selected with a full-covariance
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Gaussian per state estimated with the scores from the training files. The mean

vectors and the covariance matrices are estimated with the samples of the scores

based on the class labels with the ML criterion. The number of states for the

HMM depends on the desired level of smoothing. The Viterbi algorithm was

chosen to determine the maximum likelihood transitions between the classes.

3. Stacking HMM/GBE : This back-end system can be considered as a modification

of the previous back-end system. The main idea is to provide contextual infor-

mation through longer term temporal scoring. Instead of the derivation of the

scores, this back-end system proposes a stacking of past and future scores with

the present score to model the dynamic behavior in a different way. Figure 4.3

shows this combination process where several score frames from the past and

several score frames from the future are stacked with the present frame. The

experiments are carried out with one, two, and three frames from the past and

future and different numbers of states.

In an HMM segmentation system, it is usual to optimize the transition penalties on

a development set since this can have a significant impact on performance. However, we
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do not optimize any transition penalty because our goal was to create a general approach

to segment audio that could be used in other databases with different distributions or

with other classes.

4.4 Experimental results

The errors can be produced in two ways: first, a classification error due to a bad

labeled frame, and a segmentation error due to a temporal mismatch between the ref-

erence boundaries and the hypothesis boundaries. This section shows the experiments

for the evaluation data described in Section “Albayzin audio segmentation evaluations

and database description” divided into two sets. In the first set, the boundaries be-

tween segments are given by the ground truth and the system decides the class of each

segment with no segmentation error to evaluate the classification accuracy of the clas-

sical FA system versus GMMs. These experiments assess the classification ability of

the proposed approach and provide a fair comparison with classical GMMs.

The second set of experiments shows the segmentation and the classification error

when the boundaries are not given. A final segmentation-by-classification system based

on FA with a class/non-class parameters is proposed. The three back-end systems

previously described are tested over this system. The back-end systems show that a

combination and smoothing of the scores improve the previous results. Likewise, the

systems are compared with the winner system of the 2010 Albayzin evaluation that has

a hierarchical structure with specific features for each class.

4.4.1 Classification experiments with oracle segmentation

The classification is made over the segments extracted with the ground truth boundaries

to evaluate the classification accuracy over the whole segment. Since the system decides

the class that the whole segment belongs to, the smoothing is not needed.

We propose GMM systems as a baseline for classification experiments using the

acoustic features described in Section “Acoustic feature extraction”. Table 4.2 shows

the results for these systems. We have evaluated a different number of Gaussians (from

64 to 2048). The classification is based on the highest accumulated likelihood over the

whole segment. As shown in Table 4.2, increasing the number of Gaussians improves

the final result. The highest number of Gaussians evaluated was 2048 because the error
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Table 4.2: Baseline for classification experiments. Classification error per class and total

error for GMM systems with different number of Gaussians over the test files with perfect

segmentation

GMM MU SP SM SN TOTAL

64G 10.68 45.74 36.68 45.44 34.63

128G 9.81 41.79 32.02 40.75 31.09

256G 10.4 37.6 31.8 37.6 29.3

512G 9.5 35.9 29.3 35.9 27.7

1024G 9.3 34.9 27.0 34.3 26.4

2048G 9.6 33.3 28.0 34.0 26.2

for MU and SM classes began to increase although the total result improved slightly

compared with the 1024G model.

In the experiments with FA for classification with oracle segmentation, we assess

different configurations for the number of x factors and the scoring methods described

previously. The UBM used to compute the statistics has a fixed number of 2048 Gaus-

sians to be able to compare the results of the FA systems with the best GMM baseline

configuration. Because the boundaries are known, the statistics are calculated over

the whole segment without merging underlying partitions. We compute the result us-

ing linear scoring and the integration trough the x factors distributions scoring (called

as IoChD in this section). The linear scoring needs a final calibration because the

scoring is scaled by the module of the target model. A Gaussian Back-End (GBE)

((Hubeika2010) (Martinez2011)) provides benefits in two ways: calibration and score

combination. The calibration for the IoChD scoring does not provide substantial ben-

efits because the score is based on a likelihood ratio over a MAP adaptation using the

same UBM and the marginal improvement comes from the combination of scores. The

experiments are carried out with a single U matrix to compensate all the within-class

variability and different number of x factors (50, 100, 150, 200, 250 and 300) providing

the error for each class. Note that the increment of x factors involves an exponential

increment of the computational cost.

Table 4.3 compares all the experiments with FA over a perfect segmentation. Ac-

cording to these results, the IoChD scoring is more accurate than the linear scoring

for all the configurations and all the classes. Comparing Table 4.2 and Table 4.3, a
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Table 4.3: FA systems for classification experiments. Classification error per class and

total error for linear and IoChD scoring with perfect segmentation and a single U for all

the classes.

One U for all classes

Linear-GBE IoChnf

# chnf MU SP SM SN TOTAL MU SP SM SN TOTAL

50 21.6 16.9 23.6 23.4 21.4 10.2 15.9 24.2 21.4 17.9

100 21.8 17.4 21.0 22.9 20.8 9.1 16.0 20.2 20.0 16.3

150 20.8 17.7 20.5 23.5 20.6 9.4 15.5 18.0 18.9 15.4

200 20.7 17.8 20.5 22.4 20.4 9.0 15.7 17.3 19.1 15.3

250 20.0 19.2 20.2 23.1 20.6 8.5 16.7 16.0 19.4 15.1

300 21.3 19.5 20.5 21.7 20.8 9.8 15.0 18.9 18.9 15.6

significant improvement can be seen using FA versus GMM. Using the best GMM con-

figuration (2048 Gaussians) as reference, the worst FA system improves the total result

(18.3% relative error reduction with linear scoring and 50 x factors) and also compared

to the best FA configuration (43.1% relative error reduction with IoChD scoring and

250 x factors). Note that the music has been better classified with GMMs than with

linear-GBE. However, the rest of the classes presents a high classification error with

GMMs (as we knew from the results presented in the Albayzin evaluation).

An important fact about the distribution of the errors is shown in Table 4.4. The

table shows the percentages of the segments that have been correctly classified for

GMM with 2048 Gaussians, FA with linear-GBE scoring and FA with IoChD scoring

both with 100 channel factors. The table is divided into two columns: the first column

shows the percentage of the correctly classified segments between 0 and 3 seconds long.

It clearly shows that, while the classification is better with FA systems as we shown

in Table 4.3, segments shorter than 3 seconds are better classified with GMMs. The

second column shows the percentage of the segments longer than 3 second. It can be

seen that the best classification system is based on FA with IoChD scoring. By way of

conclusion, the FA is a better classifier if the segments are longer than 3 seconds which

is a common fact because most of the segments are between 10 and 20 seconds long

and a collar of 1 second is not scored around each reference boundary.
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Table 4.4: Percentage of correctly classified segments shorter than 3 sec. and longer than

3 sec. for linear-GBE with 100chnf, the IoChD with 100chnf and the GMM-2048G. The

total number of segments is 7754

Seg. < 3 sec Seg. ≥ 3 sec

GMM-2048G 25.4 56.9

Lin.GBE - 100chnf 19.2 57.3

IoChnf - 100chnf 23.4 60.8

4.4.2 Segmentation-by-Classification Experiments

In this subsection, no oracle segment boundaries are considered so the audio stream is

segmented by classifying each window into one of the five classes.

Table 4.5 shows the baseline results for this segmentation task. To be able to

compare the results with the best baseline classification system of Table 4.2, the baseline

segmentation systems in Table 4.5 are based on GMM with 2048 Gaussians. The first

row in this table shows the results of a basic GMM-2048G system. The segments in

this system are delimited by the transition of the frame-by-frame classification and

no smoothing is applied. Note that the degradation of the GMM-2048G (54.6% of

total error) comparing to the the GMM-2048G with perfect segmentation in Table 4.2

(26.2% of total error) where the decision of each class were based on the accumulated

likelihood of the whole given segment. These results clearly shows that a smoothing

stage to avoid sudden changes in the decision sequence is needed in a segmentation

task. A widely used technique to smooth the transitions between classes is the left-

to-right HMM topologies. Table 4.5 shows different left-to-right HMM configurations

where the 2048G are divided by the number of states to maintain the same number of

Gaussians in every configuration. The best baseline system for the segmentation task

(33.3% of total error) has 32 states with 64G per each state (keeping a total of 2048G).

This result proves the dramatic improvement when a temporal smoothing is applied to

segmentation-by-classification systems.

Classification experiments in the last subsection indicate that IoChD scoring is more

accurate than linear scoring as we stated in Section 4.3.6. For the sake of clarity, results

with the linear scoring are not presented in this subsection.

Unlike the oracle segmentation where the x factors were computed for each segment,

in this subsection the x factors are computed for each window so an increment in the
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Table 4.5: Baseline for segmentation experiments. The table shows an error per class and

total error for GMM-HMM systems over the test files without oracle segment boundaries

GMM/HMM LeftToRight MU SP SM SN TOTAL

GMM - 2048G 35.5 59.2 65.0 58.6 54.6

2 ST -1024G 29.9 59.2 54.7 56.8 50.2

4 ST - 512G 26.0 49.8 45.9 50.2 43.0

8 ST - 256G 24.3 49.3 41.6 50.1 41.3

16 ST -128G 17.8 40.2 36.0 43.0 34.2

32 ST - 64G 17.3 39.5 33.9 41.5 33.3

64 ST - 32G 15.9 41.6 34.2 42.6 33.6

Table 4.6: Error per class and total error for FA segmentation-by-classification systems.

The experiments are computed with one single U for all the classes and one U matrix for

each class/non-class using IoChD scoring. No score combination or smoothing was carried

out.

IoChD SCORING step-0.5 sec. 100chnf

MU SP SM SN TOTAL

One single U 40.3 76.9 60.5 64.3 60.5

One U per class 33.3 45.6 36.2 47.4 40.6

Figure 4.4: Confusion Matrices for the experiments of Table 4.6. Each row of the matrix

represents the percentage of frames in an actual class and each column represents the

percentage of frames in a predicted class both affected by the collar. One single U for all

the classes and one U matrix for each class/non-class are displayed. No score combination

or smoothing was carried out.

75



4. AUDIO SEGMENTATION-BY-CLASSIFICATION

number of x factors or a reduction of the window-step increases the memory and the

time needed to train the models dramatically. As a preliminary experiment, the FA

segmentation-by-classification system computes the statistics every 0.5 seconds and 100

x factors. Because the windows (3 seconds long in our experiments) are smaller than

the oracle segments, the useful information which describes the class of the window

is scarcer. Therefore, a more discriminative scoring is needed and it is provided by

the models with one U matrix for each class. Results with a single U matrix for all

the classes and one U matrix for each class are presented in Table 4.6. There is a

significant improvement in the classes with more data using one U matrix for each

class because the CLLR removes the information of the target class in the denominator

as we pointed out in Section “Scoring”. Figure 4.4 displays the confusion matrices for

the experiments of Table 4.6. The percentages have been computed with the frames

scored (affected by the collar) divided by all the frames of each class in the reference

(dur(refi)). The table clearly shows less confusion between classes using one U matrix

for each class. Although the sensitivity of the SP is lower, the sensitivity of the SN is

much higher. Specially, there is a significant reduction in the confusion between SP and

SN and a slight reduction in the confusion between MU and SM. The more frequent

the class in the data, the more significant the error reduction compared to a single U

matrix for all the classes. Accordingly, the total error is reduced around 20%.

Once determined the benefits of the FA system with one U matrix for each class

with IoChD scoring, the window-step can be reduced to increase the resolution (0.1

second window-step) at the expense of increasing the computational cost. The number

of x factors are not increased because the computation time and the memory grow

exponentially. Figure 4.5 shows the scores for each class over a chunk of a test file.

The ground truth is plotted in the same figure and it is represented with a square

waveform of amplitude 1. The green bars represent the forgiveness collar around each

boundary. The color of each score class and the corresponding ground truth is the

same. The figure clearly shows that the ratio of the winner class is bigger than zero

and corresponds to the ground truth class for most of the frames. The results in Table

4.6 can be compared to the results in Table 4.7 showing a significant error reduction

achieved by decreasing the window-step because of the resolution increase.

To avoid sudden changes in the segmentation process, three back-end subsystems

are evaluated here. The first back-end system is based on a MAP approach and the two
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Segmentation Scores for MU OT SM SN SP

Seconds

C
L
L
R
T

Figure 4.5: Scores and ground truth of each class over a chunk of a test file

Table 4.7: Error per class and total error for FA segmentation-by-classification systems.

The experiments are computed with one U matrix for each class/non-class using IoChD

scoring. No score combination or smoothing was carried out.

IoChD SCORING step-0.1 sec. 100chnf

MU SP SM SN TOTAL

One U per class 27.9 37.9 32.4 40.9 34.8
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Figure 4.6: HMM/GBE-FA segmentation-by-classification system with different number

of states

following systems are very similar but they model the temporal behavior in different

ways: on a first step, the scores of both systems are conditioned using a multi-class

logistic regression. The dynamic behavior of the scores are extract with the first and

second order time derivatives or stacking the past and the futures frames of the scores

(we know this systems as Derivative HMM/GBE and Stacking HMM/GBE respec-

tively). Finally, a left-to-right HMM/GBE with full covariance matrices is used to

smooth the scores and improve the results with a scoring combination for both sys-

tems. The number of states determines the time spent in an HMM and therefore the

minimum length of the segment.

We compare the error of the system proposed in this work with the winner sys-

tem of the Albayzin-2010 evaluation (Gallardo2010) where 15 MFCCs, frame energy,

and their corresponding first and second derivatives are extracted. In addition, the

spectral entropy and the Chroma coefficients are calculated. The mean and variance

of these features are computed over 1 second intervals creating 122 dimension feature

vectors. The segmentation approach chosen is HMM-based. The acoustic modeling is

performed using five HMMs with three emitting states and 256 Gaussians per state.

Each HMM corresponds to one acoustic class. A hierarchical organization of binary

HMM detectors is used. First, audio is segmented into Music/non-Music portions. Sec-

ond, the non-Music portions are further segmented into Speech-over-music/non-Speech-

over-music portions. Finally, the non-Speech-over-music portions are segmented into

Speech/Speech over noise.

Figure 4.6 shows the results of the systems described in the previous two paragraphs.
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Table 4.8: Results for Albayzin evaluation winner system and Factor Analysis Segmen-

tation system over the test files. The table shows the error per class and the total error

with the metric of the evaluation and the NIST metric.

Error for each class

MU SP SM SN TOTAL NIST

HMM-Winn (Gallardo2010) 19.2 39.5 25.0 37.2 30.2 -

HMM-Rep 16.3 40.8 24.0 38.8 30.0 19.3

Worst FA-Segm (25 st.) 19.3 29.5 24.6 33.1 26.6 16.7

Best FA-Segm (13 st.) 18.8 23.7 23.6 29.1 23.8 14.7

First, two straight lines represent the results for the winner system of the Albayzin-2010

evaluation (Gallardo2010) (30.2% of total error rate) and the FA system with MAP

back-end (Castan2013a) (28.8% of total error rate). The behavior of the Derivative

HMM/GBE and the Stacking HMM/GBE back-end systems are plotted in the same

figure with a different number of states. The Stacking HMM/GBE combines the present

frame with one, two and three frames from the past and the future to provide different

levels of contextual information. The figure shows a slight improvement in Derivative

HMM/GBE for almost any number of states. However the result are quite similar for

Derivative HMM/GBE and Stacking HMM/GBE. Both systems for every configuration

improve the results of the winner hierarchical-HMM (Gallardo2010) and the MAP-FA

system (Castan2013a). Note that the final number of states is not critical because the

difference among errors is less than 3%. The best result obtained was an error of 23.8%

using 13 states and the worst result was 26.6% with 25 states.

Table 4.8 is divided into two parts: the first part shows the error for each class and

the average error for the winner hierarchical-HMM system of the evaluation (HMM-

Winn). The last column shows the NIST metric used in the NIST RT Diarization

evaluations (NIST2009) to compare the systems with a well-known metric. To be able

to compute the NIST error with the hierarchical-HMM system, we replicated the winner

system according to (Gallardo2010) (HMM-Rep). The second part of the table shows

the FA segmentation-by-classification system (FA-Segm) after the combination and the

smoothing with the Derivative HMM/GBE back-end subsystem because this subsystem

is slightly better than the other back-end subsystems. We choose the best configuration

(Best FA-Segm) and the worst configuration (Worst FA-Segm). The hierarchical-HMM
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systems perform better than the worst FA system for the MU and SM classes but their

behavior is worse for SN and SP. Also, there is not a substantial benefit classifying the

MU with the best FA system compared to the hierarchical-HMM system. This is due

to the use of specific features to detect the music like the Chroma features. The worst

FA systems achieves a relative error reduction of 11.3% respect to the hierarchical-

HMM system. Finally, the best FA configuration improves the performance for all the

classes and achieves a relative error reduction of 29.2% respect to the hierarchical-HMM

system.

4.5 Chapter Summary

This chapter presents a novel system to segment and classify audios into broad classes.

The proposed system is based on a factor analysis (FA) approach to compensate the

within-class variability with one factor loading matrix per class. Unlike other FA sys-

tems (like speaker ID and language recognition), the system proposed in this work does

not have well-delimited segments and the nature of the classes can be very different

(music, speech, or noise). The relevance of this approach can be summarized in two

major aspects: it does not need specific features or hierarchical structure and it per-

forms a very accurate segmentation and classification for all the classes. Therefore, the

system is general enough to be used for different tasks and scenarios.

The system has been tested in a broadcast TV news domain to segment and classify

into five broad classes. Two sets of experiments have been proposed. The classifica-

tion experiments with oracle segmentation show a clear improvement compared to the

baseline GMM system. A class/non-class FA system is proposed for the segmentation-

by-classification experiments in the Section 4.4.2. Different back-end systems have

been evaluated in order to exploit the correlation among classes and avoid sudden

changes in the decisions. This system is compared to a hierarchical solution with spe-

cific features for each level. The results show a significant improvement for all classes,

metrics, and configurations achieving a 29.2% relative error reduction with respect to

the hierarchical-HMM system for the best configuration.
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5.1 Chapter Overview

Speech can be considered the most informative part of the audio. However, non-speech

sounds can be useful to understand the scene. These sounds are known in the literature

as acoustic concepts (ACs) or acoustic events1 and can be critical to understand human

activities or to describe the scene. For example, human activity produces a variety

of sounds coming from the interaction of people with objects that can characterize

situations as Chapter 3 has shown. In addition, the detection of these sounds may

increase the robustness of the speech recognition systems . For instance, the detection of

a specific sound can determine the context of the scene and, therefore, the ASR system

can use a specific vocabulary adapted for the situation. Therefore, determining the ACs

and their temporal position in the audio signals is under study today. Acoustic Concept

Detection (ACD) aims at processing a continuous audio stream and determining what

concept has been produced and when. Therefore, the system must be able to produce

labels to understand the scene behind the concept.

ACD in meeting rooms is a challenging field because the ACs have low SNR and

are overlapped with speech or other ACs. The 2007 CLEAR (“Classification of Events,

Activities and Relationships”) Evaluation (Temko2006b) was performed by the CHIL

EU project(“Computers in the Human Interaction Loop”) on a database recorded in

real seminars (five different locations) where the ACs were spontaneously generated.

Most of these, are not highlighted and overlapped with other sounds. In this evaluation,

the submitted systems showed low accuracies and high error rates. In fact, 5 out of

6 submitted systems showed accuracy below 25% and an error rate above 110% (the

winning system (Zhou2008) obtained around 30% accuracy and 99% error rate) where

the overlapping segments represent more than 70% of the errors. This problem is

related to the “cocktail party” problem where there are two or more sources of speech.

However, in our problem, the ACs can be overlapped with speech or with other sounds

coming from different sources.

Subsequent investigations have dealt with the overlap problem in different ways.

The first attempt was proposed by Temko in his PhD thesis (Temko2009a) at a model

level where the author proposed models for isolated sounds and models for overlapped

1We will call them Acoustic Concepts (ACs) in this thesis to avoid confusion with Multimedia

Events
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sounds. Since the meeting rooms in the evaluation are equipped with multiple cameras

and multiple microphone arrays, recent approaches propose a fusion information coming

from video or multiple audio sources. These systems shows an appreciable improvement

in the detection rate of overlapped ACs. In (Butko2010b) the authors propose a multi-

modal system because some of the ACs have a visual correlate and, therefore, the video

modality can be exploited to enhance the detection rate. Furthermore, the authors use

multiple microphones to know the position of the AC since some concepts can only occur

at particular locations like “door slam”. Another popular solution is the separation

of overlapped signals with signal processing techniques. In (Chakraborty2013), an

approach based on partial signal separation using multiple array beamformers was

proposed prior to an HMM-GMM classification system as a solution to attack the

problem at signal level.

Since the CLEAR evaluation database was recorded in five different rooms with dif-

ferent furniture, the ACs present some variability that can be compensated. This work

studies variability compensation techniques based on factor analysis with one micro-

phone in this meeting room environment. The main goal is to increase the robustness

in the classification of the ACs at model level so it does not interfere with multimodal

or multichannel techniques that could be applied later. Due to the extremely high error

rate shown in the CLEAR evaluation, this chapter proposes a preliminary study where

the segmentation is given by the labels to evaluate the classification of the proposed

system. Finally, the chapter studies the detection of the ACs in a continuous audio

stream.

The sections of this chapter are organized as follows: section 5.2 describes the

database and the metric for this task is described in 5.3. The FA framework is described

in section 5.4. Section 5.5 shows a comparison of the proposed system with a baseline

and, finally, a chapter summary is presented in section 5.7.

5.2 Database

The database consists of multi-sensory audiovisual recordings inside meeting rooms

(known as smart rooms) equipped with multiple audio and visual sensors to be able

to detect, classify and understand the human activity in the space. The smart rooms

are medium-sized conference rooms with supporting computing infrastructure. The
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Figure 5.1: Schematic diagram of the IBM smart room described in (Mostefa2008a).

multitude of recording sites provides the desirable variability in the corpus, since the

smart rooms obviously differ from each other in their size, layout, acoustic and visual

environment. However, all smart rooms have a common hardware setup to produce a

homogeneous database across sites, to facilitate technology development. An extensive

description of the common software and sensors can be found in (Mostefa2008a) where

the authors describe the audiovisual corpus. Figure 5.1 shows an example of one of

the five smart rooms used for recording the CLEAR database. All the smart rooms

contain a minimum of 88 microphones that capture both close-talk and far-field acoustic

data. Since the purpose of this thesis is to study model-based methods to reduce

the variability and increase the performance of the classification and segmentation for

multimedia documents, we use one microphone located at the center of the meeting

rooms (specifically, one of the three table top microphones).

The database used in the CLEAR 2007 evaluation is made up of 25 meetings

recorded in five different meeting rooms: AIT (Athens Information Technology), ITC

(Instituto Trentino di Cultura), IBM (International Business Machines), UKA (Univer-
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Figure 5.2: Percentage of speech, silence and acoustic concepts for train and test datasets.

sität Karlsruhe), and UPC (Universitat Politècnica de Catalunya). The meetings are

divided in 5 lectures (approximately 30 minutes long) and 20 short meetings (5 minutes

long). The meetings consist of a presentation to a group of three to five attendees who

ask questions during and after the presentation. Not only the main speaker develops

activity during the meeting, but also the attendees interact in the scene in terms of en-

tering/leaving the room, opening the door, making noises with objects, speaking among

the attendees, etc. Each meeting is comprised of different acoustic scenes: beginning,

meeting, coffee break, question/answers, and end.

The development set of the database is made up of one meeting from each location,

making a total of 7495 seconds, where 16% of the total time are ACs, 13% silence, and

81% speech. The rest of the meetings (20 5-minute segments) represents the test set,

where 36% are ACs, 11% silence, and 78% speech as shown in Figure 5.2. In particular,

64% of the ACs are overlapped with speech and 3% are overlapped with other ACs.

These overlapped ACs dramatically increase the difficulty of the task. A database with

isolated ACs recorded at UPC (Temko2005) has also been used to get some preliminary

results, but these isolated concepts have not been used to train the final system.

The set of ACs is comprised of 12 semantic classes that are: “door knock”, “door

open/slam”, “steps”, “chair moving”, “spoon/cup jingle”, “paper work”, “key jingle”,

“keyboard typing”, “phone ring”, “applause”, “cough”, “laugh”, “speech”, “unknown”,

and “silence”. Table 5.1 shows the ACs in terms of the number of occurrences per

concept and the corresponding annotation label. The classes of “speech”, “unknown”

and “silence” are not evaluated.
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Table 5.1: Acoustic concept classes with the corresponding annotation label

Concept name Label Train Test

Knoch in door or table [kn] 82 152

Door slam [ds] 73 75

Step [st] 72 496

Chair moving [cm] 238 226

Cup jingle [cl] 28 27

Paper wrapping [pw] 130 88

Key jingle [kn] 22 32

Keybord typing [kt] 72 105

Phone ringing or music [pr] 21 25

Applause [ap] 8 13

Cough [co] 54 36

Laugh [la] 37 154

Unknown (Unidentified sounds) [un] - -

Speech [sp] - -

Silence [ ] - -

5.3 Metrics

5.3.1 Classification Metric

In the classification experiments, the system has to correctly classify the segment which

boundaries are given by the reference labels. The segments where two ACs are over-

lapped count twice (one for each concept). The error rate for the acoustic concept

classification (ACC-ER) can be written as:

ACC − ER =
number of segments incorrectly classified

number of total segments
(5.1)

5.3.2 Detection Metric

In the detection experiments the boundaries of the acoustic concepts are not given.

Two metrics have been defined: an F-score of detection accuracy (ACD-ACC) and an

error rate (ACD-ER):

The ACD-ACC measures the detection of all instances of what is considered as a

relevant acoustic concept. The ACD-ACC is defined as the harmonic mean between
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Precision and Recall. The most relevant aspect of this metric is the detections of the

instances and not the temporal resolution. It can be written as:

ACD −ACC =
(1 + β2) ∗ Precision ∗Recall
β2 ∗ Precision+Recall

(5.2)

where

Precision =
number of correct system output

number of total system output
(5.3)

Recall =
number of correctly detected references

number of total references
(5.4)

β is a weighting factor that balances Precision and Recall. In this evaluation β = 1.

On the other hand, the second metric for detection experiments measures the tem-

poral resolution of the detected acoustic concepts. The ACD-ER scores the ACD as a

general audio segmentation task and it is more relevant for content-based audio index-

ing/retrieval. The ACD-ER can be written as:

ACD − ER =

∑
seg{dur(seg) ∗ (max(Nref , Nsys)−Ncorrect(seg)}∑

seg{dur(seg) ∗Nref}
(5.5)

where, for each segments seg, the dur(seg) is the duration, Nref is the number of

references, Nsys is the number of system outputs and Ncorrect is the number of references

that correspond to system outputs.

5.4 Factor Analysis Framework

Here, we propose to evaluate the framework based on FA that has been successfully

used for segmentation as we were able to see in Chapter 4. In this task, the system has

to face several sources of variability as a result of recording the database in five different

locations. The main difficulty is that the ACs have low energy and are overlapped with

speech or other ACs which makes hard to detect the AC even for humans. In this

section we give a brief description of the system for ACD since it is basically the same

system used for segmentation.
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Figure 5.3: Histogram of the length of the ACs

5.4.1 Acoustic features and statistics

We extract 16 MFCCs (including the zeroth order cepstrum) computed in 25 ms frames

with a 10 ms frame step, their first and second derivatives. The feature vectors are

normalized in mean for each file.

The zeroth and first-order statistics (eq.4.2 and eq.4.3 respectively) of fixed-length

windows are computed by using the UBM. The main difference with respect to the

segmentation approach is that the fixed-length windows are much shorter because the

ACs are very brief. Figure 5.3 shows a histogram of the length of the ACs. We can

see that the mode is located around 1 second long but there are a lot of segments even

shorter. Therefore a 0.3 second long is the size of the fixed-length windows for this

approach instead of 3 seconds used in the segmentation approach.
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5.4.2 Models and scoring methods

We use the same FA model as in the last chapter for segmentation:

ms = tc(s) +Uxs, (5.6)

where c(s) denotes the class of segment s, tc(s)is the class-location vector, U is the

within-class variability matrix and xs is a vector of L segment-dependent-within-class-

variability factors (known as channel factors).

The class/non-class FA models (already described in 4.3.5) are also used as follows:

T = [tclass, tclass] (5.7)

U = U class−class (5.8)

Finally, we study the detection of the ACs with both scoring methods (the LLR

4.13 and the CLLR 4.14)described in 4.3.6.

5.5 Experimental Results

Three different sets of experiments have been carried out with a clear increase in the

difficulty of the task. The first set is comprised of isolated ACs with oracle bound-

aries that have been generated artificially. The second set verifies the quality of the

models to classify the overlapped ACs when the boundaries are given. Unlike previ-

ous experiments, the ACs have been generated spontaneously. Finally, the ACs are

detected (segmentation and classification) in a continuous audio stream in the third

set of experiments. Therefore, the boundaries are not given and difficulty increases

dramatically.

5.5.1 Classification of Isolated Acoustic Concepts

The ACs used in these experiments were recorded in the UPC smart room for develop-

ment. Although the ACs are the same as the CLEAR ACs shown in Table 5.1, these

isolated ACs are not used in the posterior experiments because the ACs are not gen-

erated in an spontaneous way and they are not overlapped with speech or other ACs.

However, this experiment is useful to study the behavior of the proposed system, to set
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some parameters and it shows how the errors are distributed with different ACs. The

database is divided into three groups: two of them are used to train the model and the

third one is used to test.

Table 5.2: Classification error rate for isolated acoustic events with GMM systems

Gaussians 4 8 16 32 64 128 256

ACC-ER % 3.92 3.59 3.26 3.26 3.26 3.26 3.26

A set of GMMs with a different number of Gaussians has been used as baseline

system. Table 5.2 shows the error rate given by the metric of eq.(5.1) for each configu-

ration of the GMM. It is apparent from this table that the classification of isolated ACs

when they have been artificially produced is an easy task since the error rate is very low

for all the configurations. A stable error rate of 3.26% is achieved from 16 Gaussians

to 256 Gaussians. It seems reasonable to choose 32 Gaussians as a parameter for the

next experiments because the database is not very large and this does not represent a

large number of resources.

Therefore, the UBM for the FA approach was also trained with 32 Gaussians over

all the train set to be able to compare the results with the baseline. Table 5.3 shows the

results of this experiment with FA for 32 Gaussians, 10 channel factors and different

values of τ . This parameter is known as relevance factor (τ) and it controls the MAP

adaptation of the means of the model. If we increase τ to infinite, the MAP will remain

in the original UBM. On the other hand, if we decrease τ , the means will be more

affected by the new frames. The value of τ must evaluated in this chapter because the

ACs present different durations for each class. Therefore, we must determine the value

of τ to allow the best MAP adaptation for all the ACs. Table 5.3 compares the scoring

methods described in section 4.3.6 for different values of τ . The results obtained in this

preliminary analysis show that the CLLR scoring method improves the classification

of the artificially generated ACs because the class and non-class data subsets are well

delimited and, therefore, the discrimination is maximum. A value of τ = 100 can

be defined as a parameter of reference because the ER is minimum for both scoring

methods. However, the results are worse than the GMM baseline. A hypothesis of this

behavior is the limited number of isolated AC’s presented in this database because the
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within-class variability matrix needs a representative amount of data to avoid a poor

estimation. Therefore, some of the parameters will be analyze again in the experiments

with spontaneous generated ACs because the number of occurrences per concept is

higher.

Table 5.3: Classification error rate for isolated acoustic events with Factor Analysis with

LLR and CLLR scoring methods

τ 30 50 100 250 500

LLR ACC - ER % 6.53 6.53 6.53 7.51 9.15

CLLR ACC - ER % 6.53 6.20 5.22 5.55 6.20

Figure 5.4 shows the error for each class with GMM and FA with CLLR scoring for

different values of τ . As it can be seen, eight of the ACs are not correctly classified once

or more and five of the ACs are correctly classified for all the systems. Furthermore,

τ = 100 (yellow bar) shows the best performance of all the FA systems. It is apparent

from τ = 100 configuration that only 5 concepts are not correctly classified compared

with GMM approach: one [cm], two [co] and three [la]. However, we can conclude that

both systems easily classify the isolated concepts because these ACs are artificially

generated and there is not overlap with speech or other concepts.

5.5.2 Classification of Spontaneous Acoustic Concepts

Following the procedure presented in the last subsection, this experiment is carried out

with oracle segmentation over the CHIL database where the concepts can be overlapped

with speech or other concepts dramatically increasing the difficulty. In addition, the

audio has been recorded in five different locations which increases the variability of

each concept.

Table 5.4 compares the classification of the spontaneously generated oracle segments

with LLR and CLLR with different values of τ . The table provides some interesting

conclusions. Firstly, the error rate increases dramatically since most of the ACs are

masked by speech. The ACs also have low energy because they have been generated

spontaneously and they may seem background noises. Secondly, the results are consis-

tent with Table 5.3 because the best result is achieved with τ = 100. However, the LLR
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Figure 5.4: Number of errors for each isolated acoustic concept artificially generated

scoring method shows better performance than CLLR. This behavior may occur due

to the non-class model because the information of the class model and the non-class

model is very similar and the variability is not properly compensated.

The following experiments are computed with τ = 100 because, as it have been

shown in the previous experiments, it is the best value for the MAP adaptation of the

means of the UBM. Table 5.5 presents the classification error rate for LLR and CLLR

with different number of channel factors. As mentioned previously, the within-class

variability factor dimension must be smaller than the dimension of the mean vector

and, therefore, 10 channel factors were chosen as a previous parameter. The table

shows the behavior of our approach for different values of channel factors. The error

rate decreases for both metrics with less channel factors showing that there is no need

to have a high number of dimensions in the subspace to compensate the variability of

the oracle segments.

Table 5.6 compares a baseline based on GMM, with FA system. The parameters
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Figure 5.5: Confusion matrices for (a) GMM-32G / HMM-1st and (b) FA-LLR-3Chnf /

HMM-1st. Each row of the matrix represents the percentage of ACs in an actual class and

each column represents the percentage of ACs in a predicted class.
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Table 5.4: Classification error rate for spontaneously generated ACs with Factor Analysis

with LLR and CLLR scoring methods. Most of the ACs are overlapped with speech.

τ 30 50 100 250 500

LLR ACC-ER % 69.41 69.34 69.13 69.55 70.25

CLLR ACC-ER % 72.14 72.00 72.28 73.33 74.45

GMM 32G - ER % 68.22

Table 5.5: Classification error rate for spontaneously generated ACs with Factor Analysis

with LLR and CLLR and different number of channel factors.

Num. ChnF 25 10 3

LLR ACC-ER % 73.05 69.13 67.52

CLLR ACC-ER % 75.57 72.28 69.62

GMM 32G - ER % 68.22

for this experiment are the values that were predefined in the previous subsection: 32

Gaussian for GMMs and UBM, τ = 100 for the MAP adaptation and 3 channel factors

to model the variability. The first two rows show the error rate for a GMM-32G and

the same GMM inside a one-state HMM where the transition probabilities have been

estimated with the training labels, slightly improving the results compared to the GMM

system. The remaining rows show the error rate for the FA systems with two different

scores: the FA-CLLR approaches use eq.4.14 whilst the FA-LLR approaches use eq.4.13.

The results clearly show that the FA-LLR approaches are more discriminative than

the FA-CLLR since the model and the anti-model share common information due to

concepts overlapped with speech. Therefore, the best result is given for the FA-LLR

system that slightly improves the final result with the transition probabilities compared

to the HMM-GMM.

Finally, Figure 5.5 shows the confusion matrices with the classification percentage in

each concept combination for the best baseline system and the best FA system: GMM-

32G with one state HMM approach and the FA-LLR with one state HMM approach.

Some conclusions can be drawn from these figures. First, the GMM system tends to

classify the ACs as “speech” [sp] or “silence” [si] more easily than the FA which shows
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Table 5.6: Classification error rate for CHIL acoustic concepts with oracle segmentation

System Error Rate %

GMM-32G 68.22

GMM-32G / one state HMM 68.15

FA-CLLR-3 Chnf 69.62

FA-CLLR-3 Chnf / one state HMM 69.27

FA-LLR-3 Chnf 67.52

FA-LLR-3 Chnf / one state HMM 67.17

that the FA system compensates the variability due to the speech in the overlapped

ACs. In addition, the FA system classifies the concept better with more occurrences

“Steps” [st]. On the other hand, the concepts “Applause” [ap], “Cough” [co], “Door

Slam” [ds] and “Laugh” [la] have been much better classified with GMM. However, a

final count shows that the GMM and the FA have been correctly classified 455 and 469

ACs respectively from a total of 1429 ACs.

5.5.3 Detection of Spontaneous Acoustic Concepts

These experiments aim at determining the class of the ACs and their temporal position

in a continuous audio signal of a meeting. Therefore the boundaries are not given

as in the previous experiments and the results are evaluated with different metrics to

measure the detection of the ACs and the temporal resolution.

Table 5.7: Detection of ACs with HMM/GMM systems with a different number of Gaus-

sians and different number of states

N Gauss 8 G 16 G 32 G 64 G 128 G

N States ACC ER ACC ER ACC ER ACC ER ACC ER

1 13.0 158.6 14.6 153.2 14.5 154.5 15.1 145.8 15.0 146.3

2 16.9 159.3 18.4 145.2 19.5 141.2 20.1 133.2 20.5 135.5

3 19.6 142.3 20.9 132.4 22.0 135.3 23.1 125.5 24.3 126.9

4 23.8 130.9 25.7 118.2 28.5 110.3 28.2 113.0 30.1 105.6

5 24.9 122.4 27.1 113.6 28.6 106.8 28.6 111.4 29.6 102.1

6 27.6 117.1 29.5 107.7 29.8 107.0 30.2 110.9 28.6 102.0

7 28.4 112.3 28.3 108.3 27.5 110.6 27.7 103.6 26.6 101.1

8 29.1 110.3 30.6 101.7 31.5 99.4 30.3 97.8 27.2 100.4
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As we have done in the previous experiments, we use an HMM/GMM as a baseline.

Table 5.7 presents the accuracy (ACC) and the error rate (ER) described in section

5.3.2. The table scans a different number of states of a left-to-right structure of HMM

and a different number of Gaussians per state. The number of states determines the

time spent in an HMM and therefore the minimum length of the segment. For example,

the HMM with 8 states produces a minimum segment of 80 ms with features extracted

every 10 ms as frame step. Almost all the configurations present results with accuracies

below 30% and error rates above 100% which shows the difficulty of the task. Moreover,

only two configurations (8st-32G and 8st-64G) exceed the standard behavior and both

are close to the winning system of the CLEAR evaluation (Zhou2008).

Table 5.8 compares the CLLR and the LLR scoring methods with a FA system with

3 channel factors, a UBM of 32 Gaussians and a τ = 100 since this system achieves

the best result for the classification task. The table shows the accuracy and the error

rate for different configurations. First, the results are computed without any back-end

system to show the performance when the system classifies frame by frame to detect

ACs. Then, we use the derivative HMM/GBE back-end system described in section

4.3.7 to combine and smooth the classification performance of the FA system. The

table shows the results with the back-end systems with a set of configurations. We

scan different values of Gaussians and number of states. A clear improvement can be

seen with a high number of states for both scoring methods compared to the system

without back-end. The best performances are achieved with CLLR with and without

back-end system. The best back-end system configurations is with 8 states and 2 or 4

Gaussians per state. However, any configuration shows accuracies and error rates below

the best HMM/GMM system. Therefore, the FA systems shows a clear limitation when

the occurrences have low energy and they are overlapped with speech or noises with

high energy.

5.6 Limitations of the FA Approach

As we have stated above, this task presents some challenging facts. The ACs can be

overlapped with speech or others ACs, the SNR can be very low depending on the

position of the microphone, and most of the ACs are very short. The length of the ACs

is a critical factor to train FA models properly since the number of parameters can be

96



5.6 Limitations of the FA Approach

Table 5.8: Detection of ACs with FA system with both scoring methods. A back-end

system based on GMM/HMM is used with a different number of Gaussians and different

number of states

CLLR with UBM=32G CHNF=3 τ = 100

Results without back-end system: ACC = 12.7% ER = 119.0%

N Gauss 1 G 2 G 4 G 8 G 16 G

N States ACC ER ACC ER ACC ER ACC ER ACC ER

1 4.5 230.1 8.6 186.3 9.7 186.3 8.3 199.4 8.6 190.4

2 7.7 193.7 12.3 164.5 11.9 174.1 10.5 170 12.5 169.7

3 6.8 201.2 12.7 164.5 12.5 156.9 13.0 153.1 13.6 142.5

4 9.2 152.9 13.9 164.3 13.8 148.8 15.9 147.3 15.6 139.8

5 10.3 172.6 14.0 153.9 16.8 144.3 17.6 136.8 17.6 132.7

6 10.9 170.3 16.3 148.9 18.5 132.2 18.2 128.2 18.1 118.8

7 11.7 156.6 18.7 143.9 16.1 132.5 18.1 120.8 18.7 117.2

8 12.6 160.6 19.3 139.1 18.2 127.8 16.9 119.4 18.6 119.8

LLR with UBM=32G CHNF=3 τ = 100

Results without back-end system: ACC = 3.4% ER = 102.0%

N Gauss 1 G 2 G 4 G 8 G 16 G

N States ACC ER ACC ER ACC ER ACC ER ACC ER

1 4.3 232.4 9.0 189.5 9.1 194.2 8.3 198.4 9.6 182.7

2 6.7 199.3 10.8 174.6 12.3 177.5 10.6 189.2 12.0 174.1

3 6.9 196.7 12.6 173.5 11.8 163.9 13.0 162.8 13.6 145.0

4 9.9 159.5 13.9 173.1 13.8 146.0 15.1 143.6 16.2 131.4

5 9.9 169.5 13.4 161.8 15.5 147.0 16.8 136.9 18.0 125.6

6 10.6 171.6 17.4 152.5 16.9 143.3 17.7 136.4 18.8 127.1

7 11.1 159.6 17.4 151.8 17.6 131.7 17.7 131.1 17.2 120.0

8 11.4 159.8 18.0 151.3 17.0 133.6 16.7 124.7 16.2 122.6
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Figure 5.6: Error rate for short segments (from 0 to 4 sec.) and long segments (over 4

sec.)

high. In addition, the larger the number of utterances, the better characterization of

the variability.

This section shows the limitations of the FA approach with short segments and

how they affect the performance of the system. The best configuration of the FA

approach to classify segments has been used to study how the short segments affect

the classification accuracy. This configuration is comprised of a 32G-UBM, a τ = 100,

3 channel factors and an HMM of one state as can be seen in table 5.6. Figure 5.6

compares the error rate for short segments (from 0 to 4 seconds) and long segments

(over 4 seconds) and it clearly shows that the error rate decreases almost a 15% for long

segments. We compare the FA approach with the best GMM baseline configuration

with 32 Gaussians and one HMM state. The results are quite similar but it can be

seen how the GMM approach classifies the short segments slightly better than the FA

approach while the long segments are classified slightly better with the FA approach.

5.7 Chapter Summary

This chapter has presented the classification and the detection of ACs that may hap-

pen in a meeting room using the CLEAR evaluation database. Since the database is

comprised of tracks recorded in five different locations and the concepts can be over-

lapped with speech, the ACs present a variability that can be compensated with FA

techniques. Three sets of experiments have been carried out in this work. The first

98



5.7 Chapter Summary

one evaluates the FA system over isolated ACs. This isolated AC database has been

used as a development to choose the relevance factor (τ) of the MAP adaptation for

the FA systems. This experiment also shows that the classification of the isolated AC

is not a challenging problem since the error rate is very low because the AC were gen-

erated artificially with very high SNR. The second set of experiments evaluates the FA

system with spontaneous generated ACs that can be overlapped with speech or other

ACs. The proposed system slightly improves the results of a baseline system based

on GMM/HMM. The confusion matrices of both systems suggest that the FA system

compensates the variability due to the speech in the overlapped ACs. The third set

of experiments studies the FA system to detect the ACs when the boundaries are not

given. In this case, the FA system shows a limitation as a segmentation-by-classification

system because the length of the fixed-length windows is very short (due to the length

of the ACs) and may cause the corruption of the models. The baseline also shows very

low performance with error rates close to 100% and accuracies below 30% in most of

the configurations. Therefore, there is still considerable room for improvement since

the classification error is very high. Therefore, further work needs to be done to im-

prove the classification of overlapping sounds with low SNR and the application of FA

techniques to the detection problem.
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6.1 Conclusions

In this chapter, we summarize the main conclusions about the work conducted by the

author in the area of audio segmentation and acoustic concepts detection as useful

resources for the detection of multimedia events. The work presented in this thesis can

be categorized into three parts: 1) multimedia event detection, 2) segmentation-by-

classification, and 3) acoustic concepts detection.

Multimedia event detection uses different technologies based on video and audio

processing to identify events. The audio is processed in different ways such as automatic

speech recognition, speaker diarization or unsupervised approaches among others. We

have focused our efforts on the part of the audio related to non-speech. For this purpose,

we have developed different supervised techniques to extract the information coming

from characteristic sounds that we refer to as Acoustic Concepts. Acoustic Concepts

are usually overlapped with speech and, therefore, a previous segmentation is needed

to delimit the part of the audio with speech, music or other content. However, the

audio coming from the videos in the Internet presents a lot of variability because each

video is recorded with different cameras in different conditions.

To compensate the variability of the audio, we propose a supervised segmentation-

by-classification system based on Factor Analysis techniques to provide segments of

speech/non-speech. The system is general enough to be used in different contexts since

it does not use specific features. In fact, the system has been tested in a broadcast TV

news domain because the audio is comprised of several materials with non-homogeneous

style. The system identifies segments of music, speech, speech with noise and speech

with music and it shows a better performance than the baseline systems.

Finally, the same approach proposed for segmentation is evaluated to detect acoustic

concepts. The system is tested in a meeting room domain because there is an important

number of informative sounds and the acoustic concepts have low energy and are heavily

overlapped with speech.

The next subsections summarize and report the specific conclusions of each part.

6.1.1 Multimedia Event Detection

The multimedia event detection part shows a comparison between different approaches

to detect multimedia events using a set of videos provided in the TRECVid2011 evalua-
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tion. These approaches are based on the analysis of the audio of the videos by detecting

acoustic concepts. These supervised approaches permit semantic search by the users

and help to improve the detection accuracy of video analysis systems.

The acoustic concepts are studied separately by classification, detection and recogni-

tion systems. These preliminary experiments show the difficulty of modeling these con-

cepts due to the unconstrained material that can be found in the Internet. The concepts

were extracted and annotated from an independent set of data of the TRECVid2011

evaluation. The collection of annotations has two levels of labels: a set of five broad

acoustic concepts and a set of twenty specific acoustic concepts. Two extra acoustic

concepts (music and speech) are used to produce a realistic segmentation because these

extra concepts are present in most of the videos.

This thesis proposes two approaches based on the recognition of the acoustic con-

cepts. Firstly, an Acoustic Concept Recognition (ACR) approach is proposed as a

natural evolution of a Segmental-GMM approach proposed in (Pancoast2012a). The

Segmental-GMM system creates a feature vector with the likelihood of the acoustic

concepts from a GMM model for every acoustic concept extracted every five seconds.

On the other hand, the ACR system creates an HMM-GMM model for every acoustic

concept to be able to get a segmentation based on the transitions between the mod-

els. The systems are compared and the results show similar performance for both

approaches.

A second and novel approach is proposed based on the likelihood of the sequences

of the audio concepts. This approach is known as Lattice Count approach and it has

been used before in language recognition tasks. This approach improve the detection

of all the events compared to Segmental-GMM and Acoustic Concept Recognition ap-

proaches as it can be seen in Table 3.7. We also compare Segmental-GMM with twenty

acoustic concepts and Bag-Of-Audio-Words approaches described in (Pancoast2012a)

and (Pancoast2012) with the Lattice Count with twenty acoustic concepts approach.

As shown in Table 3.8 and in Figure 3.7, our approach has good behavior for all the

events even if the BoAW approach uses one thousand unsupervised clusters.

Finally, a spoken and acoustic concept fusion shows the importance of the acoustic

concepts to detect multimedia events. Table 3.9 presents the results of the spoken ap-

proach and the acoustic concept approach and both systems show similar performance.

Furthermore, both approaches are complementary since the fusion improves the total
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result reducing the error by around 5%. The MED task clearly shows the need to im-

prove the segmentation and the classification for unconstrained environments. In these

environments the with-in class variability is very high and therefore, a set of systems

to compensate the variability that can be found in multimedia documents has been

proposed for segmentation and ACR.

6.1.2 Segmentation-by-Classification Approach

The second part of this thesis presents a novel system to segment and classify audios

coming from broadcast TV news into five broad classes.

The proposed system is based on a Factor Analysis (FA) approach to compensate

the within-class variability with one factor loading matrix per class. This approach

is significant in two major aspects: it does not need specific features or a hierarchical

structure and it performs a very accurate classification for all classes. Therefore, the

system is general enough to be used for different tasks and scenarios. The classifica-

tion experiments with oracle segmentation (Section 4.4.1) show a clear improvement

compared to the baseline HMM/GMM system.

In addition, combining and smoothing back-end is proposed for the segmentation-

by-classification experiments (Section 4.4.2) in order to exploit the correlation among

classes and avoid sudden changes in the decisions. The final system is compared to

a hierarchical solution with specific features for each level. The results show a signif-

icant improvement for all classes, metrics and configurations achieving a 29.2% error

reduction for the best configuration.

6.1.3 Acoustic Concept Recognition

Finally, the last part of this thesis studies the same approach applied for segmentation

in the detection of the acoustic concepts that can happen in a meeting room. The

first set of experiments presents a comparison between the GMM/HMM approach and

FA approach for isolated acoustic concept that have been artificially generated. Both

systems perform an excellent classification showing that the classification of isolated

and artificially generated concepts is not a challenging problem because the ACs present

very high SNR.

However, acoustic concepts are spontaneously generated in most of the multimedia

documents. Furthermore, most of the acoustic concepts that may be useful to describe
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activities have low SNR and are overlapped with speech. To study this scenario, the

CLEAR evaluation database was used. The database was recorded in five different

rooms with different furniture so the ACs present some variability that can be com-

pensated. In a first approach to the problem, we classify the ACs when the boundaries

are given to reduce the difficulty of the problem. These experiments show that the FA

approach classifies slightly better than a baseline approach based on GMM/HMM.

Finally, the detection experiments aims at determining the class of the ACs and

their temporal position. These experiments show a very low performance for every

approach denoting the difficulty of the task. In this case, the FA approach presents a

limitation because the length of the ACs is very short. Therefore, the estimation of the

with-class matrix is inaccurate and the models are corrupted.

6.2 Future Work

Some parts of this thesis have shown a series of limitations that should be studied and

dealt with in future works. This section proposes future research lines to study and

solve the drawbacks found in this work.

• As we have shown in the last chapter, the ACR with FA has several limitations

since the ACs are very short, with low SNR and most of the time they are

overlapped with speech or other AC. A possible direction of further research is

the study of approaches to train the within-class variability matrix with a small

quantity of data or corrupted data. Part of this research should focus on fast

adaptation algorithms and part on a set of new artificially generated data to be

able to train the models accurately.

• Because the same ACs (i.e. a chair movement) is produced with different sources

(different chairs with different materials), a possible research line is the cross-site

acoustic concept detection using different datasets from different places to train

and test. This scenario would be more realistic and therefore more suitable for

being proposed in the MED task.

• The segmentation approach proposed in this thesis was cited as a future work

point in (Butko2011c) and a clear improvement has been shown with respect

to previous solutions. Following the same line, a total variability approach can
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be used to identify the different classes in a total variability space. The audio

segmentation can be addressed with the same back-ends proposed in this thesis

but using ivectors as features.

• New research lines about MED tend to use unsupervised approaches based on

feature clustering. However, the unsupervised approaches are still far away from

the supervised approaches. Moreover, the use of acoustic concepts allows a se-

mantic search that can be done with unsupervised approaches. Further research

should focus on the fusion of both techniques because the philosophy of both solu-

tions is complementary. In addition, solutions based on artificial neural networks

(ANN) could improved the performance of these systems since these algorithms

have shown an excellent behavior for classification tasks.
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Appendix A
Factor Analysis Training Process

A.1 EM Algorithm

We briefly explain the EM algorithm because it is the algorithm that we have used in

all the models to train the parameters. It is a maximum likelihood (ML) optimization

technique, in which the log-likelihood of the data given a set of model parameters is

increased in each iteration. For the details see (Bishop2006).

The EM algorithm is an algorithm to maximize the likelihood of probabilistic models

having latent variables. Consider a dataset of observed variables by X, and all of

the hidden variables by Z. Our goal is to maximize likelihood of the data given the

parameters Θ. The likelihood function is given by

p(X|Θ) =
∑
Z

p(X,Z|Θ). (A.1)

We assume that the latent variables are discrete, but the derivation is identical if Z

is continuous, or combination of discrete and continuous, with summation replaced by

integration as appropriate.

Let us express now the log-likelihood function of A.1 as

ln p(X|Θ) = ln
∑
Z

p(X,Z|Θ) = L(q,Θ) +KL(q||p), (A.2)

where we have defined the lower bound of the log-likelihood function as

L(q,Θ) =
∑
Z

q(Z) ln
p(X,Z|Θ)

q(Z)
, (A.3)
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and

KL(q||p) = −
∑
Z

q(Z) ln
p(Z|X,Θ)

q(Z)
, (A.4)

is the Kullback-Leibler (KL) divergence between q(Z) and the true posterior distribu-

tion, where q(Z) is a distribution over the latent variables. We can observe that for

any choice of q(z), equation A.2 holds. Recall that KL(q||p) ≥ 0, with equality if, and

only if, q(Z) = p(Z|X,Θ), and thus it follows that L(q,Θ) ≤ ln p(X|Θ), so L(q,Θ) is

a lower bound of ln p(X|Θ). The same conclusion can be reached by making use of

Jensen’s inequality,

ln p(X|Θ) = ln
∑
Z

p(X,Z|Θ) = ln
∑
Z

q(Z)
p(X,Z|Θ)

q(Z)

≥
∑
Z

q(Z) ln
p(X,Z|Θ)

q(Z)
= L(q,Θ),

(A.5)

with equality only when q(Z) = p(Z|X,Θ) and the KL divergence previously defined

goes to zero.

The main assumption of the EM algorithm is that the direct optimization of p(X|Θ)

is difficult, but the optimization of the complete-data likelihood function p(X,Z|Θ) is

easier. The EM is a two-stage iterative process that maximizes the data likelihood as

follows:

• E step: in this stage we start from the previous values for Θ, Θold, and the

lower bound L(q,Θ) is maximized with respect to function q, holding Θold fixed.

Given that ln p(X|Θ) does not depend on q, the maximum of L(q,Θ) occurs

when q = p and then KL(q||p) = 0. At this point the lower bound is equal to the

log-likelihood.

• M step: in this step the distribution q(Z) is held fixed and the lower bound

L is maximized with respect to Θ, to obtain a new estimate of Θ, Θnew. The

maximization causes the lower bound to increase, which necessarily makes the

log-likelihood of the incomplete dataset, p(X|Θ), to increase. The reason is that

the KL will also increase, because q is held fixed, but now it will not equal the new

posterior distribution p(Z|X,Θnew), and the KL will not be zero. The increase

in the log-likelihood is greater than the increase in the lower bound.
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As a summary, in the E step we calculate the posterior distribution q(Z) = p(Z|X,Θ),

and in the M-step, it can be seen if we substitute this amount into A.3,

L(q,Θ) =
∑
Z

p(Z|X,Θold) ln p(X,Z|Θ)−
∑
Z

p(Z|X,Θold) ln p(Z|X,Θold)

= Q(Θ,Θold) + const,

(A.6)

that the maximization of the lower bound is equivalent to the maximization of the

expectation of the complete data log-likelihood with respect to the posterior probability

of Z given X and Θold, Q, because the constant part of A.6 is independent of Θ.

Note that if the joint distribution p(X,Z|Θ) is a member of the exponential family, or

product of such members, the logarithm will cancel the exponential and lead to an M

step typically much simpler than the maximization of the incomplete data log-likelihood

p(X|Θ).

A.2 EM for JFA

The JFA model is also trained via ML and there is no closed form solution for the

derivatives of the log-likelihood function over the parameters. The adopted solution is

again the application of the EM algorithm.

The first assumption made in JFA is that our D-dimension observations, O follow

a GMM distribution with K components, with weights ω1, ..., ωK , means µ1, ..., µK ,

and covariance matrices Σ1, ...,ΣK . The means are concatenated to obtain a single

supervector, µ = [µT1 , ..., µ
T
K ]T , that has dimension KD. This supervector is not fixed

but can vary from utterance to utterance.

The log-likelihood function of this model is given by equation 2.7, but note that

we have a different models of our means, and what we obtain with equation 2.7 is the

log-likelihood of the data given the hidden variable X. By setting the q function in

equation A.2 to the true posterior distribution of the hidden variables, in this case to

the true frame alignment that generated each frame or the true responsibilities of each

Gaussian, the KL divergence vanishes, and we can express the conditional log-likelihood
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of one utterance as per equation A.3,

ln p(O|X) =

T∑
t=1

log

K∑
k=1

ωkp(ot|k,X)

=
T∑
t=1

K∑
k=1

p(k|ot, X) ln p(ot, k|X)−
T∑
t=1

K∑
k=1

p(k|ot, X) ln p(k|ot, X)

=

T∑
t=1

K∑
k=1

p(k|ot) ln p(ot|k,X)−
T∑
t=1

K∑
k=1

p(k|ot) ln
p(k|ot)
p(k)

=
T∑
t=1

K∑
k=1

γk(t) ln p(ot|k,X) +
T∑
t=1

K∑
k=1

γk(t) ln
γk(t)

ωk

=

T∑
t=1

K∑
k=1

γk(t) ln p(ot|k,X) + const1,

(A.7)

where the constant reflects the terms independent of O. However, it is important to

note that we do not really take the true responsibilities, but keep fixed the alignments

given by the UBM, and they are independent of X. This makes the KL divergence be

greater than 0 and the calculated ln p(O|X) will therefore be an approximation to the

true ln p(O|X). In fact it will be a lower bound because the KL divergence is always

non-negative. Nevertheless, if alignments are accurate enough, as it is normally the

case, the approximation will be good.

To apply the EM algorithm we first identify our objective Q function from A.6, with

Z = X, X = O, and Θl = {ωl, tl,Σl, Ul}. Note that we make explicit the dependence

on l, to train different parameters for each class. However, in practice, the means

are obtained with relevance MAP as stated previously and are not adapted. Also the

weights and the covariances are normally kept fixed and equal to the UBM weights

and covariances, and in case they are adapted they are initialized to the UBM values.

Normally, a single U is trained for all the classes (of course not in the proposed solution

in this thesis). But let’s start with the general case, where all the hyperparameters are

adapted and there is a different U for each class, and we will comment the particularities
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later. The Ql objective function of our EM algorithm for classs l is

Ql(Θ,Θ
old) =

∑
Z

p(Z|X,Θold) ln p(X,Z|Θ) =
∑
s∈l

∫
qs(x) ln p(Os, x)dx

=
∑
s∈l

∫
qs(x) ln{p(Os|x)p(x)}dx =

∑
s∈l

∫
qs(x){ln p(Os|x) + ln p(x)}dx

=
∑
s∈l

∫
qs(x){

Ts∑
t=1

K∑
k=1

γk(t) lnN(ost; tlk + Ukx,Σk) + lnN(x; 0, I)}dx

=
∑
s∈l

K∑
k=1

Nk(s) ln |Σlk|−
1
2 − 1

2
tr(

K∑
k=1

Sk(s)Σ
−1
lk )

+
1

2

K∑
k=1

Fk(s)
TΣ−1

lk tlk +
1

2
tr(EX [x(s)]

K∑
k=1

Fk(s)
TΣ−1

lk Ulk)

+
1

2

K∑
k=1

tlkΣ
−1
lk Fk(s) +

1

2
tr(EX [x(s)]

K∑
k=1

UlkΣ
−1
lk Fk(s))

−1

2

K∑
k=1

Nk(s)t
T
lkΣ
−1
lk tlk −

1

2
tr(EX [x(s)]

K∑
k=1

Nk(s)t
T
lkΣ
−1
lk Ulk)

−1

2
tr(EX [x(s)]T

K∑
k=1

Nk(s)U
T
lkΣ
−1
lk tlk)−

1

2
tr(EX [x(s)x(s)T ]

K∑
k=1

Nk(s)U
T
lkΣ
−1
lk Ulk)

−1

2
tr(EX [x(s)x(s)T ]) + const2

(A.8)

with s being the index of the file and Ts the number of frames in file s. In the E step we

calculate the posterior distribution of the hidden variable given the observation, that
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is, p(X|O)

ln p(X|O) = ln p(O,X)− ln p(O) = ln p(O|X)p(X) + const3

=

T∑
t=1

K∑
k=1

γk(t) ln p(O|k,X) + ln p(X) + const3

=
T∑
t=1

K∑
k=1

γk(t) lnN(ost; tlk + Ukx,Σk) + lnN(x; 0, I) + const3

=
K∑
k=1

1

2
Fk(s)

TΣ−1
lk Ulkx(s) +

K∑
k=1

1

2
x(s)TUTlkΣ

−1
lk Fk(s)

−
K∑
k=1

1

2
Nk(s)x(s)TUTlkΣ

−1
lk tlk −

K∑
k=1

1

2
Nk(s)t

T
lkΣ
−1
lk Ulkx(s)

−
K∑
k=1

1

2
(Ulkx(s))TΣ−1

lk Ulkx(s)− 1

2
x(s)Tx(s) + const4

=

K∑
k=1

{x(s)TUTlkΣ
−1
lk Fk(s)−Nk(s)x(s)TUTlkΣ

−1
lk tlk

−1

2
(Ulkx(s))TΣ−1

lk Ulkx(s)} − 1

2
x(s)Tx(s) + const4

= x(s)T {
K∑
k=1

UTlkΣ
−1
lk (Fk(s)−Nk(s)tlk)} −

1

2
x(s)T {

K∑
k=1

(Nk(s)U
T
lkΣ
−1
lk Ulk) + I}x(s) + const4,

(A.9)

where we can identify a Gaussian with

p(X|O) ∼ N(EX [x], L−1), (A.10)

being for utterance s

EX [x] = L−1
K∑
k=1

{UTlkΣ−1
lk (Fk(s)−Nk(s)tlk)}, (A.11)

with the symbol EX referring to the expectation taken with respect to x, and

L =

K∑
k=1

(Nk(s)U
T
lkΣ
−1
lk Ulk) + I, (A.12)

and we define

EX [xxT ] = L−1 + EX [x]EX [x]T . (A.13)
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In the M step the Q function is derived with respect to the parameters Θl and made

equal to zero. Then we can obtain an expression for each of the parameters. It is

important to keep in mind that the frame alignments are kept constant during the

whole process. Also, the weights will not be adapted. We can adapt the means tlk as

∂

∂tlk
Q(tlk, t

old
lk ) =

∑
s∈l

Σ−1
lk Fk(s)−Nk(s)Σ

−1
lk tlk −Nk(s)Σ

−1
lk UlkEX [x(s)] = 0 (A.14)

tlk =
1

Jl

Jl∑
s=1

(
Fk(s)

Nk(s)
− UlkEX [x(s)]), (A.15)

being Jl the number of utterances of class l. However the means are rarely adapted.

The update of the subspace matrix Ulk is

∂

∂Ulk
Q(Ulk, U

old
lk ) =∑

s∈l
Σ−1
lk Fk(s)EX [x(s)]T −Nk(s)Σ

−1
lk tlkEX [x(s)]T −Nk(s)UlkEX [x(s)x(s)T ]T = 0

(A.16)

Ulk = ClkA
−1
lk , (A.17)

where

Clk =
∑
s∈l

(Fk(s)−Nk(s)tlk)EX [x(s)]T (A.18)

Alk =
∑
s∈l

EX [x(s)x(s)T ]Nk(s). (A.19)

An alternative commonly used is to estimate a unique Uk for all classes. The update

formula is a weighted average of the Ulk of the individual classes

Uk = (
∑
l

Clk)(
∑
l

Alk)
−1. (A.20)

Finally, we obtain the following update formula for Σlk, which in practice is seldom
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adapted

∂

∂tlk
Q(Σlk,Σ

old
lk ) (A.21)

= −1

2

∑
s∈l

Nk(s)Σ
−1
lk +

∑
s∈l
{Σ−1

lk Sk(s)Σ
−1
lk −

1

2
I ◦ (Σ−1

lk Sk(s)Σ
−1
lk )}

−1

2

∑
s∈l

Σ−1
lk Fk(s)t

t
lkΣ
−1
lk −

1

2

∑
s∈l

Σ−1
lk Fk(s)EX [x(s)]TUTlkΣ

−1
lk

−1

2

∑
s∈l

Σ−1
lk tlkFk(s)

tΣ−1
lk −

1

2

∑
s∈l

Σ−1
lk UlkEX [x(s)]Fk(s)

TΣ−1
lk

+
1

2

∑
s∈l

Nk(s)Σ
−1
lk tlkt

t
lkΣ
−1
lk +

1

2

∑
s∈l

Nk(s)Σ
−1
lk tlkEX [x(s)]TUTlkΣ

−1
lk

+
1

2

∑
s∈l

Nk(s)Σ
−1
lk UlkEX [x(s)]tTlkΣ

−1
lk +

1

2

∑
s∈l

Nk(s)Σ
−1
lk UlkEX [x(s)x(s)T ]UTlkΣ

−1
lk = 0,

where the symbol ◦ means the Hadamard or entry-wise product, and we have applied

the following identities

∂

∂C
ln |C| = (C−1)T (A.21)

∂

∂C
tr(C−1E[xxT ]) = −2C−1E[xxT ]C−1 + I ◦ (C−1E[xxT ]C−1) (A.22)

∂

∂C
tr(AC−1B) = −(C−1BAC−1)T = −C−TATBTC−T . (A.23)

Then, the update formula for Σlk is

Σlk =
1

Jl

∑
s∈l

Sk(s)− Fk(s)(tTlk + EX [x(s)]TUTlk)− (tlk + UlkEX [x(s)])Fk(s)
T

Nk(s)

+tlk(t
T
lk + EX [x(s)]TUTlk) + Ulk(EX [x(s)]tTlk + EX [x(s)x(s)T ]UTlk),

(A.24)

and we have assumed that the off-diagonal terms of Sk(s)Σ
−1
lk are much smaller than

the diagonal terms, and the approximation

I ◦ (Σ−1
lk Sk(s)Σ

−1
lk ) ≈ Σ−1

lk Sk(s)Σ
−1
lk (A.25)

is applied. In practice, we use the UBM covariance matrices, Σk, for all the classes.
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A.3 EM with Minimum Divergence for JFA

EM with minimum divergence (MD) is a second approach to implement the EM algo-

rithm. It is derived from expressing equation A.3 as

L(q,Θ) =
∑
Z

q(Z) ln
p(X,Z|Θ)

q(Z)
=
∑
Z

q(Z) ln
p(X|Z,Θ1)p(Z|Θ2)

q(Z)

=
∑
Z

q(Z) ln p(X|Z,Θ1)−
∑
Z

q(Z) ln
q(Z)

p(Z|Θ2)

= Eq(Z)[ln p(X|Z,Θ1)]−DKL(q(Z)||p(Z|Θ2))

= Ep(Z|X,Θold)[ln p(X|Z,Θ1)]−DKL(p(Z|X,Θold)||p(Z|Θ1))

= Ep(Z|X,Θold)[ln p(X|Z,Θ2)]−DKL(p(Z|X,Θold)||p(Z|Θ2)),

(A.26)

where Θ1 and Θ2 are two disjoint subset of parameters, and the model is said to

be overparametrized, because Θ1 ≡ Θ2, and L(Θ1) = L(Θ2), that is, there exists

redundant parametrizations which are equivalent. In general, two models are equivalent

if

p(X|Θ1) = p(X|Θ2). (A.27)

In our case, being X = O and Z = X, Θl1 = {tl1,Σl1, Ul1,Π1}, where Π1 = {µX1 =

0,ΣX1 = I} are the hyperparameters of the prior distribution p(X|Π1), which are

kept fixed with mean equal to zero and covariance matrix equal to identity, and

Θl2 = {tl2,Σl2, Ul2,Π2}, where Π2 = {µX2 ,ΣX2} is also updated. Hence we have a

transformation of the distribution p(X2|Θ2) to obtain p(X1|Θ1), and the variables X1

with standard normal distribution and X2 are related as

X1 = φ(X2) = P−1(X2 − µX2), (A.28)

or equivalently

X2 = φ−1(X1) = P (X1 + µX2), (A.29)

where ΣX2 = PP T , that is, X2 is normalized by its mean and of covariance’s square

root to obtain X1, and according to the fundamental theorem of Calculus and to the

chain rule, their probability density functions are related as

fX1|Π1
(x1) = fX2|Π2

(φ−1(x1))
∂φ−1(x1)

∂x1
= pX2(φ−1(x1|Π2))P. (A.30)
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This is one of the two sufficients conditions for equivalence. The other is

p(O|X1, U1) = p(O|φ−1(X1), U2), (A.31)

which follows from expanding equation A.27.

This type of EM has 2 alternated M steps:

• Log-likelihood maximization of Ep(X|O,Θold
l )[ln p(O|X,Θl1)]. In this case, the up-

date formulas of the parameters are the same as in equations A.15 A.17, A.20,

and A.24. The reason why they are the same is that the only difference between

Ep(X|O,Θold
l )[ln p(O|X,Θl1)] and equation A.8, which is the one that we maximized

before, is the term
∑

X q(X) ln p(X), which is present in the second but not in

the first. However, when deriving these functions with regard to the parameters,

this term does not affect, because it does not depend on the parameters Θl1, and

the update equations are the same.

• Minimization of DKL(p(X|O,Θold
l )||p(X|Θl2)). This step can be divided in an-

other two:

– The minimization itself is carried out with respect to Π2 = {µX2 ,ΣX2},
because we let the prior distribution p(X) to be a non-standard Gaussian.

That is p(X) ∼ N(µX ,ΣX). And p(X|O,Θold
l ) was defined in A.10. Then,

the KL divergence between two Gaussians is defined as

DKL(N0‖N1)

=

Jl∑
s=1

1

2

(
tr(Σ−1

1 Σ0

)
+ (µ1 − µ0)T Σ−1

1 (µ1 − µ0)

−D − ln

(
det Σ0

det Σ1

)
),

(A.32)

with D the feature dimensionality. Substituiting N0 by p(X|O,Θold
l ), and

N1 by p(X|Π2), we reach the following expression for the divergence

DKL(p(X|O,Θold
l )||p(X|Θl2))

=

Jl∑
s=1

1

2

(
tr(Σ−1

X L−1
)

+ (µX − EX [x(s)])T ΣXX
−1(µX − EX [x(s)])

−D − ln

(
detL−1

det ΣX

)
).

(A.33)
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Deriving with respect to µX and making the derivative equal to zero, we

obtain an expression for µX

∂

∂µX
DKL = Jl2µ

T
xΣ−1

X − 2Σ−1
X EX [x(s)] = 0 (A.34)

µX =
1

Jl

Jl∑
s=1

EX [x(s)] (A.35)

Deriving with respect to ΣX and making the derivative equal to zero, we

obtain an expression for ΣX

∂

∂ΣX
DKL = −2Σ−1

X L−1Σ−1
X + I ◦ (Σ−1

X L−1Σ−1
X )

−Σ−1
X (µX − EX [x(s)])(µX − EX [x(s)])TΣ−1

X + Σ−1
X

≈ −Σ−1
X L−1Σ−1

X − Σ−1
X (µX − EX [x(s)])(µX − EX [x(s)])TΣ−1

X + Σ−1
X = 0

(A.36)

where it is assumed that the off-diagonal terms of Σ−1
X L−1 are much smaller

than the diagonal terms and the approximation

I ◦ (Σ−1
X L−1Σ−1

X ) ≈ Σ−1
X L−1Σ−1

X (A.37)

is applied. Finally

ΣX =

Jl∑
s=1

L−1 + (µX − EX [x(s)])(µX − EX [x(s)])T (A.38)

– At this point we have to obtain the equivalent model, because in the next

iteration we will work again over Θl1. Therefore, the models with and with-

out standard normal prior must be equivalent, being p(X1) ∼ N(x1; 0, I)

and p(X2) ∼ N(x2;µX2 ,ΣX2), so

tl1 + Ul1x1 = tl2 + Ul2x2 = tl2 + Ul2φ
−1(x1)

= tl2 + Ul2(P (x1 + µX2)) = (Ul2µX2 + tl2) + Ul2Px1

(A.39)

were in this case m2 = mold and U2 = Uold are the hyperparameters from

previous iteration, and the update equations are

Ul = Ul1 = Ul2P (A.40)
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tl = tl1 = tl2 + Ul2µX2 , (A.41)

but in our experiments the means tl are not updated.

Broadly speaking, MD minimizes the divergence between the posterior distribution of

the hidden variables and its prior distribution. In this minimization, we let the prior

to be non-standard Gaussian, even when our assumption at the beginning was that it

was normal. Once calculated the new prior, we transform the hyperparameters of the

model for the equivalent model with standard prior, and alternate between the ML and

MD step succesively. In a general case, we could have itegrated from the beginning the

mean and covariance of the prior also in the ML step. Each MD assures that the log-

likelihood of the current iteration will increase unless we are in a maximum. However,

it does not give higher global log-likelihood than EM only with the ML step, but the

convergence is faster. In addition, some authors assure that EM without MD is more

vulnerable to getting stuck in saddle-points and MD helps to avoid this.
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