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Thesis Advisor
Prof. Eduardo Lleida Solano

October 21, 2014





A mis padres





If of two subsequent events the probability of
the first be a

N
, and the probability of both

together be P
N
, then the probability of the

second on supposition the first happens is P
a
.

Thomas Bayes, An Essay towards
solving a Problem in the Doctrine of
Chances

It is not knowledge, but the act of learning, not
possession but the act of getting there, which
grants the greatest enjoyment.

Carl Friedrich Gauss

In other studies you go as far as others have
gone before you, and there is nothing more
to know; but in a scientific pursuit there is
continual food for discovery and wonder.

Mary Shelley, Frankenstein





Acknowledgments

First and foremost, I would like to thank my advisor Prof. Eduardo Lleida for his guidance.
When I was an undergraduate student, in 2003, Eduardo offered me my first grant to work in
his group where I started to learn about speech recognition. After I graduated, he offered me
a position in the Intelligent Environments lab. at Walqa technology park, where I continued
working on speech, speaker and face recognition. Finally, he brought me back to the faculty
where I developed most of the work included in this thesis. Through all this years, I had
always counted with his trust and endless support.

I also want to thank all my colleagues of the ViVoLab group at University of Zaragoza,
among them, Alfonso Ortega, David Mart́ınez, Diego Castán, Oscar Saz, Jose Enrique
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Speech@FIT group in Brno. I also want to thank Ondřej Glembek and Pavel Matějka for
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Abstract

Speaker recognition performance is usually measured in ideal scenarios where speech is
relatively clean, users are collaborative, and enough data to train speaker and channel
models is available. However, when applying speaker verification (SV) in real environments,
we face some challenges that deserve further research. This thesis dealt with some of them.

Speaker verification performance can decrease due to multiple causes: noise,
reverberation, languages and channels different from those in the development data, etc.
Thus, knowing that we can trust the speaker verification decisions is fundamental. This
motivated us to study how to estimate the reliability of the decisions. We worked on
solutions based on Bayesian networks. The networks model the causal relationships between
the decision reliability, the speaker verification score and a set of quality measures computed
from the enrollment and test utterances of the trial. The most important contribution of
the thesis, in this matter, was a Bayesian network that describes how SV score distributions
change when the trial segments are distorted. This network hypothesizes the existence of
two scores: one observed and another hidden. The observed score or noisy score is the one
provided by the SV system while the hidden score or clean score is the ideal score that we
would obtain from high quality speech. From the posterior of the clean score, we can infer
the trial reliability. This approach outperformed previous methods.

Currently, the i-vector paradigm is the state-of-the-art for SV, outperforming, in most
task, JFA or SVM. For this reason, one part of the thesis focused on some issues that arise
when modeling i-vector distributions. We considered the problem of simultaneously having
i-vectors recorded in different conditions like multiple channel types, noise types or noise
levels. We introduced a PLDA variant that approaches this problem in a principled way by
allowing different channel distributions for each condition. Other issue that we addressed
was how to consider the uncertainty about the model parameters that exists when the
amount of development data is small compared with the i-vector dimension. We proposed
to compute the posterior distribution of the model given the development data and, then,
use it to integrate out the model parameters when evaluating likelihood ratios. With this
method, we obtained a significant improvement on non-length-normalized i-vectors. Finally,
we treated the problem of training PLDA in domains with scarce development data. We
proposed to adapt a model trained on another domain, with enough data, to the target
domain by using Maximum a posteriori.

In the last part of the thesis, we were interested in attacks to SV systems. We worked on
detecting spoofing and tampering. These attacks have opposite intentions. While spoofing
intends an impostor to impersonate a target speaker, tampering aims to conceal the speaker’s
identity. We focused on low effort attacks that criminals could perpetrate without needing
any speech processing knowledge. Regarding spoofing, we studied replay attacks. For text-
dependent systems the attack also involved creating the pass-phrase by cutting and pasting
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excerpts from different victim’s recordings. Regarding tampering, we studied covering the
mouth with the hand or a handkerchief; and denasalization by pinching the nostrils. The
attack detectors were based on two paradigms: acoustic features with GMM and SVM
classifiers; and tracking of MFCC and pitch contours. Robustness improved by fusing the
speaker and attack detectors.

Addressing the issues above is crucial to apply SV technology in the real world. In a wide
range of applications–from forensic to banking–, we need to assess whether SV decisions
are reliable since mistakes can imply large losses. To improve reliability, the statistical
models have to be optimized to the task at hand. Novel modeling techniques should train
models as much general as possible or be able to adapt models between domains needing
minimal resources. Finally, countermeasures against attacks would improve acceptance of
voice biometrics. Common resources and evaluation protocols are necessary to advance in
this field and foster collaboration between institutions.



Resumen y Conclusiones

Generalmente, el rendimiento de los sistemas de reconocimiento de locutor se mide en
condiciones ideales, donde la voz es relativamente limpia, los usuarios son colaborativos, y
hay suficientes datos disponibles para entrenar modelos de locutor y de canal. No obstante,
cuando aplicamos verificación de locutor en entornos reales nos enfrentamos a retos que
merecen investigación en profundidad. Esta tesis aborda algunos de ellos.

El rendimiento de los sistemas de verificación puede empeorar debido a múltiple causas:
ruido, reverberación, idiomas o canales distintos de los utilizados en la fase de desarrollo,
etc. De este modo, saber que podemos confiar en las decisiones del sistema de verificación
es fundamental. Esto nos motivó a estudiar formas de estimar la fiabilidad de las decisiones.
Trabajamos en soluciones basadas en redes bayesianas. Las redes modelan las relaciones
de causalidad entre la fiabilidad de la decisión, el score del sistema de verificación, y un
conjunto de medidas de calidad calculadas sobre las señales de inscripción y test del trial. La
contribución más importante de esta tesis, en este aspecto, es una red bayesiana que describe
cómo vaŕıan las distribuciones de scores cuando los audios del trial están distorsionados.
Esta red supone que existen dos scores : uno observado y otro oculto. El score observado o
score ruidoso es el que se obtiene del sistema de verificación, mientras que el score oculto
o score limpio es un score ideal que se obtendŕıa si se tuviese voz de alta calidad. A partir
de la distribución a posteriori del score limpio, se puede inferir la fiabilidad del trial. Esta
aproximación consiguió mejores resultados que métodos previos.

Actualmente, el paradigma de los i-vectors es el estado del arte en verificación de locutor
superando, en la mayoŕıa de tareas, al joint factor analysis o los support vector machines
(SVM). Por esta razón, otra de las partes de la tesis se enfocó en problemas que aparecen
cuando se modelan las distribuciones de i-vectors. Se consideró el problema de tener
simultáneamente i-vectors grabados en diferentes condiciones como múltiples tipos de canal,
tipos o niveles de ruido. Introdujimos una variante de probabilistic discriminant analysis
(PLDA) que intenta aproximar este problema de manera teóricamente correcta permitiendo
que existan diferente distribuciones de canal para cada condición. Otro problema que se
abordó fue como tener en cuenta la incertidumbre acerca de los parámetros del modelo
que existe cuando la cantidad de datos de desarrollo es pequeña en comparación con la
dimensión de los i-vectors. Se propuso calcular la distribución a posteriori del modelo
dados los datos de desarrollo, y después usar esta distribución para evaluar los ratios de
verosimilitud integrando los parámetros del modelo. Con este método se obtuvo una mejora
significativa con i-vectors sin normalización en longitud. Finalmente, se abordó el problema
de entrenar PLDA en dominios con escasos datos de desarrollo. Se propuso adaptar un
modelo entrenado para otro dominio, con datos suficientes, al dominio de interés usando
Maximum a posteriori.

En la última parte de la tesis, nos interesamos por los ataques a sistemas de verificación
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de locutor. Se trabajó en detectar ataques de spoofing y tampering. Ambos ataques
tienen intenciones opuestas. Mientras que el spoofing intenta que un impostor suplante
la identidad del usuario bajo test, el tampering intenta ocultar la identidad del locutor
para no ser detectado. Nos enfocamos en ataques de baja tecnoloǵıa, los cuales pueden ser
llevados a cabo por cualquier criminal sin necesidad de tener conocimientos de procesado de
voz. En el caso del spoofing, se estudiaron ataques basados en grabar la voz del usuario y
reproducirla sobre el sistema. En sistemas dependientes del texto, el ataque también implica
crear la contraseña cortando y pegando extractos de varias grabaciones de la v́ıctima. En
cuanto al tampering, se estudiaron ataques basados en cubrir la boca con la mano o con
un pañuelo; y denasalización pellizcando las fosas nasales. Los sistemas para detectar los
ataques estuvieron basados en caracteŕısticas acústicas y clasificadores Gaussian mixture
models y SVM; y seguimiento de contornos de Mel filtered cepstral coefficients y pitch. La
fusión del verificador de locutor con los detectores de ataques mejoró la robustez del sistema.

Abordar los asuntos arriba descritos es crucial para poder aplicar verificación de locutor
en el mundo real. En un amplio rango de aplicaciones –desde forenses a banca–, se
necesita evaluar si las decisiones del verificador de locutor son fiables dado que los errores
pueden acarrear grandes pérdidas. Para mejorar la fiabilidad, los modelos estad́ısticos
deben estar optimizados para la tarea en cuestión. Los nuevos métodos de modelado
debeŕıan entrenar modelos lo más generales posible o ser capaces de adaptar modelos
entre dominios necesitando para ello los mı́nimos recursos. Finalmente, las medidas contra
ataques mejoraŕıan la aceptación de los sistemas de biometŕıa de voz. Se necesitan recursos
y protocolos de evaluación comunes para poder avanzar en este campo y fomentar la
colaboración entre instituciones.
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Chapter 1

Introduction

1.1 Introduction

The field of biometrics intends to identify living subjects based on their physiological or
behavioral patterns. There are many types of biometric traits like fingerprint, iris, DNA,
gait, signature, face, hand geometry and voice. Some of them, like DNA, depend on the
physiological characteristics of the individual; others, like signature, depend on behavioral
characteristics; they may also depend on both. The interest in biometric applications
has considerably grown in the last few years because many fields require higher levels of
security. The threat of terrorism is one of the reasons but not the only one. Because
of the recent advances made in information technology, a wide range of new services has
emerged (electronic banking, email, social networks). All these services need reliable ways to
authenticate their users. Currently, users must remember dozens of passwords and personal
identification numbers (PIN). Evidently, using the same password for every service where we
sign up is risky. Besides, passwords can be forgotten or stolen by different means. Biometrics
could solve these problems if we make them reliable enough.

This thesis deals with the biometric modality known as speaker recognition. Speaker
recognition is the ability of recognizing people by the characteristics of their voices. Both,
the anatomy of the individuals and their behavioral patterns influence the properties of
speech. On the one hand, people’s voices depend on the shape of their vocal tract, larynx
size and other voice production organs. On the other hand, each speaker has his manner of
speaking that includes the use of a particular accent, rhythm, intonation style, pronunciation
pattern and vocabulary [Kinnunen and Li, 2010].

Speaker recognition can fundamentally refer to two tasks [Reynolds, 2002]: verification
and identification. Speaker verification (SV) determines whether a person is who he or she
claims to be. In this case, possible impostors are unknown to the system, and it is called
an open-set task. Speaker identification (SI) decides who is talking among a known group
of speakers. In closed-set identification, the speaker under test must be one of the known
speakers. On the contrary, in open-set identification, the speaker in the test segment may be
none of the known speakers. Then, the task includes identification and verification together.

Speech is a natural means of communication so customers do not consider it intrusive
and they accept it better than other biometric modalities. This fact favors the existence of
many applications for speaker recognition. Moreover, nowadays the ubiquity of cell phones
creates a perfect scenario for telephone based voice biometrics.

Forensics is one of the main application areas for speaker recognition. Speech
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can be an evidence in court to convict or discharge a defendant of a crime. The
interest for applying speaker recognition as aid for forensic experts has increased in
the last years [Gonzalez-Rodriguez et al., 2003, Pfister and Beutler, 2003, Alexander
et al., 2004, Niemi-Laitinen et al., 2005, Gonzalez-Rodriguez et al., 2007, Campbell et al.,
2009]. Surveillance is a related area. Law enforcement agencies search information by
eavesdropping of a large number of telephone conversations. To deal with this huge volume
of data, they need automatic means of analysis. Speaker recognition allows us to look for
a specific criminal in this ocean of data and find out what he is planning [Marchetto et al.,
2009].

Other areas of application are identity authentication and access control. Speaker
recognition can control the access to physical facilities [Gupta et al., 2005], computer
networks, web services or telephone resetting of passwords [Roberts, 2002]. It is especially
important to increase safety of telephone banking transactions, electronic banking and e-
commerce; fields that have experienced an important growth in recent years.

Currently, there is an increasing production of documents with spoken information (TV
broadcast, conference meetings, Internet videos, etc.). To access all these documents in an
efficient manner, we need to classify them and index them. Thus, we need automatic means
of extracting meta-data like topics of discussion, participant names and so on. Speaker
recognition technology can determine the turns of the speakers in conversations, this is
known as speaker diarization [Reynolds et al., 2009].

Finally, another application of speaker recognition is personalization. By knowing the
users’ identity a computer application can learn their personal preferences for a service or
device (radio settings, preferred TV channel, air-conditioning temperature, etc.). Then,
when the application identifies the user it can load automatically the optimum settings. For
example, ambient speech is used to know who is sitting where inside a car and personalize
the experience of driver and passengers [Feld et al., 2010].

Speaker recognition systems can be classified into text-dependent or text-independent
depending on the application they are intended for. In a text-dependent application, the
user must utter a specific sentence requested by the system. This sentence can be fixed or
change for every access. In a text-independent application, the recognizer has no knowledge
of the content of the spoken utterance. Text-dependent systems constrain the speech used
in the enrollment and test phases to be the same phrase, phrases or a small vocabulary set
(digits). This has the advantage of achieving better performance with smaller amounts of
enrollment and test data. The users of text-dependent systems have to be cooperative so
they are appropriate for authentication applications. On the other hand, text-independent
systems are unconstrained so they accept a wider range of applications. They are especially
interesting for applications where the user is not cooperative (forensics, diarization) or where
the user is doing other speech based interactions like using a speech recognition system.

Following, we give a brief review of the evolution of speaker recognition technology.

1.2 Brief Historical Evolution

The first works on speaker recognition date from the decade of the seventies. The first
approaches [Atal, 1974] were text-dependent and used cepstral or linear predictor (LP)
features as input for nearest neighbors (NN) classifiers. Later, dynamic time warping (DTW)
starts to be employed for aligning the test and reference patterns [Furui, 1981]. In the
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eighties, there were some initial attempts to develop text-independent speaker recognition,
but yet with high error rates. In [Schwartz et al., 1982], short-term spectral features are
modeled with several density distributions. In [Higgins and Wohlford, 1986], the authors
divide the enrollment utterances into short segments and derive a set of templates by k-
means clustering, and then the test utterance is matched with the templates.

In the nineties, HMM-based systems started to replace those based on DTW [Reynolds
and Carlson, 1995] for text-dependent applications. For text-independent recognizers, the
distribution of short-term spectral features started to be modeled using Gaussian mixture
models (GMM) [Reynolds, 1995, Reynolds and Rose, 1995]. This approach, which is
still in use, meant a significant improvement. Since 1996, under the National Security
Agency (NSA) founding, the National Institute of Standards and Technology (NIST)
has been conducting periodic evaluations of speaker recognition systems with the goal of
determining the state-of-the-art of the technology [Martin and Przybocki, 2001]. NIST
provides a common protocol and performance measure to evaluate text-independent SV
systems [Doddington, 2000]. Mostly, NIST evaluations have driven the efforts of the
speaker recognition community to improve performance in situations with large inter-
session variability. Thus, evaluations include trials with matched and unmatched conditions
between enrollment and test segments. The main sources of inter-session variability in NIST
datasets are channel effects (different telephone handsets, transmission channels, far-field
microphones) or language [Przybocki et al., 2007].

In 2000, the GMM-UBM approach [Reynolds et al., 2000], in which speaker models
are adapted from a generic world model, became popular. This approach has been the
basis for most speaker recognition systems in the last decade. Reynolds’ approach was
still sensitive to the effects of inter-session variability. Since then, researchers have made a
great effort to make the GMM-UBM approach robust to these effects. Some methods like
feature mapping [Reynolds, 2003] and feature warping [Pelecanos and Sridharan, 2001] do
feature-level session compensation. Other methods try to compensate at the model level,
the most successful techniques had been SVM-GMM with nuisance attribute projection
(NAP) [Campbell et al., 2006b] and joint factor analysis (JFA) [Kenny et al., 2007b]. Lately,
a new approach known as i-vectors (identity vectors) has attracted a great attention [Dehak
et al., 2011b]. This approach extracts a fixed length vector from the speech segment; and
this vector is taken as feature for advanced pattern recognition algorithms [Brummer and
De Villiers, 2010,Kenny, 2010].

1.3 Current Challenges

NIST evaluations have motivated researchers to cope with session mismatch effects. As a
consequence, other issues have received less attention. This thesis focuses on some of those
issues. First of all, NIST databases are rather clean. In real applications, we find signals with
background noise, reverberation and artifacts (telephone tones, laughs, saturation). There
are some works that utilize quality measures to improve speaker recognition. In [Solewicz
and Koppel, 2005] and [Garcia-Romero et al., 2006], quality measures improve the fusion
of SV systems. In [Harriero et al., 2009], several quality measures are used to predict
the reliability of a speaker recognition system. The work in [Richiardi et al., 2006b]
presents a method to estimate the reliability of speaker verification decisions with a Bayesian
framework. However, more research needs to be done to know which factors affect speaker
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recognition performance and how to use quality measures to improve it.

Another issue to consider is the security attacks to SV systems. Attacks can be classified
into two categories: spoofing or forgery and tampering. Spoofing is the fact of impersonating
another person by using different techniques like voice transformation or playing of a
recording of the victim. On the other hand, tampering consists in altering the voice to
prevent being detected by SV. There are multiple techniques for voice disguise. In [Perrot
et al., 2007], the authors do a study of voice disguise methods and classify them into
electronic transformation or conversion; imitation; and mechanical and prosodic alteration.
In [Figueiredo and Britto, 1996], the effects of speaking while grasping a pencil in the teeth
were studied. In [Perrot et al., 2005], an impostor voice was transformed into the target
speaker voice by a voice encoder and a decoder. More recently, in [De Leon et al., 2010b]
a HMM based speech synthesizer with models adapted from the target speaker deceived a
SV system.

Finally, it is well known that current approaches like JFA or NAP greatly depend on the
type of the development data [Vaquero et al., 2009]. For instance, a JFA system developed
with telephone data will be able to compensate inter-session variability due to different
telephone handsets or transmission channels but it will perform poorly on speech from
far-field microphones. The same will happen with other types of inter-session variability
not considered during the development process. Making the system less sensitive to the
development data is something that needs extra attention.

1.4 Thesis Organization

This thesis is organized into five parts related to different problems. The first part provides
an overview of the evolution of text-independent speaker recognition technology during the
last decade. We evaluate the systems implemented by our group for the NIST SRE 2006-
2010 [Villalba et al., 2008, Villalba et al., 2010] on a common dataset (NIST SRE 2010).
Thus, we evidence the great leap that the technology has given in the last years.

In the second part, we address the issue of estimating the reliability of the speaker
verification decisions. A probabilistic reliability measure is computed from a group of quality
measures, extracted from the speech segments involved in the trial. This measure allows us
to discard unreliable trials in applications that require very accurate decisions but that do
not need a decision for all the trials. In Chapter 3, we introduce the state-of-the-art and
describe our experimental setup. In Chapter 4, we explain the quality measures that we
extracted from the speech segments and show the correlation between this measures and
SV performance. In Chapter 5, we revisit a state-of-the-art approach based on Bayesian
networks to estimate the SV reliability. We propose some modifications of the BN and prove
that performance improves by rejecting unreliable trials. In Chapter 6, we introduce a novel
approach that clearly outperforms previous works. It is also based on a Bayesian network
but with a different philosophy. The network models how speech distortions, such as noise
and reverberation, modify the SV score distributions. The network can be applied to reject
unreliable trials but also to obtain an improved SV likelihood ratio. The improved ratio
reduces error rates without discarding trials. Datasets are affected by different distortions
so a BN trained on one dataset may not perform well on another. In Chapter 7, we show
how to adapt the BN presented in the previous chapter from one dataset to another by
maximum a posteriori (MAP) estimation.
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Figure 1.1: Mind map of the thesis.

In the third part, we adopt the paradigm of speaker recognition based on i-vectors
and a probabilistic linear discriminant analysis (PLDA) back-end. We propose several
modifications of the standard PLDA to address different issues. In Chapter 8, we introduce
Multi-channel PLDA, a PLDA variant where the prior distribution of the inter-session
variability term depends on the channel type in which the speech was recorded. In Chapter 9,
we implement fully Bayesian evaluation of PLDA. The Bayesian approach, instead of taking
a point estimate of the model parameters, computes their posterior distribution given the
development data. Hence, when we evaluate the likelihoods given the target and non-target
hypothesis, the model posterior is employed to integrate out the model parameters. When
the amount of development data is large compared with the size of the model, the posterior
is sharply peaked and the standard and Bayesian evaluations provide similar results. On the
contrary, if the amount of training data is small, the posterior is flatter; i.e., meaning that
the uncertainty about the value of the model parameters is large. By integrating out the
model, we take into account that uncertainty and, as a consequence, standard and Bayesian
evaluations diverge. If the posterior of the model is wide, it has the side effect of preventing
database mismatch. In Chapter 10, we propose to alleviate database mismatch by MAP
adaptation of the PLDA parameters from one dataset with large amount of development
data to another with scarce data.

In the fourth Part, we treat the problem of security attacks to SV systems. We focus
on low effort attacks, which are the ones available to average criminals not counting with
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advanced knowledge of speaker recognition technology. Chapter 11 deals with spoofing
attacks. Spoofing consists in impersonating a legitimate user. We experimented with two
types of spoofing: replay attack and cut and paste. Reply attack consists in playing a
recording of the victim on the microphone by using a loudspeaker. This attack affects text
independent speaker recognition. Cut and paste attacks are for text-dependent systems. The
phrase requested by the recognizer is built by concatenating words from several recordings.
In Chapter 12, we deal with tampering that consists in altering one’s voice for not being
detected by SV. We worked on two types of alterations: covering the speaker mouth with
the hand or a handkerchief; and nasalization. Nasalization refers to pinching the speaker’s
nose to alter the resonances of the vocal tract. We will show how SV performance of state-
of-the-art speaker verification degrades with these attacks and propose methods to detect
them.

Finally, in the fifth part, we offer some global conclusions of the thesis.

1.5 Notation

1.5.1 Mathematical Notation

Here, we introduce the mathematical notation used in this thesis. We distinguish different
types of variables:

• Scalars are denoted by italic lowercase letters, e.g., x.

• Column vectors are denoted by roman boldface lower case letters, e.g., x.

• Matrices are denoted by roman boldface upper case letters, e.g., X.

• The superscript T denotes the transpose operator so XT is the transpose of X and xT

is a row vector.

• Sets are denoted by italic uppercase letters, e.g., X.

Regarding probabilities, we use P to denote both probability mass functions and
probability density functions. We use q to denote approximate posterior distributions like
those used in variational Bayes algorithms. P (X|Y) denotes the conditional distribution
of the variable X given Y. P (X,Y) denotes the joint distribution of the variables X and
Y. Taking expectations is very much needed for EM and variational Bayes algorithms.
EY [f(X,Y)] denotes the expectation of f(X,Y) given the distribution of Y:

EY [f(X,Y)] =

∫

f(X,Y)P (Y) dY (1.1)

where f is a generic function.

1.5.2 Graphical Models

Along this thesis, we extensively use diagrammatic representations of probability
distributions called probabilistic graphical models [Bishop, 2006]. These provide some useful
advantages:
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• They allow us to visualize the structure of the probabilistic model and can be used to
design and motivate new models.

• By inspecting the graph, we can infer the properties of the model, including the
conditional dependencies between variables.

• Complex computations, required to perform inference and learning in sophisticated
models, can be expressed in terms of graphical manipulations, in which underlying
mathematical expressions are carried along implicitly.

The graph comprises nodes and links or arcs. Each node represents a variable or group
of variables and the links express probabilistic relationships between variables. The graph
facilitates to decompose the joint distribution over all the random variables into a product
of factors each depending only on a subset of the variables.

We restrict ourselves to employ a particular case of graphical models called Bayesian
networks (BN) or directed graphical models. In directed models the links have a particular
direction indicated by arrows and they are useful to express causal relationships between
the random variables. Looking at the graph, we can easily determine if two variables are
or not independent given another set of variables. The rules to do it are summarized as
follows [Brummer, 2010a]:

• Two variables, a and b, are conditionally independent given another set of variables
C, if all paths on the graph between a and b are blocked.

• A path is blocked if any node on the path is blocked.

• A node is blocked if either:

– Arrows on the path meet head-to-tail, or tail-to-tail at the node and the variable
at the node is in C.
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– Arrows on the path meet head-to-head at the node and neither the node, nor any
of its descendants–a descendant of a node c is any node that can be reached from
c by following the arrows–are in C.

Thus, if a and b are independent given C, we can write P (a, b|C) = P (a|C)P (b|C) and
P (a|C, b) = P (a|C).

Figure 1.2 shows an example of a Bayesian network representing a mixture of Gaussians.
Empty nodes denote hidden variables, shaded nodes denote observed variables and small
solid nodes denote deterministic parameters. A node or group of nodes surrounded by a
box, called a plate, and labeled with N indicates that there are N nodes of that kind. In the
example, xi are the observed data samples and zi are the hidden variables indicating which
Gaussian generates each data sample. The plate indicates that we observe N data samples.
The deterministic variables µ and Λ are the means and precisions of the Gaussians, which
can be given or estimated by maximum likelihood.
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Speaker Recognition





Chapter 2

Speaker Recognition Technology

2.1 Introduction

Speaker recognition is a biometric modality based on recognizing people by their voices.
Human voice is influenced by the physiological features of the speech production organs
(vocal tract, larynx mouth, nasal cavity, etc.) and behavioral patterns (accent, rhythm,
intonation style, choice of vocabulary). Speaker recognition systems can perform two
kinds of tasks: speaker verification (SV) and speaker identification (SI). Speaker verification
consists in determining whether a person is the one that he or she claims to be. In this
task, the system needs to be able to cope with unknown impostors (open-set task). On the
contrary, speaker identification decides who is talking among a known group of speakers
(closed-set task). In this thesis, we focus on the verification task.

This chapter presents a review of the main milestones of text-independent speaker
verification technology along the last decade, from MAP adapted Gaussian mixture models
to i-vectors. Some of the paradigms reviewed here were part of the I3A submissions to NIST
SRE 2006–2010 [Villalba et al., 2008,Villalba et al., 2010]. At the end of the chapter, we
compare their performance on the core condition of NIST SRE 2010.

2.2 Speaker Verification Systems

Figure 2.1 illustrates the components of most speaker verification systems. They consist
of five blocks: feature extraction, statistical modeling, score normalization, calibration and
decision taking. The feature extraction module transforms the raw speech samples into
feature vectors appropriate for classification. Employing statistics, we study the feature
distributions and create speaker and inter-session variability models that we use later to
enroll new speakers and evaluate the SV trials. The scores generated by the evaluator
are normalized and calibrated to obtain meaningful likelihood ratios. Finally, we apply a
threshold to the likelihood ratios to make a decision.

As in other biometric modalities, a speaker recognition system has two phases of
operation: enrollment phase and test phase. During the enrollment phase, the voice of
the target speaker is recorded and employed to create a statistical model. During the test
phase, a new speech segment is compared to the enrollment models to make a decision about
the speaker’s identity. Besides these two phases, we can consider a third phase, known as
development phase. In this phase, carried out during the implementation of the system,
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Figure 2.1: Components of a typical automatic speaker recognition system.

several tasks are accomplished: creating Universal Background Models (UBM), groups
of impostor models, estimating models of inter-session variability, training of the score
calibration function, setting up the optimum decision threshold for the intended application
and so on.

The following sections describe each of the components of Figure 2.1 in detail.

2.3 Feature Extraction

The feature extraction module transforms the raw speech samples into feature vectors
suitable for classification algorithms. Features for speaker recognition must retain the
information about the speaker identity while they remove redundancy. There are different
types of features containing identity information. According to their physical meaning we
divide them into [Kinnunen and Li, 2010]: short-term spectral features, voice source features,
spectro-temporal features, prosodic features and high-level features. The spectral features
characterize the resonances of the vocal tract. The voice source features describe the glottal
flow. Spectro-temporal and prosodic features capture intonation and rhythm. Finally, high
level features capture particular word usage (idiolect), related to learned habits, dialect and
style [Reynolds et al., 2003]. Features related to the short-term spectrum of the speech
signal are the ones primarily used for speaker recognition. Besides being easy to calculate,
they produce the best performance. However, systems based on other types of features, can
improve the performance of spectral system by fusion [Campbell et al., 2007].

2.3.1 Short-term spectral features

There are several variants of short-term spectral features. Most of them are inspired in
the way humans perceive sound. Mel Filtered Cepstral Coefficients (MFCC) [Davis and
Mermelstein, 1980] are the most widespread. Figure 2.2 shows the block diagram to compute
them.

The speech signal is divided into 25 msec. short frames with 10 msec. overlap. Within
that interval, the signal is assumed stationary. One by one, the frames are pre-emphasized
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Figure 2.2: Block diagram of MFCC feature extraction.

and multiplied by a window function before spectral analysis. The pre-emphasis amplifies
the high frequencies, whose intensity is much lower, and thus, it equilibrates the influence
of high and low frequencies. Windowing mitigates the effects of the finite duration of the
frames on the Fourier transform [Oppenheim et al., 1999]. Usually, the Hamming window
is chosen. Following, the magnitude spectrum is computed with the fast Fourier transform
(FFT). This representation is better than the raw speech samples to observe the resonances
of the vocal tract.

The filter-bank integrates the energy present in several bands (usually 20–40). The
triangular Mel filters are placed following a logarithmic frequency scale motivated by the
behavior of the human auditory system [Davis and Mermelstein, 1980]. The dynamic range
of the filter output is compressed by a logarithmic function. Finally, a discrete cosine
transform (DCT) is applied and the first 12–20 coefficients are retained. The DCT helps to
decorrelate the coefficients of the feature simplifying the modeling. Other popular features
are usually modifications of these basic system, e.g., the advanced ETSI Front-End [ETSI,
2007].

Alternative features
with similar properties are Linear Predictor Cepstral Coefficients [Gheorghe and Anton,
2008] and Perceptual Linear Prediction (PLP) [Hermansky, 1990]. The main different with
respect to MFCC is that they use linear prediction, instead of the Fourier transform, to
estimate the spectrum.

The modeling techniques currently used for speaker recognition assume that the frames
are statistically independent. It is well known that this is not actually true given that there
is a strong correlation between close frames. To include the temporal information, first and
second order time-derivatives are appended to the feature vector. These derivatives are
usually referred as deltas and double deltas or dynamic features [Furui, 1986].

2.3.2 Alternative features

There are features can add complementary information to the spectrum: voice source
features, spectro-temporal features, prosody, high-level features and so on. Voice source
features characterize the glottal pulse. We cannot measure them directly because of the
filtering effect of the vocal tract. However, assuming that the glottal source and the
vocal tract are mutually independent, vocal tract parameters are estimated by linear
prediction and, then, the glottal pulse is recovered by inverse filtering of the original
waveform [Kinnunen and Alku, 2009, Murty and Yegnanarayana, 2006, Prasanna et al.,
2006, Zheng et al., 2007]. From the glottal pulse signal, we can extract several features:
cepstral coefficients [Kinnunen and Alku, 2009], wavelet analysis [Zheng et al., 2007], residual
phase [Murty and Yegnanarayana, 2006], features based on neural networks [Prasanna et al.,
2006], higher-order statistics [Chetouani et al., 2009], etc.

Spectro-temporal features capture the variations of the vocal tract resonances along time.
Modulation frequency was proposed for this purpose [Kinnunen, 2006,Kinnunen et al., 2008].
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It represents the frequency content of the sub-band amplitude envelopes, and, in theory, it
contains information about the speaking rate and other stylistic attributes. In [Kinnunen
et al., 2006], a temporal DCT was applied on the trajectories of cepstral coefficients rather
than on the spectral envelopes. The improvement achieved by fusing spectro-temporal and
short-term spectral features was rather modest.

Prosody refers to aspects of speech like intonation patterns, speaking rate, rhythm and
syllable stress. Prosody is a characteristic that, contrary to short-term features, spans over
long segments like syllables, words or sentences. Common prosodic parameters are the pitch
and energy contours of the segment. In [Dehak et al., 2007], they are successfully modeled
by Legendre polynomials and factor analysis. More recently, in [Kockmann et al., 2011],
speech segments are automatically split into syllables and for each syllable and its nucleus,
they extract minimum, maximum, mean and slope of pitch and energy trajectories, as well
as the durations of onset, nucleus and coda. From this set of features, they extract i-vectors
by multinomial subspace models and classification is implemented by PLDA outperforming
previous works. In these works, the fundamental frequency is commonly estimated by
variants of the RAPT algorithm [Talkin, 1995].

Finally, high-level features refer to the speaker’s lexicon. High-level features
are sequences of discrete tokens that can correspond to words [Doddington, 2001],
phones [Campbell et al., 2004], and prosodic events [Shriberg et al., 2005], among others.
Sometimes, several phone recognizers trained on different languages are used to produce
parallel token sequences [Ma et al., 2006]. The token sequences are classified by N-grams
models.

2.3.3 Voice activity detection

A fundamental part of the feature extraction is voice activity detection (VAD). Removing
non-speech frames is critical to achieve optimum performance. In the I3A submissions to
NIST SRE 2008–2012 [Villalba et al., 2008,Villalba et al., 2010,Villalba et al., 2012] a VAD
based on the long-term spectral divergence was used [Ramirez et al., 2004]. That solution
is robust to noise types and levels. Other approaches are presented in [Mak and Yu, 2010]
and [Sadjadi and Hansen, 2013].

2.3.4 Feature normalization

Intending to mitigate the channel distortions, a large amount of feature normalization
techniques have been adopted. The simplest is cepstral mean subtraction (CMS). It takes
advantage of the fact that MFCC is approximately homomorphic for filters that have a
smooth transfer function. Convolutional effects in time domain become additive in cepstral
domain. The mean value of the features over the entire speech segment is considered an
approximation of the channel component. CMS subtracts the mean from each frame [Bimbot
et al., 2004] to reduce the channel mismatch between utterances. cepstral mean and
variance normalization (CMVN) extends CMS by normalizing the features by their standard
deviation [Alam et al., 2011]. Feature warping [Pelecanos and Sridharan, 2001,Xiang et al.,
2002] equalizes the feature distribution to match a Gaussian of zero mean and unit variance.
Each feature is warped based on the histogram in a window of a few seconds around it.
Previous methods are applied after silence removal to include only speech in the calculus
of the distributions. Relative Spectral (RASTA) filtering [Hermansky and Morgan, 1994]
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applies a band pass filter along the temporal trajectory of each cepstral coefficient. The
filter eliminates modulation frequencies unusual in speech signals. For example, low varying
channels appear as low frequencies in the modulation spectrum.

The methods above do not need any channel models. On the contrary, feature mapping
maps feature vectors into a channel independent space [Reynolds, 2003] by applying
transformations learned on channel labeled data. Channel dependent GMMs are MAP
adapted from a channel independent model. For each feature, the most likely channel is
detected and we apply the mapping given by the relation between the channel dependent
and independent GMM.

2.4 Statistical Modeling

In this section, we present the most popular models for speaker recognition in the last decade.
They are mostly intended to model short-term spectral features such as MFCC, in which the
frames are assumed to be independent and identically distributed (i.i.d.). However, some of
them have been successfully applied on other types of features [Dehak et al., 2007].

2.4.1 Gaussian mixture models

In 1995, Reynolds introduced the use of Gaussian mixture models (GMM) for speaker
recognition [Reynolds, 1995, Reynolds and Rose, 1995]. Since then, it has become the
reference method for this task and it is the basis for the most successful approaches that
have emerged in the last years. A GMM is a probability density function that, for a feature
vector x, is defined as:

P (x|λ) =
K
∑

k=1

wkN (x|µk,Σk) (2.1)

where K is the number of components of the mixture; the weights wk satisfy the constraint
∑K

k=1wk = 1 and

N (x|µk,Σk) =
1

|2πΣk|1/2
exp

(

−1

2
(x− µk)

TΣ−1
k (x− µk)

)

(2.2)

is the d-dimensional Gaussian distribution with mean µk and covariance matrix Σk.

Training a GMM means to estimate the parameters λ = {wk, µk,Σk}Kk=1 given a
collection of feature vectors X = {x1,x2, . . . ,xT}. These parameters can be estimated
following a maximum likelihood criterion (ML) using the expectation-maximization (EM)
algorithm [Bishop, 2006].

In the GMM-UBM approach [Reynolds et al., 2000] a universal background model (UBM)
is trained by EM iterations with several hours of speech from a large number of speakers. The
UBM represents the speaker independent distribution of features. Then, target speakers’
GMMs are obtained by adapting the means µ from the UBM with a maximum a posteriori
(MAP) criterion.

In the verification phase, the average log-likelihood ratio (LLR) between the probabilities
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Figure 2.3: SVM classifier. The maximum margin hyperplane separates positive and
negative examples.

of the test frames given the target and UBM models is computed:

LLR =
1

T

T
∑

t=1

lnP (xt|λtarget)− lnP (xt|λUBM) (2.3)

The fact that all the speakers models are adapted from a common UBM makes the score
ranges of different speakers comparable.

2.4.2 SVM-GMM

A support vector machine (SVM) is a binary classifier that separates two classes by a
hyperplane in a high dimensional feature space [Cristianini and Shawe-Taylor, 2000]. In
speaker recognition the classes are target speaker (+1) and impostor (-1). The hyperplane
decision function can be written as,

f(x) =
M
∑

i=1

yiαiK(xi,x) + b (2.4)

where f(x) represents the distance of the feature to the hyperplane. The xi are the support
vectors, αi are the support vector weights and yi are their corresponding labels such as
∑M

i=1 yiαi = 0 and αi > 0 . The support vectors together with their weights are obtained
by a discriminative optimization algorithm from training data. The kernel function K(·, ·)
must satisfy certain conditions (Mercer Theorem) [Cristianini and Shawe-Taylor, 2000] so
that K(·, ·) can be expressed as an inner product K(x,y) = φ(x)Tφ(y) where φ(x) is a
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mapping from the input space to a higher dimensional space where the classes can be better
separated by a hyperplane.

The optimization algorithm searches for the hyperplane that maximize the margin
between both classes in the high dimensional space. The training points laying on the
boundaries between classes are the support vectors as depicted in Figure 2.3.

To apply SVM on speaker recognition we need to define a kernel function that implicitly
maps a speech utterance into a high dimensional feature of fixed length. One of the most
successful approaches was presented in [Campbell et al., 2006a]. In this work, GMMs are
adapted to each speaker utterance with the GMM-UBM paradigm. A kernel is derived by
bounding the Kullback-Leibler (KL) divergence between two mixtures. Given two utterances
utta and uttb, the KL divergence kernel is defined as

K(utta, uttb) =
K
∑

k=1

(√
wkΣ

−1/2
k µa

k

)T (√
wkΣ

−1/2
k µb

k

)

(2.5)

where µa
k and µ

b
k are the adapted means; and wk and Σk are the UBM weights and variances.

This technique is framed in the group known as super-vector methods. A Gaussian super-
vector (GSV) is built by concatenating the means of the components of the GMM. A closer
look reveals that this kernel is just an inner product between two GSV where the means are
normalized by their corresponding weights and variances (

√
wkΣ

−1/2
k ).

To enroll a given speaker, the GSVs of his enrollment utterances are used as positive
examples and a group of impostor utterances as negative examples. Thus, we train a SVM
for each target speaker. Fast evaluation of the SVM can be implemented by taking advantage
of the GSV kernel linearity. Equation (2.4) can be simplified as,

f(x) =

(

M
∑

i=1

yiαiφ(xi)

)T

φ(x) + b = wTφ(x) + b (2.6)

where φ(x) is the GSV of the test segment, φ(xi) are the support vectors obtained during
training and αi their corresponding weights.

There are techniques to compensate the variability between sessions of the same speaker
in the super-vector space. The nuisance attribute projection (NAP) approach was introduced
in [Campbell et al., 2006b] and [Solomonoff et al., 2005]. NAP estimates a low rank matrix
U which contains the directions of intra-speaker variability of the super-vectors. This matrix
is usually called eigen-channels matrix. Then, the projection matrix defined as

P = (I−UUT ) (2.7)

is multiplied by the super-vector to remove the undesired variability.
The criterion to estimate U consists in minimizing the objective function:

U∗ = argmin
U,‖U‖=1

∑

i,j

Wij ‖P(φ(xi)− φ(xj))‖2 (2.8)

where x are utterances from a development dataset, which counts with a fairly large number
of speakers with several sessions by speaker. To make same speaker super-vector of different
session closer to one another, we set Wij = 1 if utterances i and j belong to the same
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speaker and Wij = 0 otherwise. In practice [Campbell et al., 2006b], that means to find the
principal components of the within-class covariance matrix,

S =
M
∑

i=1

Ni
∑

j=1

(

φ(xij)− φ(xi)
)(

φ(xij)− φ(xi)
)T

(2.9)

where M is the number of speakers, Ni is the number of sessions of speaker i, φ(xij) is the

super-vector of the jth session of speaker i and φ(xi) is the average super-vector of i.

2.4.3 Joint factor analysis

Joint factor analysis (JFA) is a generative model that allows to estimate the speaker’s GMM
taking into account the different sources of variability (speaker and channel) separately. As
in the classical MAP by Reynolds [Reynolds et al., 2000], JFA adapts the means of the
UBM to the speaker while the weights and variances are shared among all the speakers.
Therefore, the speaker model can be represented by a super-vector formed by concatenating
the means of the corresponding GMM.

Joint factor analysis (JFA) for speaker recognition [Kenny et al., 2007b] assumes that
the mean super-vector M for a given speech utterance can be decomposed into a speaker
component s and a channel component c:

M = s+ c (2.10)

where s and c are a priori statistically independent and normally distributed. What we
usually call channel component can include other inter-session variability effects like phonetic
content or language.

The speaker component s is a hidden variable with the form

s = m+Vy +Dz (2.11)

where m is the UBM mean super-vector, V is a low-rank matrix, D is a diagonal matrix
and, y and z are standard normal distributed vectors. V is referred as the eigen-voices
matrix and y as the speaker factors vector. The columns of V span the subspace of speaker
variability. D is referred as the remaining variability matrix and z the remaining variability
factors. D accounts for the speaker variability not included in V.

The channel component c has the form

c = Ux (2.12)

where U is a low-rank matrix and x is a standard normal distributed vector. U is referred
as the eigen-channels matrix and x as the channel factors vector. The columns of U span
the subspace of inter-session variability.

The matrices V, U and D are called the hyperparameters of the JFA model. They are
estimated from a development database composed of a large number of speakers recorded
over several sessions. In [Kenny et al., 2008], the hyperparameter estimation is discussed
in detail. In [Kenny, 2005], the author describes the mathematical formulation of JFA
including the derivations of the equations involved.

In previous approaches, where enrollment was done by classical MAP, we needed to
estimate all the values of the mean super-vector (∼ 122000). When the amount of enrollment
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data is limited, we may not have enough samples for every Gaussian, and some of them
are badly estimated. In JFA, the eigen-voices term accounts for the main part of the
speaker deviation of the mean. To estimate its contribution we only need to estimate the
∼ 300 coefficients of y. Thus, the eigen-voice term prevents over-fitting. Besides, when the
enrollment data is scarce the contribution of the remaining variability term is negligible.

Several scoring approaches have been proposed for the JFA model, the most
representative are discussed in [Glembek et al., 2009]. The linear scoring is computationally
efficient and produces good performance. The speaker model is obtained by computing the
MAP point estimates of the factors y and z given the enrollment data. Then, the log-
likelihood of the test data given the speaker model is approximated by its first order Taylor
expansion about the UBM mean super-vector. After some algebra, we obtain,

LLR ≈ (Vyenroll +Dzenroll)
T Σ−1 (Ftst −Ntstm−NtstUxtst) (2.13)

where yenroll and zenroll are the enrollment factors; Ntst and Ftst are the sufficient statistics
of the test segment given the UBM; and xtst is MAP point estimate of the channel factor
given the test segment. Ftst is created by concatenating the first order cumulants of the
UBM components. Ntst is a diagonal matrix whose diagonal blocks are NkId, where Nk are
the occupation cumulants of the kth Gaussian and d the feature dimension.

In [Dehak et al., 2008] a comparison between JFA and GMM-SVM shows that JFA
clearly outperforms SVM thanks to the use of speaker factors.

2.4.4 Identity vectors (i-vectors)

Lately, a new approach derived from factor analysis has received great attention among the
speaker recognition community. Dehak [Dehak et al., 2011b] proposes to use factor analysis
as a feature extractor. This approach, instead of defining a speaker and a channel variability
space as JFA, defines a single space that is referred as total variability space and contains
both sources of variability simultaneously. The GMM super-vector for a given utterance is

M = m+Tφ (2.14)

where m is the UBM mean, T is a low-rank matrix defining the total variability space and
φ is a standard normal distributed vector. φ is referred as total variability factors or identity
vectors (i-vectors) and they are used as features in a posterior classification stage.

Several classification algorithms have embraced this new feature. In [Dehak et al., 2011b],
linear discriminant analysis (LDA) and within-class covariance normalization (WCCN)
compensate the channel distortion in the i-vectors. Then, scoring is produced by cosine
distance or SVM.

In [Matejka et al., 2011,Kenny, 2010], i-vectors are modeled by PLDA (a single Gaussian
simplification of JFA) [Prince and Elder, 2007]. An i-vector φij from the session j of the
speaker i is written as

φij = µ+Vyi +Uxij + ǫij (2.15)

where µ is a speaker independent term, V is a low-rank matrix of eigen-voices, yi is the
speaker factor vector, U is a low-rank matrix of eigen-channels, xij is the channel factor
vector and ǫij is an offset that accounts for the rest of channel variability not included in
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Figure 2.4: Speaker verification with PLDA. We compute the likelihood ratio of the i-
vectors given two generative models: M0, which represents the non-target hypothesis, and
M1, which represents the target hypothesis.

Uxij . The factors y and x can have standard normal or heavy-tailed priors. The prior
distribution of ǫ is a diagonal Gaussian.

The simplified PLDA model (SPLDA) [Villalba, 2011] puts aside the eigen-channels term
and assumes a full covariance Gaussian for the ǫ prior. This is equivalent to PLDA with
full-rank U. Another simplification is the two-covariance model [Brummer and De Villiers,
2010] where the i-vector is decomposed as φij = yi + ǫij and the priors for y and ǫ are full
covariance Gaussians. This model is equivalent to a PLDA with full-rank V and U; thus it
is also called full-rank PLDA.

PLDA is scored by computing the ratio between the likelihood of the trial i-vectors given
the target hypothesis and the corresponding likelihood given the non-target hypothesis.
Both hypothesis are illustrated by the graphical models in Figure 2.4. If the speaker in the
enrollment and test i-vectors is the same (M1), both i-vectors share the same speaker factor
y but have different channel offsets. On the other hand, if they belong to different speakers
they also have different speaker factors. Thus, the ratio is computed as

R (φ1, φ2) =
P (φ1, φ2|M1)

P (φ1, φ2|M0)
=

∫

P (φ1, φ2|y1)P (y1) dy1
∫

P (φ1|y1)P (y1) dy1

∫

P (φ2|y2)P (y2) dy2

. (2.16)

Note that the speaker identity variables are integrated out. Instead of computing point
estimates for y and comparing the enrollment and test identity variables, we compute the
likelihood that both are generated by the same y regardless of what is the value of y. This
method takes into account the uncertainty about the value of y.

As for JFA, the parameters of the PLDA model can be trained by maximum likelihood
and minimum divergence iterations [Brummer, 2010b] from a development dataset.
Mathematical derivations of the EM algorithm for different PLDA flavors can be found
in Appendix C. Discriminative training has also been proposed [Burget et al., 2011,Cumani
et al., 2011,Cumani et al., 2012].
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(b) With centering and whitening.

Figure 2.5: Length normalization examples. Length normalized samples have borders in
black and non-normalized have borders in red. The fill colors indicate different speakers.

The analysis presented in [Garcia-Romero and Espy-Wilson, 2011] proves that by
normalizing the i-vectors by their magnitude–also called length normalization–boosts the
performance of PLDA. That is

φ̂ =
φ

‖φ‖ . (2.17)

Before applying length normalization, i-vectors need to be centered and whitened. Figure 2.5
illustrates the length normalization procedure. If i-vectors are not centered and whitened,
they are projected into a small region of the hypersphere which makes them less
discriminative. On the other hand, centered and whitened i-vectors are evenly distributed
around the unit hypersphere. For high dimensional vectors, length normalization makes
heavy-tailed distributions to become closer to a Gaussian distribution, which makes possible
to use efficient Gaussian models obtaining good performance. For some datasets like NIST
SRE, length normalization eliminates the need of score normalization.

2.5 Score Normalization

The speaker verification decision is taken by comparing the score provided by the classifier
with a threshold. If the score is higher than the threshold the target speaker is accepted,
otherwise it is rejected. The choice of the optimum threshold is troublesome in speaker
verification due to the score variability between trials. The Score variability may be caused
by different phenomena. They include phonetic content of the utterances, length, channel
type, noise, emotion or any other type of inter-session variability. Approaches like SVM-
NAP or JFA need score normalization to reach optimum performance despite including
inter-session variability compensation.

Score normalization techniques were introduced in [Li and Porter, 1988]. In this work,
the authors observed large variances in the impostor and target score distributions. To
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reduce that variability, they proposed methods based on normalizing the impostor score
distributions to be zero mean and unit variance. Thus, the normalized score s′ is

s′ =
s− µ
σ

(2.18)

where s is the raw score of the classifier, and µ and σ are the mean and standard deviation
of the impostor scores distribution. µ and σ are computed from a cohort of impostors.

The most popular normalization techniques are Z-Norm and T-Norm [Auckenthaler
et al., 2000]. In Z-Norm (zero normalization), µ and σ depend on the enrollment segments.
We have to score a cohort of non-target test segments against the enrollment model; obtain
the mean and standard deviation of those scores; and plug them in (2.18). On the other side,
in T-Norm (test normalization), we must score the test segment against a cohort non-target
models. Applying both, one behind the other, we have ZT-Norm or TZ-Norm. With the
advent of i-vectors where scores are symmetric–the score is the same if we interchange the
enrollment and test segments–, the S-Norm (symmetric norm) popularized [Brummer and
Strasheim, 2009]. It is defined as

s′ =
s− µenroll

σenroll
+
s− µtst

σtst
(2.19)

where µenroll and σenroll are computed by scoring the enrollment segment against the cohort,
and µtst and σtst by scoring the test segment against the cohort. Less popular types
of normalization are H-Norm (handset normalization) [Heck and Weintraub, 1997], HT-
Norm [Dunn et al., 2001] or C-Norm [Bimbot et al., 2004]. Selecting the cohort speakers
similar to the target model can improve performance [Ramos et al., 2005, Sturim and
Reynolds, 2005].

2.6 Calibration

The last step before decision making is calibration. For a binary classification problem
calibration can simply refer to selecting the optimum decision threshold for the intended
application. Applications are mainly defined by the prior probability for the target trials
PT . For example, an application that searches for a criminal in thousands of phonecalls has
a low PT . Meanwhile, a system that employs an electronic card plus speaker verification to
access a bank account will have a high target prior because there will be very few impostors
(they would need to steal the card before attempting access). The prior PT is also called
the operating point of the system.

Calibration is discussed in a wider sense in [Brummer and Preez, 2006]. Here, calibration
consists in transforming the scores given by the classifier into meaningful log-likelihood
ratios. Then, the optimum decision threshold is obtained by applying Bayes rule:

P (T |D) = PT P (D|T )
PT P (D|T ) + (1− PT )P (D|N )

> 0.5 =⇒ LLR > − log
PT

1− PT
= −logitPT

(2.20)

where D refers to the trial enrollment and test data. A system that produces well-calibrated
likelihood ratios can be used for any application. It may happen that the likelihood ratios
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are only valid for a range of operating points because extreme values of LLR do not have
enough examples to properly train the calibration function.

Scores are usually calibrated by a monotonically increasing function. Linear calibration
produces good results because it needs few parameters and, thus, there is low risk of
over-fitting. Training calibration via linear logistic regression is the de facto standard
in SV thanks to Niko Brummer’s open source toolkits Focal [Brummer, 2006] and
Bosaris [Brummer and De Villiers, 2011]. Logistic regression is also used to jointly fuse
and calibrate the scores of multiple classifiers [Brummer et al., 2006]. Different flavors of
logistic regression have been researched. The work in [Hautamaki et al., 2011] explores the
effect of different regularizers. In [Hautamaki et al., 2012], a variational Bayes procedure
integrates out the parameter that controls the weight of the regularization term. In [Ferrer
et al., 2008], the authors improve the fusion by incorporating auxiliary information.

The reader can refer to Brummer’s thesis [Brummer, 2010c] for further reading about
calibration and evaluation of speaker recognizers.

2.7 Performance Evaluation

There are two types of errors in speaker verification systems: false rejections or misses and
false acceptances or false alarms. A false rejection occurs when a valid target speaker is
rejected. A false acceptance happens when an impostor is accepted. Both types of errors
depend on the decision threshold ξ. A low decision threshold will produce low miss rates
(PMiss) and high false alarm rates (PFA). On the contrary, a high threshold will reject
many target speakers and accept very few impostors. The choice of the decision threshold
is a trade-off between both types of errors and it depends on the kind of application for
which the SV system is intended. The pair (PMiss,PFA) defines the operating point of the
system. The equal error rate (EER) is defined as the error rate at the operating point where
PMiss = PFA. The EER is the most popular metric in the speaker recognition literature to
compare different approaches.

The curve representing the trade-off between true and false acceptance rates is call
receiver operating characteristic (ROC) and is monotonic increasing. If we plot miss rate
against false alarm rate and the axes use a normal deviate scale, the curve is called detection
error trade-off (DET). The non-linear probability scale makes the plots visually more
intuitive. If the score distributions are Gaussians, the DET curves are straight lines and the
distances between curves illustrate performance differences more clearly. The DET curve has
become the standard performance representation since it was introduced by Martin [Martin
et al., 1997] in the NIST evaluations. Examples of DET curves can be found in Figure 2.6.

Another performance metric is the detection cost function (DCF) CDet [Doddington,
2000]. This is a weighted sum of the miss and false alarm rates:

CDet = CMissPT PMiss + CFA(1− PT )PFA (2.21)

where CMiss and CFA are the costs of having a miss or a false alarm, respectively, and PT

is the target prior probability. The parameters CMiss, CFA and PT depend on the intended
application. In this way, the cost function produces a measure that is meaningful for that
application. The optimum operating point of the system is the pair (PMiss,PFA) at which
CDet is minimum.
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The primary performance measure of NIST evaluation is a normalized version of the
DCF [NIST Speech Group, 2010]:

CNorm = CDet/min(CMissPT , CFA(1− PT )) . (2.22)

Along this thesis, when we refer to DCF, we mean this normalized DCF. CDet and CNorm

depend on the decision threshold ξ. It is common in the literature to evaluate systems with
respect to their actual and minimum DCF. For actual DCF, we understand to compute the
cost for a fixed threshold. If the scores a well-calibrated likelihood ratios, the threshold is
selected to minimize Bayes risk as shown in (2.20). However, if we select the threshold that
minimizes the cost on the test dataset, we obtain the minimum DCF. The latter allows us to
compare systems regardless of the calibration. An actual CNorm > 1 means that our system
is inappropriate for the intended application.

The PMiss and PFA are measured experimentally on a test corpus by counting the errors
of each type. This means that large datasets are needed to measure error rates accurately.
According to the Doddington’s “rule of 30” [Doddington, 2000], to be 90% confident that
the true error rate is ±30% of the measured error rate there must be at least 30 errors.
Therefore, the lower the error rates the system provides, the larger the test set needed to
measure those error rates precisely.

Since 1996 the National Institute of Standards and Technology (NIST) has been
conducting periodic evaluations of the state-of-the-art of the speaker recognition technology
(NIST SRE) [Martin and Przybocki, 2001, Przybocki et al., 2007]. NIST provides a
common evaluation framework to compare approaches implemented by different research
groups. NIST datasets include telephone phonecalls and interviews recorded over far-field
microphones with same and cross-channel trials. It also has 10 second conditions, low and
high vocal effort, cross-language trials, among others.

2.8 Experimental Comparison

In this section, we show the progress of speaker verification systems during the last years.
We focus on short-time spectral features and the most representative statistical models
described in Section 2.4. These systems have been part of the I3A submissions to NIST
SRE from 2006 to 2010 [Villalba et al., 2008,Villalba et al., 2010].

2.8.1 Experimental setup

2.8.1.1 Evaluation dataset

We evaluate multiple approaches on a common dataset, the NIST SRE 2010 core
extended condition [NIST Speech Group, 2010]. This dataset includes phonecalls recorded
over telephone channel or far-field microphones, and interviews recorded over far-field
microphones. Besides, conditions with high and low vocal effort were evaluated for the first
time. The recording setup includes 14 microphones of different types placed in different
locations around the subject [Cieri et al., 2007]. Segment durations are 5 minutes for
phonecalls and 3 or 8 minutes for interviews.

The primary performance metric of NIST SRE 2010 is the normalized detection cost
function given in (2.22) with the parameters PT = 0.001, CMiss = 1 and CFA = 1. These
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parameters represent an operating point with a very low number of false alarms. Taking into
account Doddington’s rule of 30, to measure the false alarm rate in this specific operating
point we need a large number of non-target trials. For this reason, NIST decided to create
the extended condition by including more than 2.8 millions of male trials and more than
3.6 millions of female trials.

Since, in the evaluation, there are multiple enrollment and test conditions with different
number of trials of each type, it is inadequate to pool all the trials to measure the overall
performance. Instead, nine common conditions were defined including the following subsets
of trials:

• Det1: Trials involving interview speech from the same microphone in enrollment and
test.

• Det2: Trials involving interview speech from different microphones in enrollment and
test.

• Det3: Trials involving interview enrollment speech and normal vocal effort
conversational telephone test speech.

• Det4: Trials involving interview enrollment speech and normal vocal effort
conversational telephone test speech recorded over a room microphone channel.

• Det5: Different number trials involving normal vocal effort conversational telephone
speech in enrollment and test.

• Det6: Telephone channel trials involving normal effort in enrollment and high vocal
effort in test.

• Det7: Room microphone recorded phone call trials with normal vocal effort in
enrollment and high vocal effort in test.

• Det8: Telephone channel trials involving normal effort in enrollment and low vocal
effort in test.

• Det9: Room microphone recorded phone call trials with normal vocal effort in
enrollment and low vocal effort in test.

2.8.1.2 Feature extraction

Our front-end extracts feature vectors with 20 MFCC including C0 (C0-C19) over a 25 ms
hamming window with 10 ms frame rate (15 ms overlap). First and second order derivatives
are computed over the feature vector sequence and appended.

Voice activity detection (VAD) was performed by computing the long-term spectral
divergence (LTSD) of the signal every 10 ms, and comparing it against a threshold as
in [Ramirez et al., 2004]. For phone calls, where two channels are available, namely channel
of interest and reference channel, the reference channel was used for crosstalk removal.
For interview segments, the NIST provided ASR labels were employed for removing the
interviewer.

After silence removal selection, features were short-time Gaussianized using a 3 seconds
window as in [Pelecanos and Sridharan, 2001].
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2.8.1.3 GMM-UBM MAP classifier

Gender Dependent (GD) Universal Background Models (UBM) of 2048 diagonal covariance
Gaussians were trained by EM iterations. For this purpose, we used all the telephone signals
in NIST SRE 2004 to 2006 databases (649 male speakers with 7412 signals and 801 female
speakers with 9889 signals).

Speakers were enrolled by MAP adaptation of the means of the UBM. Trials were
evaluated by computing the average log-likelihood ratio of the test frames given the target
speaker model and the UBM as in (2.3).

2.8.1.4 GSV-SVM-NAP classifier

Gaussian super-vectors were obtained from the MAP adapted GMM of each speech segment
as described in Section 2.4.2. We used the enrollment segment as unique positive example
to train the SVM. A cohort of impostors from NIST SRE 2004–2006 was used as negative
examples. The cohort was composed of 2363 and 3314 segments for male and female speakers
respectively.

Nuisance attribute projection was applied to super-vectors to remove inter-session
variability. We trained 100 eigen-channelsUphn on the telephone segments from the speakers
with more 8 conversations in NIST SRE 2004–2006 (530 male speakers with 7398 signals
and 731 female speakers with 9938 signals). Another 100 eigen-channels Umic were trained
on all the segments from the speakers with microphone speech in NIST SRE 2005 and 2006
and 50 speakers of 2008 (106 male speakers with 6244 signals and 119 female speakers with
6919 signals). It has been observed that training Umic not only with microphone speech
but pooling the telephone and microphone segments produces better performance. To train
Umic, we first applied Uphn to the GSV to remove the variability common to telephone and
microphone segments. Then, we trained Umic on the compensated super-vectors. Thus, in
theory, Umic only includes microphone variability and cross-channel variability. Finally, we
stacked both eigen-channel matrices U = [UphnUmic].

2.8.1.5 JFA classifier

JFA hyperparameters were trained by maximum likelihood and minimum divergence
iterations. 300 eigen-voices (V) and 100 telephone eigen-channels (Uphn) were trained on
telephone data from all the speakers of SRE2004, SRE2005 and SRE2006 databases having,
at least, 8 recordings by speaker (530 male speakers with 7398 signals and 731 female
speakers with 9938 signals). To speed up the training, some approximations were taken.
First, we trained V by assuming that, for speakers with many recordings, channel effects
cancel when we accumulate the sufficient statistics of all their sessions, and we can consider
that the average channel factor x is zero. We also considered that the contribution of the
residual variability term Dz to the speaker model is small compared to the rest of terms
so z was also set to zero. Thus, V was trained by a simplified model with speaker factors
only. Once we had V, we computed MAP point estimates for the speaker factors ŷ of each
speaker. The effect of the speaker can be removed of the first-order sufficient statistics as

F′ = F−NVŷ . (2.23)

Training Uphn by fixing the sufficient statistics to F′ during the EM algorithm is
straightforward.
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As for the GSV-SVM, another 100 eigen-channels (Umic) were trained on all the signals
from speakers having far field microphone data in SRE2005 and SRE2006 and 50 speakers
(kept out speakers) with interview data from SRE2008 (106 male speakers with 6244 signals
and 119 female speakers with 6919 signals). Similarly to what we did for Uphn, we computed
MAP point estimates for y and xphn, and we used them to remove the speaker and telephone
channel variability from F

F′ = F−NVŷ −NUphnx̂phn . (2.24)

and then, we estimated Umic. Both eigen-channel matrices were stacked together.
Finally, the remaining speaker variability matrix (D) was trained on the speakers of

NIST SRE 2004–2006 with least than 8 recordings (201 male speakers with 547 signals and
152 female speakers with 668 signals). D is not trained on the same speakers as V because
that drives to underestimate the amount of speaker variability not included in V. Again,
we computed MAP point estimates of y and x, compensate F and estimate D.

Speakers were enrolled by computing MAP point estimates of y and z. y and x were
jointly estimated by fixing z = 0. Then, the contributions of y and x were removed from
the statistics to compute z. The linear scoring was used to evaluate the trials.

2.8.1.6 i-Vectors and PLDA classifier

We trained the total variability space by maximum likelihood and minimum divergence
iterations on the same data as for the JFA eigen-voices matrix. We present results with the
raw i-vectors and length normalized i-vectors. We used simplified PLDA for classification
with 200 eigen-voices. The PLDA log-likelihood ratio was evaluated as shown in [Brummer
and De Villiers, 2010].

The means and covariances needed to center and whiten the i-vectors before length
normalization and the PLDA parameters were estimated on NIST SRE 2004–2006 and 50
speakers from 2008 pooling telephone and microphone segments. Mathematical derivations
of the EM algorithm for PLDA can be found in Appendix C. All our models were gender
dependent.

2.8.1.7 Score normalization

Score normalization was gender dependent. The GMM-UBM, GSV-SVM and JFA systems
used ZT-Norm. As PLDA scoring is symmetric, the i-vector system without length
normalization uses S-Norm. The system with length normalization does not need score
normalization. The cohorts included 2300 male and 3300 female telephone segments from
NIST SRE 2004–2006.

2.8.1.8 Calibration

Calibration was trained by linear logistic regression with the Bosaris toolkit [Brummer and
De Villiers, 2011]. The calibration was gender and channel dependent. We trained different
calibration functions for microphone–microphone, microphone–telephone and telephone–
telephone trials.

To train calibration, we built a trial list with NIST SRE 2008 data including all the
channel conditions in SRE 2010. This list included all trials that can be done from all
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training short, long and follow-up versus all testing short, long and follow-up English 2008
segments. We kept out the 50 speakers that we used to train NAP, JFA and PLDA. In
total, we had around 4 millions of male trials and 10 millions of female trials.

2.8.2 Results

2.8.2.1 Classifiers analysis

In Table 2.1, we show results comparing the five classifiers previously described for the nine
common conditions of NIST SRE10. Performance is measured in terms of EER, minimum
and actual DCF. Besides, results are presented for male, female and the pool of both. We
also display DET curves for the pool of male and female trials. Figure 2.6 shows results for
the normal vocal effort common conditions and Figure 2.7 for the high and low vocal effort
conditions.

The table and figures evidence a dramatic improvement between the basic GMM-UBM
and the GSV-SVM thanks to the NAP channel compensation included in the latter. For
example, for the det2 common condition (interview-interview different channel), we achieved
relative improvements of 49% and 18% in terms of EER and minimum DCF respectively.
And for det5 (phn-phn), we obtained improvements of 62% and 23%. The DET curves
consistently improved along all the operating points. However, actual DCF did not improve
some much. The GSV-SVM calibration is not very good and there is still a noticeable gap
between minimum and actual DCF.

There is another jump of performance when we evolve from GSV-SVM to JFA thanks
to the inclusion of eigen-voices. Compared to the GSV-SVM system, in det2, we attained
relative improvements in EER and minimum DCF of about 53% and 25%. In det5, they
improved by around 40% and 23%. Besides, in det5, calibration was almost perfect. Again,
we ameliorated DET curves along all the operating points.

If we compare JFA and i-vectors based systems, we do not find a performance
enhancement as evident as between JFA and previous approaches. In some common
conditions JFA was still better. In terms of minimum DCF, the system with PLDA and
raw i-vectors outperformed JFA only in conditions det1 (interview-interview same channel),
det4 (interview-phonecall in microphone channel) and det7 (microphonic phonecalls with
high vocal effort in test). However, the PLDA calibration was better and, in terms of actual
DCF, it outperformed JFA in five conditions (det1, det2, det4, det7 and det9).

Regarding the system with PLDA and length normalized i-vectors, we improved in all the
conditions that involve microphone speech in enrollment and test. We improved as much for
minimum DCF as for actual DCF. For example, in det2, we attained improvements relative
to JFA of about 22% in terms of EER and minimum DCF and 47% in terms of actual DCF.
Looking at the DET curves, the improvement is larger in the low false alarm operating
points. In telephone conditions, JFA had slightly better costs. However, we confirmed that
by training PLDA with only telephone data we can reach the same performance in telephone
as JFA, but, at the cost of deteriorating the microphone conditions. Definitely, PLDA was
much better than JFA in microphonic conditions (det1, det2, det3, det4, det7 and det9)
and JFA was slightly better in telephone conditions (det5, det6 and det8). We hypothesize
that PLDA is better calibrated than JFA because of the approximations taken to evaluate
the likelihood ratios. For PLDA, we compute the likelihood ratio by (2.16), which strictly
complies with the rules of probability. On the contrary, for JFA, to speed-up the ratio
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Table 2.1: EER(%)/MinDCF/ActDCF NIST SRE10 core extended common conditions for
different classifiers.

CC System
male female male + female

EER MinDCF ActDCF EER MinDCF ActDCF EER MinDCF ActDCF

1

GMM-UBM 5.15 0.742 0.953 6.74 0.852 0.987 6.24 0.807 0.971
GSV-SVM 4.04 0.660 0.796 5.67 0.770 0.796 4.99 0.726 0.792
JFA 1.35 0.352 0.587 2.96 0.705 0.744 2.25 0.597 0.673
PLDA 1.24 0.395 0.499 2.97 0.589 0.640 2.21 0.578 0.580
Lnorm+PLDA 1.25 0.206 0.235 1.98 0.344 0.644 1.67 0.293 0.464

2

GMM-UBM 11.18 0.951 1.000 15.83 0.990 1.000 13.86 0.972 1.000
GSV-SVM 5.04 0.705 0.942 8.63 0.868 0.980 7.03 0.797 0.962
JFA 1.78 0.402 0.902 4.45 0.731 0.950 3.28 0.594 0.928
PLDA 1.85 0.567 0.767 4.55 0.761 0.787 3.40 0.718 0.778
Lnorm+PLDA 1.76 0.318 0.376 3.26 0.572 0.584 2.57 0.465 0.489

3

GMM-UBM 9.64 0.984 1.052 11.15 0.998 1.092 10.51 0.993 1.071
GSV-SVM 3.89 0.525 0.601 6.07 0.679 1.098 4.99 0.616 0.860
JFA 2.61 0.414 0.493 3.42 0.576 0.607 3.05 0.546 0.553
PLDA 3.27 0.625 0.713 3.75 0.725 0.751 3.52 0.696 0.732
Lnorm+PLDA 2.07 0.448 0.494 3.00 0.531 0.612 2.55 0.501 0.553

4

GMM-UBM 10.36 0.867 0.985 12.70 0.930 0.998 11.72 0.903 0.991
GSV-SVM 6.00 0.754 0.773 7.99 0.794 0.820 7.04 0.780 0.792
JFA 1.99 0.416 0.770 3.69 0.684 0.835 2.83 0.590 0.802
PLDA 1.74 0.440 0.608 3.33 0.707 0.724 2.57 0.657 0.669
Lnorm+PLDA 1.30 0.276 0.291 2.16 0.434 0.486 1.76 0.365 0.389

5

GMM-UBM 9.84 0.867 0.877 12.19 0.862 0.895 11.10 0.882 0.886
GSV-SVM 3.20 0.535 0.573 4.99 0.704 1.202 4.15 0.676 0.929
JFA 1.86 0.356 0.456 3.07 0.550 0.586 2.51 0.518 0.534
PLDA 2.72 0.534 0.806 3.97 0.781 0.791 3.41 0.781 0.802
Lnorm+PLDA 2.28 0.386 0.486 3.67 0.589 0.645 3.03 0.578 0.581

6

GMM-UBM 17.26 0.994 1.383 21.29 0.998 1.129 19.58 0.997 1.233
GSV-SVM 6.57 0.998 1.668 8.53 1.000 1.372 7.69 0.999 1.493
JFA 4.28 0.834 0.848 5.74 0.862 0.886 5.12 0.852 0.870
PLDA 5.50 0.887 0.941 7.31 0.931 0.947 6.52 0.917 0.945
Lnorm+PLDA 5.81 0.905 0.919 7.59 0.892 0.900 6.97 0.900 0.908

7

GMM-UBM 15.41 0.927 1.000 28.81 0.944 1.000 23.06 0.961 1.000
GSV-SVM 10.02 0.972 1.000 16.59 0.962 1.000 13.60 0.986 0.998
JFA 4.25 0.955 0.958 9.39 0.935 0.989 6.92 0.970 0.973
PLDA 5.13 0.721 0.771 9.37 0.902 0.921 7.41 0.842 0.848
Lnorm+PLDA 4.82 0.748 0.821 7.91 0.814 0.875 6.64 0.814 0.846

8

GMM-UBM 9.88 0.942 1.026 11.55 0.947 1.052 10.96 0.949 1.043
GSV-SVM 2.91 0.760 0.923 4.06 0.689 0.776 3.67 0.728 0.828
JFA 1.61 0.447 0.555 2.43 0.496 0.519 2.15 0.499 0.534
PLDA 2.02 0.661 0.806 3.22 0.758 0.773 2.79 0.757 0.786
Lnorm+PLDA 1.64 0.444 0.599 2.72 0.553 0.575 2.33 0.537 0.586

9

GMM-UBM 4.70 0.734 1.000 6.58 0.708 1.000 5.95 0.736 1.000
GSV-SVM 2.79 0.290 0.641 3.82 0.529 0.763 3.16 0.473 0.714
JFA 1.25 0.068 0.692 1.30 0.337 0.827 1.44 0.257 0.772
PLDA 1.76 0.323 0.427 1.31 0.639 0.819 1.48 0.624 0.654
Lnorm+PLDA 0.83 0.111 0.162 0.70 0.221 0.327 0.87 0.215 0.258



30 Chapter 2. Speaker Recognition Technology

0.001  0.01   0.1  0.2   0.5     1     2     5    10    20    40

0.1

0.2

0.5

 1 

 2 

 5 

 10

 20

 40

 80

False Alarm probability (in %)

M
is

s
 p

ro
b

a
b

ili
ty

 (
in

 %
)

NIST SRE10 coreext det1

 

 

 GMM−UBM

 GSV−SVM

 JFA

 PLDA

 Lnorm+PLDA

0.001  0.01   0.1  0.2   0.5     1     2     5    10    20    40

0.1

0.2

0.5

 1 

 2 

 5 

 10

 20

 40

 80

False Alarm probability (in %)

M
is

s
 p

ro
b

a
b

ili
ty

 (
in

 %
)

NIST SRE10 coreext det2

 

 

 GMM−UBM

 GSV−SVM

 JFA

 PLDA

 Lnorm+PLDA

0.001  0.01   0.1  0.2   0.5     1     2     5    10    20    40

0.1

0.2

0.5

 1 

 2 

 5 

 10

 20

 40

 80

False Alarm probability (in %)

M
is

s
 p

ro
b

a
b

ili
ty

 (
in

 %
)

NIST SRE10 coreext det3

 

 

 GMM−UBM

 GSV−SVM

 JFA

 PLDA

 Lnorm+PLDA

0.001  0.01   0.1  0.2   0.5     1     2     5    10    20    40

0.1

0.2

0.5

 1 

 2 

 5 

 10

 20

 40

 80

False Alarm probability (in %)

M
is

s
 p

ro
b

a
b

ili
ty

 (
in

 %
)

NIST SRE10 coreext det4

 

 

 GMM−UBM

 GSV−SVM

 JFA

 PLDA

 Lnorm+PLDA

0.001  0.01   0.1  0.2   0.5     1     2     5    10    20    40

0.1

0.2

0.5

 1 

 2 

 5 

 10

 20

 40

 80

False Alarm probability (in %)

M
is

s
 p

ro
b

a
b

ili
ty

 (
in

 %
)

NIST SRE10 coreext det5

 

 

 GMM−UBM

 GSV−SVM

 JFA

 PLDA

 Lnorm+PLDA

Figure 2.6: DET curves for core extended normal vocal effort common conditions.
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evaluation we need to do several approximations (exact evaluation has large computational
cost). First, we took MAP point estimates of the latent factors while in PLDA they are
integrated out. Second we took the linear approximation of the ratio in (2.13).

If we compare male and female results, we see that the usual tendency of males presenting
better performance than females was also observed here. That happens for all the systems
and common conditions evaluated.

From GMM-UBM to PLDA, we witness and improvement of the calibration reaching
actual DCF very near of the minimum DCF in most of the common conditions. The
worse calibration happened in det1 (same microphone trials). That is because we trained
a generic calibration for all the microphone against microphone conditions. Most of the
trials used to train that calibration belong to condition det2 (different microphones trials)
so the calibration is biased towards that condition. Besides in det2, we found two kind of
trials with different score distributions: lavalier microphone and far-field microphones trials.
To attain a better calibration, we would need to know the type of microphone (given or
automatically extracted) and apply different calibration functions for each case.

In NIST SRE10, new conditions emulating high and low vocal effort phonecalls were
added. During these calls the subject wore headphones which provide isolation from ambient
room noise. White noise was introduced through the headphones to cause the participant
to increase their vocal effort (det6, det7). For the low vocal effort (det8, det9) subjects
heard their own voice through the headphone which automatically makes them to reduce
their effort. DET curves for these conditions are shown in Figure 2.7. Results proved that
high vocal effort strongly degrades performance compared to normal vocal effort. On the
other side, low vocal effort condition presented very good results. We conclude that either
low vocal effort does not affect performance or the procedure used to provoke the speaker
to lower his vocal effort was unsuccessful.

Summing up, results prove that the mayor advances in speaker recognition came from
the inclusion of inter-session compensation and speaker models based on eigen-voices.
The system based on length normalized i-vectors and PLDA achieved the best overall
performance across conditions. Besides, PLDA provided scores easier to calibrate what
allowed us to obtain actual costs close to the minimum costs. That was especially significant
for the interview conditions.
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Figure 2.7: DET curves for core extended high (det6–7) and low (det8–9) vocal effort
common conditions.

2.8.2.2 Score normalization analysis

Score normalization has been an essential part of speaker recognition systems from
the beginnings of this technology. Recent advances like length normalization of i-
vectors [Garcia-Romero and Espy-Wilson, 2011] or the heavy-tailed PLDA model [Kenny,
2010] have shown to produce well behaved scores and sparing the score normalization
step. Table 2.2 compares JFA and PLDA systems with and without score normalization
on common conditions det2 and det5. The table proves that JFA definitely need score
normalization to obtain good performance. The PLDA system with raw i-vectors benefits
from score normalization in the EER operating point but not so much in terms of
DCF. Finally, the PLDA with length normalized i-vectors presents better results without
score normalization in terms of both EER and DCF. The possibility of eliminating score
normalization is a great advantage. On the one hand, we no longer need a cohort of impostors
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to compute the normalization parameters. And on the other hand, trial evaluation is faster
because we save to score the trial segments against the cohorts.

Table 2.2: EER(%)/MinDCF/ActDCF NIST SRE10 core extended det5 with and without
score normalization.

CC System
without score norm. with score norm.

EER MinDCF ActDCF EER MinDCF ActDCF

2
JFA 6.82 0.868 0.996 3.28 0.594 0.928
PLDA 4.21 0.578 0.778 3.40 0.718 0.778
Lnorm+PLDA 2.57 0.465 0.489 2.74 0.588 0.592

5
JFA 4.90 0.732 0.985 2.51 0.518 0.534
PLDA 5.54 0.627 0.806 3.41 0.781 0.802
Lnorm+PLDA 3.03 0.578 0.581 3.10 0.656 0.659

2.9 Summary

In this chapter, we reviewed the evolution of the state of the art of text-independent
speaker verification technology during the last years with special focus on systems based on
short-term spectral features. We described all the blocks of a speaker verification system
such as feature extraction, frame selection, feature normalization, statistic modeling, score
normalization and calibration. Regarding the statistic modeling we focused on approaches
that go from GMM-UBM with classical MAP speaker enrollment to the more advanced i-
vector systems with PLDA based classification passing through Gaussian super-vector SVM
and joint factor analysis.

We presented a comparative of the performance of different modeling approaches on the
NIST SRE10 core extended condition (GMM-UBM, GSV-SVM, JFA and PLDA). Results
proved the importance of techniques, such as JFA or i-vectors, that take into account inter-
session variability compensation; at the same time that allow speaker enrollment with limited
amount of data. We showed that the combination of i-vectors, length normalization and
PLDA is, in general, the best approach given that it provides a very high performance as
much in telephone as in microphone channels.

Speaker verification systems similar to those presented here will be used as baselines in
the following chapters of this thesis.
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Quality Measures and Reliability





Chapter 3

Reliability of the Speaker Verification
Decisions

3.1 Introduction

In some situations, the quality of the signals involved in the speaker verification process is not
as good as needed to take a reliable decision. Speaker verification performance is influenced
by multiple factors: additive noise, reverberation, speaker’s health, age and emotional state,
type of microphone, transmission channel of the audio signal, language, amount of speech,
etc. These factors can alter the scores produced by the speaker verification system in such
manner that impostors are able to obtain higher scores and target speakers obtain lower
scores than in optimum conditions. Thus, false alarm and misses rates increase.

It is well known that additive and convolutional noises greatly affect the distribution of
cepstral features and thus, speaker verification [Ferrer et al., 2011]. Examples of additive
noise are the sound of the air conditioning, the noise of a car engine, speech from a speaker
different than the target speaker, babble noise from a crow, etc. Convolutional noise or
reverberation depends on the physical characteristics of the room where the voice is recorded
as well as the frequency responses of the elements present in the transmission channel like
microphones or signal processors. Noise can be stationary if its characteristics do not change
over time, or non-stationary if they are time dependent.

Emotion mismatch between enrollment and test segments also causes a drop of
performance. There are some works treating this topic like [Li et al., 2005] where neutral
enrollment speech is transformed according to statistical prosodic patterns of emotion
utterances and several speaker models are trained on the converted speech. More recently,
in [Yang and Chen, 2012], authors propose to compensate the deformations introduced by
emotion at feature, model and score levels. In Chapter 2, we found a clear example of how
emotional state affects performance in the results the high vocal effort conditions of NIST
SRE10 [NIST Speech Group, 2010]. Table 2.1 evidences that performance degrades by 100%
in terms of EER and by 60% in terms of DCF between normal (det5) and high vocal effort
(det6) telephone speech.

The effect of age on speaker recognition is also analyzed on several works. In [Lei and
Hansen, 2009], the authors add a term to JFA to account for age variability achieving some
improvement on NIST SRE08. In [Kelly and Harte, 2011] the effect of age on speaker
recognition is measured by using recordings of celebrities in a time span of 30 years. Their
conclusions are that the SV score of the target trials starts to degrade when the time between
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enrollment and test exceeds 5 years. Besides, they observed an acceleration in score drop-off
when the subject is above 60 years. The work in [Doddington, 2012] addresses the issue of
age difference between target and non-target speaker populations. It manifests that, at a
fixed miss probability (PMiss = 1%), the false alarm probability reduces substantially as the
age difference increases. False alarm probability significantly decreases for age differences
of as little as five years, with an order of magnitude reduction for age differences of forty
years or more.

The effect of language on performance can be tested on NIST SRE06 and SRE08
evaluations [NIST Speech Group, 2006,NIST Speech Group, 2008] where we find evaluation
conditions with English only trials and mixed language trials. In [Villalba et al., 2008],
EER degraded by 77% between NIST SRE08 English and mixed trials. In [Lu et al., 2009],
language factors are added to JFA model to compensate for language variability.

Speaker verification is not only affected by the mismatch between enrollment and test
segments but also by the mismatch between development and evaluation data. That means
that the speech that we employ to train UBM, JFA, i-vector extractors, PLDA, score
calibration needs to be similar to the speech of the enrollment and test recordings. We saw
an example of this in Section 2.8 where we applied different calibrations depending on the
kind of trial (phn-phn, mic-phn and mic-mic) under test. We find another example in [Lei
et al., 2012], there the problem of noise is addressed by including signals with artificially
added noise in the i-vector extractor and PLDA training. For this reason, having a measure
of the similarity between development and evaluation data can provide information about
the reliability of the SV score.

In this part of the thesis, we investigate methods to compute a probabilistic measure of
the reliability of the SV decisions in scenarios similar to the ones above described. We infer
the trial reliability by combining the SV score and a group of quality measures extracted
from the trial segments. The quality measures selected are related with the type of scenarios
where the system is going to work. For example, we would use the signal-to-noise ratio if the
system has to work in noisy environments. We mainly focus on degradations derived from
the recording channel or device like additive noise and reverberation, although the methods
presented here could be extended to other types of issues like age and language mismatch
by adding quality measures related to them.

We intend to use the reliability measure to discard unreliable trials, that is, instead of
classifying them as target or non-target, we say that the speaker verification decisions cannot
be trusted. The motivation for this work came from companies dedicated to commercialize
speaker verification technology whose customers demand this possibility. This approach has
utility for applications that must provide very accurate decisions but that do not need to
provide a decision for all the trials. An example would be a forensic application where we
have several recordings that can prove the guilt of a criminal. The verdict of the court
should be only based on the ones that provide a reliable evidence. Another application can
be telephonic access to bank accounts where, in case of determining that the utterance is
unreliable, we can ask the client to repeat the sentence.

In this chapter, we review the previous works and describe the experimental setup that
is common to the rest of chapters of this part. Section 3.2 describes confidence measures
used in the literature, which are derived from the classifier score or from quality measures
of the speech signal or from combining both. Section 3.3 describes different criteria to
compare reliability estimators. These include computing costs and EER on trials with a
given reliability level or on trials with reliability larger than a threshold. We also define
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a extended cost function that penalizes to classify correct SV decisions as unreliable. In
Section 3.4, we describe our SV system, based on i-vectors, and our databases.

Regarding the rest of this part, Chapter 4 describes the quality measures that we used in
our experiments. In Chapter 5, we revisit the work in [Richiardi et al., 2006a] where Bayesian
networks are used to infer the trial reliability. We tried new quality measures and studied
how modifications of the BN structure affected the results. In Chapter 6 we present a totally
new approach, also based on a Bayesian network, and prove that it outperform previous
works. Finally, in Chapter 7, we take a Bayesian network trained for an environment with
a large amount of development data and adapt it to domains with scarce development data
by Bayesian Maximum a posteriori estimation.

3.2 Previous Works

In the last years, several works have proposed methods to decide the reliability of speaker
verification trials. We can divide these methods into three groups. First, we find approaches
based on deriving some confidence from the SV score. The SV score is itself a reliability
measure. The higher it is the more reliable the target decision and the lower the more
reliable the non-target decision. In most systems, the score is a log-likelihood ratio and if
it is well-calibrated, we can say that scores near zero mean that the trial is non-reliable.

Other works rely on measures extracted from the enrollment and test segments. These
measures carry information about the acoustical conditions of the recordings like noise and
reverberation; segment duration, etc. Finally, there are procedures that combine the SV
score and quality measures to provide a global reliability estimation.

3.2.1 Confidence from the classifier output

Numerous works compute confidence measures from the classifier output. The confidences
are used for multiple purposes such us rejecting models, rejecting trials or fusing systems
based on different features and biometric modalities. A Bayesian measure of confidence
can be defined as the posterior probability that the verification decision is correct given the
score [Gish and Schmidt, 1994]:

P (correct|s) = PcorrectP (s|correct)
PcorrectP (s|correct) + (1− Pcorrect)P (s|wrong) (3.1)

where Pcorrect is the prior probability for correct classification, P (s|correct) is the score
distribution for correct classifications and P (s|correct) for wrong classification. These
distributions are estimated from a development set. First, an operating point (threshold)
must be chosen to determine the correct and the wrong trials. The prior Pcorrect can be
determined from the percentage of errors in the development set. However, if the test set
has worst conditions than the development set, the confidence will be biased too high by the
prior. We could compensate that by choosing non-informative priors or subjective priors
based on what we expect from the test dataset. The score distributions can be modeled by
mixtures of Gaussians.

Scores were used to determine the reliability of the speaker model in [Koolwaaij et al.,
2000]. Model confidence is based on the distance between the scores of that model evaluated
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on the own speaker training material and on a cohort of impostors. That is

d =
max(0, µT − µN )

σN
(3.2)

where µT , µN and σN are the means and standard deviation of the target and non-target
scores for the given model. If the distance is too low the model is considered unreliable and
the speaker needs to be re-enrolled.

Another Bayesian confidence measure can be just the posterior of the target hypothesis
given the SV score s [Nakasone and Beck, 2001]. They fit a logistic function to the posterior
probability:

P (T |s) = 1

1 + exp (−(αs+ β))
(3.3)

where the parameters α and β are computed by least squares regression. A similar idea
was used in [Brummer and Preez, 2006], where scores are calibrated to become meaningful
log-likelihood ratios by linear logistic regression. Then, the posterior probability can be
computed by applying Bayes rule:

P (T |D) = PT P (D|T )
PT P (D|T ) + (1− PT )P (D|N )

=
1

1 + exp
(

−s+ log
(

1−PT

PT

)) (3.4)

where D is the trial data and PT is the target prior. Well calibrated log-likelihood ratios
are application independent while the SV application is associated to the prior PT . This
makes the latter method more general because just by changing the value of PT in (3.4) we
obtain a posterior adapted to a new application. On the contrary, Nakasone’s method needs
to fit a new logistic function each time that we change the priors. Brummer’s approach has
become the standard method to calibrate SV scores as was explained in Chapter 2.

In [Bengio et al., 2002], if Gaussian score distributions are assumed, authors propose to
compute the difference between the probabilities of the score given the target and non-target
distributions:

CM =
∣

∣N
(

s|µT , σ
2
T

)

−N
(

s|µN , σ
2
N

)∣

∣ . (3.5)

In case that the scores does not fit to Gaussian distributions, they propose a non parametric
model. The score space is quantized in a way that each level has the same number of
training samples. The error rate (sum of misses and false rejections) for the scores in each
quantization level is computed. That is a simple quality measure of the scores in each
level. Target and impostor distributions are trained on a development set. Authors apply
this confidence measure to improve the fusion of speaker and face recognition modalities.
These measures are substituted in [Poh and Bengio, 2005] by another one that is defined as
the difference between the miss rate and false acceptance rate for a certain score (taken as
threshold):

CM = |PMiss(s)− PFA(s)| . (3.6)

Thus, the closer the score is to EER operating point, the lower the confidence.
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The correlation coefficients between the score and the target and non-target distributions
were used in [Mengusoglu, 2004]. A confidence measure is defined as the difference between
both coefficients

CM = rT − rN (3.7)

where r is computed by applying the inverse Fisher z-transform [Hotelling, 1953] to the
scores normalized by the mean and standard deviation of the corresponding distribution:

rT =
exp(2zT )− 1

exp(2zT ) + 1
with zT =

s− µT

σT
(3.8)

rN =
exp(2zN )− 1

exp(2zN ) + 1
with zN =

s− µN

σN
. (3.9)

A confidence value near zero means that we cannot take a reliable decision while values near
2 or -2 means that the trial is target or non-target with a high reliability.

In [Zheng et al., 2007], authors define a quantity called speaker discrimination power P
for a SV trial as

P =
logP (D|T )− logP (D|N )

|logP (D|N )| (3.10)

that is the log-likelihood ratio normalized by the log-likelihood of the UBM. The
normalization term |logP (D|N )| aims to equalize the value of P for different SV systems.
Then, P is used to fuse two systems given more importance to the one with higher
discrimination power.

3.2.1.1 Confidence from quality measures of the speech signal

Some works base the confidence on the SV decisions on auxiliary information that can
be computed from the speech utterances. This information is usually referred as quality
measures in the literature. Examples of quality measures are utterance durations and
signal-to-noise ratio given that it is well known that short utterances and noisy environments
reduce the speaker recognition accuracy. In [Garcia-Romero et al., 2004], authors describe
a framework to take advantage of quality measures at different levels of the SV process:
model, score computation and fusion. They propose a frame-level quality measure based
on the deviation of the fundamental frequency from the mean. The likelihood ratio for
the GMM-UBM approach is computed by weighting each frame differently according to
the quality measure. That work was extended in [Garcia-Romero et al., 2006] to include
measures like SNR and the ITU P.563 objective speech quality assessment [ITU-T, 2004].
Besides, they implement a quality based score fusion scheme where there are two SVM
based fusers , one for low quality and another for high quality trials, and they are weighted
differently depending on the quality measures.

In [Solewicz and Koppel, 2005], three types of degradations were measured:
communication channel, speaker style and speaker stress. Channel characteristics are
measured by the mean and variance of the long-term spectrum of the conversations. They
add the likelihood of the utterance frames given the UBM. Low likelihoods are expected for
unseen channels pointing that the test segment is not well modeled by the UBM. Stylistic
attributes are measured by means, ranges and symmetry of pitch, energy distributions and
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speaking rate. Finally, the Teager Energy Operator (TEO) [Zhou et al., 2001] is applied as
indicator of speaker stress. They computed mean and variances of TEO coefficients in six
critical bands. All these measures are applied to do selective fusion of speaker recognizers
based on different features (spectral, phonetic, prosodic and idiolectal). Measures are
clusterized by k-means and a different SVM fusers are trained for each cluster.

As well as SNR, high-order statistic of speech such us skewness and kurtosis were used
in [Richiardi and Drygajlo, 2008]. Authors evaluate the correlation and mutual information
between the SV score and each quality measure. Measures are evaluated in two databases:
BANCA and XM2VTS. Results show different correlations values for target and non-target
trials proving that degradations affect more to targets than to impostors. The comparative
between quality measures is not conclusive. While, for BANCA, we find higher correlations
for SNR than for high-order statistics, for XM2VTS, we find the opposite.

In [Harriero et al., 2009], SNR, ITU P.563, UBM log-likelihood and kurtosis of the LPC
coefficients are analyzed. Authors observe a clear correlation between EER and the quality
measures on NIST SRE 2006 and 2008 datasets.

3.2.1.2 Confidence from classifier score and quality measures

Seeing that both previous groups of confidence measures help to discriminate between right
and wrong classified trials, the logical step forward is combining them into a unique value.
In [Campbell et al., 2005], the SV score, numerator and denominator of the likelihood
ratio, SNR, utterance durations and channel labels feed a multilayer perceptron to obtain
a confidence for each score. In this case, the confidence represents the posterior probability
for the target hypothesis.

Bayesian networks (BN) applied to obtain a probabilistic reliability measure were
introduced in [Richiardi et al., 2005]. The BN establishes the causal relationships between
random variables intervening in the SV process such as the SV score, quality measures, trial
label, trial decision and reliability. This relationships allow us to compute the posterior
probability for the trial reliability. This model will be discussed more thoroughly in the
next chapter. In this work, the signal-to-noise ratio is used as quality measure. In case of
low reliability, the system asks the user to utter a new sentence and chooses the one with
higher reliability to provide the decision. In [Richiardi et al., 2006b,Richiardi et al., 2006a],
the BN based approach is compared with previous works [Nakasone and Beck, 2001,Bengio
et al., 2002,Poh and Bengio, 2005]. Authors conclude that Bayesian networks outperform
previous approaches given the possibility of integrating multiple sources of information. The
reliability estimation from the BN can also be applied to fuse speaker and facial biometric
modalities [Kryszczuk et al., 2007].

3.3 Assessment of the Performance of the Reliability

Estimator

This part of the thesis aims to obtain a reliability measure for speaker verification decisions
that we can apply to discard unreliable trials. We have seen that there are multiple real world
applications like forensics that can benefit of this possibility. In the following chapters, we
will present several approaches to estimate the trial reliability based on Bayesian networks.
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To compare them, we need performance measures able to assess which one is better. In this
section, we attend that matter.

3.3.1 General definitions

Let θ ∈ {T ,N} denote the labeling of a given speaker verification trial where T represents
the hypothesis that the trial is target and N that it is non-target. We denote by θ̂ the hard
decision taken by applying a threshold ξθ to the SV score s:

θ̂(s, ξθ) =

{

T if s ≥ ξθ
N if s < ξθ

. (3.11)

If the decision is right (θ = θ̂), we say that the trial is reliable given the SV system, and
we say that it is unreliable otherwise. We denote by R ∈ {R,U} the trial reliability where
R means that the trial is reliable and U that it is unreliable. Moreover, R̂ denotes the
hard decision of the reliability estimator. The reliability detection systems proposed in the
following chapters provide a score that is the log-likelihood ratio

LLRR = logitP (R = R|s,Q) = log
P (R = R|s,Q)

1− P (R = R|s,Q)
(3.12)

where P (R = R|s,Q) is the posterior probability for reliable trial given the SV score and
the quality measures. R̂ is obtained by thresholding LLRR:

R̂(LLRR, ξR) =

{

R if LLRR ≥ ξR
U if LLRR < ξR

. (3.13)

3.3.2 Error rates and DCF on reliable trials

The first method that we use to compare reliability detectors consist of computing error
rates by only counting the trials classified as reliable. This method was already proposed
in [Grother and Tabassi, 2007].

Let NR̂T (ξR) and NR̂N (ξR) be the number of target and non-target trials classified as
reliable by the reliability detector. Let NMissR̂(ξθ, ξR) and NFAR̂(ξθ, ξR) the number of misses
and false alarms that are incorrectly classified as reliable. Then, miss and false alarm rates
on reliable trials are defined as:

PMissR̂(ξθ, ξR) =
NMissR̂(ξθ, ξR)

NR̂T (ξR)
PFAR̂(ξθ, ξR) =

NFAR̂(ξθ, ξR)

NR̂N (ξR)
. (3.14)

Now, we can redefine the EER and DCF on PMissR̂ and PFAR̂. The EER on reliable trials
for a fixed reliability threshold ξR is

EERR̂(ξR) = PMissR̂(ξθ, ξR) ifPMissR̂(ξθ, ξR) = PFAR̂(ξθ, ξR) . (3.15)

The detection cost function is defined as:

CR̂(ξθ, ξR) = CMissPT PMissR̂(ξθ, ξR) + CFA(1− PT )PFAR̂(ξθ, ξR) (3.16)
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Figure 3.1: % Example curves depicting actual DCF against reliability threshold ξR (a) and
% discarded trials (b).

where CMiss and CFA are the miss and false alarm costs and PT the target prior. We can
also employ the normalized version:

CNormR̂(ξθ, ξR) = CR̂(ξθ, ξR)/min(CMissPT , CFA(1− PT )) . (3.17)

Note that the classical DCF in (2.21) is equivalent to this new DCF if all the trials are
considered reliable, that is C(ξθ) = CR̂(ξθ,−∞).

With these error rates and costs, we can create several graphical representations of the
reliability detector performance, for example, DET curves. Fixing a SV system, we could
compare the DET curves that we obtain from a reliability detector for different thresholds
ξR. Other option is to compare the DET curves of different detectors for a fixed threshold
ξR.

A drawback of DET curves is that, being parametric in threshold ξθ, they do not show
the dependence of the error rates with ξR at a fixed ξθ. That is important because, in a real
application, the expert will fix the threshold ξθ during the development phase by calibrating
the scores on a database of controlled quality. Probably, the system operator will not be
able to change the threshold and, if he does, he may not know how to do it effectively. For
this reason, we want to evaluate if we can contain error rates by applying the reliability
detector while maintaining the SV threshold ξθ set during the system development. The
best way to measure this is through the actual normalized DCF CNormR̂ so it will be our
primary performance indicator.

We propose to evaluate reliability detectors by comparing curves of CNormR̂ against the
reliability threshold ξR and against the percentage of discarded trials. We chose the value of
the SV threshold ξθ to minimize Bayes risk by assuming calibrated scores (ξθ = −logitPT ),
and we kept it constant for all our experiments. The criterion to identify the best reliability
detector on this curves is that the best detector should reduce the actual DCF as much
as possible at the same time that it discards the lowest number of trials. Thus, we desire
curves as much near of the origin as possible. The example in Figure 3.1 compares two
systems exposing that system 2 outperforms system 1.
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Observing the figure, we can think that the behavior of the system 1 curves is counter-
intuitive. We refer to the fact that we expect that as we discard trials the DCF should always
descend. However, the curves do not always decrease as we discard trials. An ideal reliability
detector would provide monotonically decreasing curves. However, our reliability detector is
just another pattern classifier that makes errors, the same as the speaker recognizer. When
the reliability detector rejects correct trials the denominators in (3.14) decrease while the
numerator do not and error rates increase.

We can verify what conditions need to hold to reduce the error rate. Let PER̂ denote
indistinctly the error rates PMissR̂ or PFAR̂. It is computed as

PER̂(ξθ, ξR) =
NER̂(ξθ, ξR)

NCR̂(ξθ, ξR) +NER̂(ξθ, ξR)
(3.18)

where NCR̂ and NER̂ are, respectively, the number of correct and wrong trials classified as
reliable. We can also write PER̂ as

PER̂(ξθ, ξR) =
NE(ξθ)PFR(ξθ, ξR)

NC(ξθ)(1− PFU(ξθ, ξR)) +NE(ξθ)PFR(ξθ, ξR)
(3.19)

where NC and NE are the total number of right and wrong classified trials. PFU is the
false unreliable rate– the probability of classifying a correct trial as unreliable–; and PFR is
the false reliable rate–the probability of classifying a wrong trial as reliable. PFU and PFR

depend on the SV decision and reliability thresholds. A high ξR produces high PFU and low
PFR, and vice versa. From (3.19), we derive that, given two thresholds ξR1 and ξR2 ,

PER̂(ξθ, ξR1) > PER̂(ξθ, ξR2) ⇐⇒
PFR(ξθ, ξR1)

1− PFU(ξθ, ξR1)
>

PFR(ξθ, ξR2)

1− PFU(ξθ, ξR2)
. (3.20)

For the particular case of comparing the error rates discarding and not discarding trials
(ξR = −∞), to obtain an improvement from the reliability detector we need that

PER̂(ξθ, ξR) < PE(ξθ) ⇐⇒ PFU(ξθ, ξR) + PFR(ξθ, ξR) < 1 . (3.21)

These equations prove that if, as we increase ξR, PFU increases faster than PFR decreases,
we will obtain higher and higher PMissR̂ and PFAR̂; and therefore higher costs. That is what
we see in the figure.

The fact that the cost can increase as we discard more trials poses a problem to select
the operating point of the reliability detector. For example, if our application allows us to
reject 80% of the trials and we set the threshold ξR according to that, we could get worse
performance than discarding just 50% of the trials. Therefore, we should be careful when
setting ξR. A possible solution is to choose the ξR that minimizes the cost restricted to
rejecting less than 80% of trials.

Another graphical representation could be DET curves for the reliability detector, instead
of DET curves for the speaker detector. That is plotting PFU(ξθ, ξR) against PFR(ξθ, ξR)
by sweeping the value of ξR and fixing ξθ. However, these curves do not provide direct
information about how much the SV accuracy improves, or even, if it really does. For that
reason, we decided not to use this kind of representation.

An added drawback to this way of computing error rates is that it can drive to
indeterminations. For example, once all the target trials are discarded PMiss is undefined
and we cannot continue computing costs even when there are still non-target trials available.
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3.3.3 Error rates and DCF on trials with a given reliability level

Another option, also proposed in [Grother and Tabassi, 2007], consist of quantizing the
score of the reliability detector and compute the error rates for the trials lying in each
quantization level.

Quantization levels can be chosen in different manners. For example, in [Harriero et al.,
2009], quantization levels are taken non-uniforms and overlapped. Each level includes 20%
of the trials with shift of 1% of trials between levels.

Let r denote the quantized value of the reliability detector score LLRR. We define the
error rates for reliability level k as:

PMiss(ξθ, r = k) =
NMiss(ξθ, r = k)

NT (r = k)
PFA(ξθ, r = k) =

NFA(ξθ, r = k)

NN (r = k)
(3.22)

where NT (r = k) and NN (r = k) are the number of target and non-target trials in level k;
and, NMiss(r = k) and NFA(r = k) are the number of misses and false alarms.

Equivalently, we can compute the EER and DCF for level k:

EER(r = k) = PMiss(ξθ, r = k) ifPMiss(ξθ, r = k) = PFA(ξθ, r = k) (3.23)

C(ξθ, r = k) = CMissPT PMiss(ξθ, r = k) + CFA(1− PT )PFA(ξθ, r = k) . (3.24)

Useful graphical representations can be DET curves per reliability level or; EER,
minimum and actual normalized DCF against the reliability level.

3.3.4 Extended detection cost function (CQ)

We propose a novel performance measure specific for speaker verification systems that
includes the possibility of discarding trials. This measure is based on the classical DCF
where we add two new terms that account for the cost of the errors made by the reliability
detector. We define the extended detection cost function CQ as:

CQ(ξθ, ξR) =CMissPT PMissQ(ξθ, ξR) + CFA(1− PT )PFAQ(ξθ, ξR)

+ CFUT PT PFUT Q(ξθ, ξR) + CFUN (1− PT )PFUNQ(ξθ, ξR) (3.25)

where

PMissQ(ξθ, ξR) =
NMissR̂(ξθ, ξR)

NT
PFAQ(ξθ, ξR) =

NFAR̂(ξθ, ξR)

NN
(3.26)

PFUT Q(ξθ, ξR) =
NFUT (ξθ, ξR)

NT
PFUNQ(ξθ, ξR) =

NFUN (ξθ, ξR)

NN
.

NT and NN are total number of target and non-target trials. NMissR̂ and NFAR̂ (already
defined in Section 3.3.2) are the number of misses and false alarms bad classified as reliable.
NFUT and NFUN are the number of false unreliable target and non-targets trials, that is,
the number of discarded trials with correct SV decisions. The new costs CFUT and CFUN

are the costs of false unreliable classification.
As for CR, we will plot CQ against the reliability detector threshold or against the

percentage of discarded trials for a fixed value of ξθ. Figure 3.2 shows an example comparing
two reliability detectors. System 2 is evidently better than system 1. The black curve
represents the cost obtained by randomly discarding trials.
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Figure 3.2: % Example curves depicting CQ against reliability threshold ξR (a) and %
discarded trials (b).

One of the advantages of this measure over the method of computing costs on reliable
trials presented in Section 3.3.2 is that indeterminations are not possible. That is because
the denominators in the error rates calculus are constant. Other advantage is that the
operating point of the reliability detector can be established in a principled way. According
to the specifications of the given application, we choose PT , CMiss, CFA, CFUT and CFUN

and select the threshold

ξ∗R = argmin
ξR

CQ(ξθ, ξR) . (3.27)

Given the ξR, we can determine the percentage of trials that we discard. So that CQ makes
sense, the cost of discarding a correct trial has to be lower than the cost of taking a bad SV
decision. That means that CFUT < CMiss and CFUN < CFA. We need to choose the costs
carefully because if CFUT and CFUN are too low, we will obtain that CQ is minimized by
rejecting all the trials.

We can generalize the CQ definition further. The expected number of SV errors on a
dataset can be expressed by prior probabilities for reliable targets and non-targets trials:
PRT and PRN . We can manipulate (3.25) to make explicit the dependency on the reliability
priors:

CQ(ξθ, ξR) =CMissPT (PRT (1− PFUT (ξθ, ξR)) + (1− PRT )PFRT (ξθ, ξR))PMissR̂(ξθ, ξR)

+ CFA(1− PT ) (PRN (1− PFUN (ξθ, ξR)) + (1− PRN )PFRN (ξθ, ξR))PFA(ξθ, ξR)

+ CFUT PT PRT PFUT (ξθ, ξR) + CFUN (1− PT )PRNPFUN (ξθ, ξR) (3.28)

where

PMissR̂(ξθ, ξR) =
NMissR̂(ξθ, ξR)

NR̂T (ξR)
PFAR̂(ξθ, ξR) =

NFAR̂(ξθ, ξR)

NR̂N (ξR)

PFRT (ξθ, ξR) =
NFRT (ξθ, ξR)

NUT (ξθ)
PFRN (ξθ, ξR) =

NFRN (ξθ, ξR)

NUN (ξθ)
(3.29)

PFUT (ξθ, ξR) =
NFUT (ξθ, ξR)

NRT (ξθ)
PFUN (ξθ, ξR) =

NFUN (ξθ, ξR)

NRN (ξθ)
.
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Note that PMissR̂ and PFAR̂ are same defined in Section 3.3.2. NFRT and NFRN are the
number of target and non-targets bad classified as reliable; and, NFRT and NFRN are the
bad classified as unreliable. NUT and NUN are the number of unreliable trials; and, NRT and
NRN are the number of reliable trials. Equation (3.28) allows to evaluate CQ for different
values of the priors while (3.25) evaluates the cost for the actual values of PRT and PRN of
the test dataset.

From now on, we will omit the dependencies of ξθ and ξR in error rates and cost to keep
the notation uncluttered.

3.4 Experimental Setup

3.4.1 Speaker verification system

The SV baseline system was based on i-vectors with two-covariance model. We used 400
dimensional i-vectors. They were extracted from 20 short-time Gaussianized MFCC plus
deltas and double deltas and a 2048 component diagonal covariance UBM. UBM, i-vector
extractor and two-covariance model were gender independent and they were trained on
telephone data from SRE04, SRE05 and SRE06. The i-vectors preprocessing included
centering, whitening and length normalization.

SV scores were calibrated with the Bosaris Toolkit to optimize the old NIST operating
point (CMiss = 10, CFA = 1, PT = 0.01). Calibration was trained on NIST SRE08 without
noise added. Then, we applied this calibration function to all our datasets. We chose the
Bayes decision threshold (2.29). On the clean part of SRE10, this system achieved an of
EER=2.2%, minimum DCF=0.14 and actual DCF=0.17.

3.4.2 Databases

Here, we describe the databases that employed in the experiments that we will present in
the following chapters. We have a synthetic database with noise and reverberation that we
used to train and test our approaches. We also have real databases to verify that the models
trained on the synthetic dataset can be applied to real scenarios.

3.4.2.1 NIST SRE with additive noise

We took the telephone part of NIST SRE08 and SRE10 databases and assumed that both
are approximately clean. Then, we created a synthetic database by degrading NIST with
different noise levels. We followed a protocol similar to the Aurora2 dataset [Hirsch and
Pearce, 2000]. We added different Aurora2 noises to enrollment and test:

• Enrollment: suburban train, babble, car and exhibition hall.

• Test: restaurant, street, airport and train station.

Thus, we avoided the optimistic case in which the same type of noise is observed in
enrollment and test samples. Noises were previously filtered by the ITU MIR telephone
frequency response to simulate that they had pass through a telephone channel. The type
of noise for each file was selected randomly. We created a list file-noise to be able to
regenerate the dataset from scratch if needed.
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Table 3.1: EER(%) dataset NIST SRE10 + noise.

EER(%)
Test SNR (dB)

CLEAN 20 15 10 5 0
E
n
ro
l.
S
N
R

(d
B
) CLEAN 2.23 4.02 5.43 7.25 11.23 20.31

20 3.75 8.89 9.96 11.65 14.83 21.83
15 4.99 10.59 12.17 14.00 16.63 22.91
10 7.70 13.46 15.35 17.58 20.56 25.49
5 12.26 18.92 20.49 22.93 25.57 30.34
0 22.53 27.18 28.69 30.91 32.85 35.93

We used the open source FaNT Tool [Hirsch, 2005] for adding noise to the signals. We
have signal-to-noise ratios of 20dB, 15dB, 10dB, 5dB and 0dB.

For each file, we only added noise on the interest channel and kept the other channel
clean. We used the reference channel to remove cross-talk from the interest channel.

With this data we created two trial lists: one list from NIST SRE08 data to train
the reliability models, and another from NIST SRE10 for evaluation. The development
list scored all the SRE08 enrollment segments against all the SRE08 test segments for
all the signal-to-noise ratios added. The evaluation list is the official NIST SRE10 core
(non-extended) det5 replicated for all possible enrollment and test signal-to-noise ratios. In
Table 3.1, we show the EER that our SV system obtained on this dataset for each enroll–
test noise pair. Error rates rapidly grew as we increase the noise power. If we pool all the
conditions, we obtain EER=22.88%, minimum DCF=0.99 and actual DCF=2.96.

3.4.2.2 NIST SRE with reverberation

In order to create the reverberant dataset we also took NIST SRE08 and SRE10. We used
a free Matlab R©package based on [McGovern, 2004]. This package includes two tools:

• RIR: calculates the impulse response of a rectangular room given the room dimensions,
the reflection coefficients of the walls and the speaker and microphone locations.

• FCONV: used to convolve the room impulse response (RIR) with the clean signal.

We created random room impulse responses with the following criteria:

• 8 sizes of room, from small room to basketball court.

• Add a random number to the room size to change it ±50%.

• 8 different materials for the walls: rubber, granite, clay, concrete, steel, aluminum,
brick and glass.

• Random speaker position inside the room.

• Random microphone position inside a square of 4 meters of side around the speaker.
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Table 3.2: EER(%) dataset NIST SRE10 + reverberation.

EER(%)
Test reverb. time (sec)

CLEAN 0.025 0.05 0.075 0.1 0.25 0.5 0.75 1

E
n
ro
l
re
ve
rb
.
ti
m
e
(s
ec
) CLEAN 2.23 3.37 5.20 7.71 18.99 19.50 24.66 22.10 20.38

0.025 3.37 5.63 8.55 10.15 18.73 19.35 23.32 21.67 19.14
0.050 5.40 7.72 10.50 14.17 20.35 21.39 25.09 22.22 20.34
0.075 7.26 10.87 13.17 16.22 21.16 21.63 24.47 22.99 22.17
0.100 17.88 18.18 20.69 21.29 28.32 29.25 32.92 32.90 32.68
0.250 19.11 19.01 20.97 21.43 29.72 30.53 31.94 32.79 32.73
0.500 22.57 22.07 23.98 24.41 31.53 32.19 30.34 31.20 32.74
0.750 22.45 22.42 23.12 23.43 32.41 31.50 31.47 31.54 32.03
1.000 19.57 19.72 21.48 21.71 31.02 31.21 31.01 30.99 29.73

For each RIR we computed the reverberation time (RT) as the time that the filter energy
takes to fall 60dB. It is calculated from the energy decay curve (EDC) as

EDC(t) =

∫ ∞

t

h(x) dx , (3.30)

T60 = {t ∋ EDC(t) = EDC(0)− 60dB} . (3.31)

We assigned each RIR to one of 8 groups by the nearest reverberation time among 0.025,
0.05, 0.075, 0.1, 0.25, 0.5, 0.75 and 1 second. Each RIR is used only to degrade one file.
The RIR for each file is selected randomly.

Each RIR is only used to degrade one file. The RIR for each file was selected randomly
and we created a list file-RIR to be able to regenerate the database if needed.

For each file, we added reverberation on the interest channel and kept the other channel
clean. We used the reference channel to remove cross-talk from the interest channel.

In the same manner as for the dataset with additive noise, we created one trial list
from NIST SRE08 data to train the reliability models; and another form NIST SRE10 for
evaluation. In Table 3.1, we show the EER that our SV system obtain on this dataset
for each enroll–test reverberation time pair. By pooling all the conditions we obtained
EER=33.52%, minimum DCF=0.99 and actual DCF=4.5. Furthermore, we created lists by
pooling together the trials with noise and reverberation. There, we obtained EER=30.25%,
min. DCF=0.99 and actual DCF=4.06.

3.4.2.3 NIST SRE with saturation

We added saturation to the test part of NIST SRE10 to experiment with our saturation
detector. The test set was replicated to have signals with 0, 1, 2, 5, 10, 25, 50, and 75%
of speech frames with saturation. The saturation level was different for each file and it was
selected to provide the desired percentage of saturated frames.

3.4.2.4 Agnitio benchmark

Agnitio benchmark was provided by Agnitio S.L. It contains audios from many different
sources to take as much speaker and channel variability as possible. The performance of our
SV system on this datasets was EER=5.46%, minimum DCF=0.26 and actual DCF=1.49.
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3.4.2.5 Ahumada IV

Ahumada IV is a database of good quality acquired by the Spanish Guardia Civil [Ramos
et al., 2008]. Recordings were done by SITEL, a nationwide digital interception system.
This system records digital wiretaps directly connected to all mobile telephone operators.
On this dataset, our SV system provided EER=2.85%, minimum DCF=0.14 and actual
DCF=2.96.

3.4.2.6 MOBIO

The MOBIO database [McCool et al., 2012] is a bi-modal (face/speaker) database collected
from August 2008 to July 2010 in six different sites from five different countries. This led
to a diverse database with both native and non-native English speakers. It consists of 152
people with a female-male ratio of nearly 1:2 (100 males and 52 females). In total 12 sessions
were captured for each individual.

The database was recorded using two types of mobile devices: mobile phones (NOKIA
N93i) and laptop computers (standard 2008 MacBook). The laptop computer was used to
capture only one session (the very first session) while all the other data was captured on
the mobile phone, including the first session.

The data collection was conducted in two phases: Phase I and Phase II. Each session of
Phase I consisted of 5 short response questions, 5 short free speech questions, 1 pre-defined
text, and 10 free speech questions. Phase II was made shorter and consisted of 5 short
response questions,1 pre-defined text, and 5 free speech questions. We experimented with
the evaluation protocol given in Phase II.

The speakers of the database are split up into three different sets: training, development
and evaluation set:

• Training set: The data of this set are used to learn the background parameters of the
algorithm (UBM, JFA, etc.). It can also be employed for score normalization (cohort,
etc.). We did not use this data in our experiments; our models were trained on NIST
SRE data only.

• Development set: This data is intended to choose meta-parameters or train calibration.
For the enrollment of a target model, 5 audio files of the target speaker are provided,
and it is forbidden to use the information of other speakers of the development set.
The remaining audio files serve as test files, and scores are computed between all the
test files and all the models. We use this data in Chapter 7 to train a Bayesian network
that predicts the reliability of SV decisions.

• Evaluation set: This data is used for the final evaluation of performance. We employed
this part to test reliability estimation models.

On the test set, our SV system performance was EER=12.37%, minimum DCF=0.57
and actual DCF=8.72.

3.5 Summary

In this part of the thesis, we intend to develop algorithms to estimate the reliability of
the decisions taken by speaker verification systems. The multiples causes that can degrade
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Table 3.3: Number of segments and trials of the reliability databases.

Database #models #tests #trials #tar trials #nontar trials

SRE08 clean 1206 1173 767874 1269 766605
SRE08 with noise 7236 7038 27643464 45684 27597780
SRE08 with reverb. 10854 10557 62197794 102789 62095005
SRE10 clean 580 712 30373 708 29665
SRE10 with noise 3480 4272 1093428 25488 1067940
SRE10 with reverb. 5220 6408 2460213 57348 2402865
AGN Bench. 116 523 60668 1046 59622
Ahumada IV 91 442 40222 442 39780
MOBIO Dev. 42 4410 94500 4410 90090
MOBIO Eval. 58 6090 193620 6090 187530

SV performance motivated this work. We commented previous approaches to the problem.
Some of those approaches are based on confidence measures computed from the distributions
of the SV scores; others use measures capturing information about the acoustic quality of
speech like SNR; and others try to combine both. The approaches that we investigated are
included in the third group.

We discussed some methods to compare the performance of different reliability detectors.
The first method consisted of computing misses, false alarm rates and DCF only with the
trials that are classified as reliable. We can plot curves of actual DCF against the reliability
detector threshold or against the number of trials discarded to compare systems. For the
second method, we quantized the score of the reliability detector and computed error rates
on the trials corresponding to each quantization level. Finally, we also proposed an extended
DCF that included the cost of rejecting trials whose SV decisions are correct. This cost is
interesting to select to operating of the reliability detector for a given application.

We also described the SV system whose reliability we are going to evaluate. It is a
state-of-the-art system based on i-vectors and PLDA. Finally, we explained the databases
that we used in our experiments: an artificial database with added noise and reverberation,
and three more realistic databases.



Chapter 4

Quality Measures of Speech

4.1 Introduction

In this chapter we describe the quality measures that we extracted from the trials segments.
These measures, on their own, do not provide information about whether the trial is target
or non target but they can help to estimate the reliability of the SV decision.

Sections 4.2 to 4.12 enumerate our measures giving a description of the algorithm to
compute them and showing proof of their correlation to SV performance. Our measure set
included modulation index, signal-to-noise ratio, number of speech frames, jitter, shimmer,
saturation detection, likelihood of the speech frames given the UBM model and given the
factor analysis model used to compute the i-vector, and likelihood of the i-vector given the
PLDA model. Besides, we present novel features obtained from the parameters needed to
adapt a clean GMM to a noisy signal by applying the vector Taylor series paradigm [Li
et al., 2009]. The correlation between measures and performance was studied based on
graphs depicting the SV score or the DCF against the value of the measure. In Section 4.13,
we present a method to combine quality measures by linear discriminant analysis for the
purpose of detecting noise and reverberation. In Section 4.14, we rank the quality measures
from the point of view of their relation to speaker verification performance. The most
promising measures were the VTS parameters, modulation index, SNR and UBM log-
likelihood. Finally, Section 4.15 summarizes the chapter.

4.2 Modulation Index

4.2.1 Description

The modulation index measures the amplitude variations of the speech signal. This measure
has been typically used in AM radio communications to indicate how much the modulation
varies around its unmodulated level. Figure 4.1 shows an example of an amplitude
modulated signal.

The modulation index at time t is calculated as

Indx(t) =
vmax(t)− vmin(t)

vmax(t) + vmin(t)
. (4.1)

where v(t) is the envelope of the signal and vmax(t) and vmin(t) are the local maximum and
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Indx = 0.5

vmax(t)

vmin(t)

Figure 4.1: Illustration of the envelope of a signal.

minimum of the envelope in the region close to time t. The envelope of a recording with
noise or reverberation has higher local minima and, therefore, lower modulation index.

Figure 4.2 depicts a block diagram of the algorithm that we used to compute the
modulation index of speech signals. The envelope was approximated by the absolute value
of the signal s(t) down-sampled to 60 Hz. The down-sampling was performed in two steps,
from 8 kHz to 200 Hz and then, to 60 Hz. Thus, we could use anti-aliasing filters of lower
order and assure their stability. They are second order IIR filters. Then, we searched the
peaks and valleys of the envelope and compute a value of modulation index per speech
frame. Finally, the index is averaged over all speech frames.

4.2.2 Correlation with SV performance

We experimented on NIST SRE10 with added noise and reverberation to quantify the
correlation between the modulation index and the SV performance. We restricted ourselves
to the case where the enrollment signal is clean and the test is degraded. Figure 4.3 shows
the relation between the target and non-target scores and the modulation index of the test
segment. To create this figure, we uniformly quantified the modulation index into 20 levels
and assigned each trials to its corresponding level according to the index of the test segment.
Then for each level, we computed the mean and standard deviation of the trial scores. The
filled dots indicate the score mean while the error bars are twice the standard deviation long.
The black lines show the linear regression between the scores and the modulation index.
The target scores were very correlated with the modulation index. They strongly dropped
for low index values. For additive noise, the relation between scores and modulation index
was approximately linear. Non-target scores for lower indexes were larger than for lower
indexes. However, the effect was not as pronounced as for the targets.

As the modulation index decreases the target and non-target score distributions become
closer, which directly deteriorates recognition performance as we can see in Figure 4.4. This
figure displays EER and minimum DCF against modulation index. This representation

Figure 4.2: Block diagram to compute the modulation index.
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Figure 4.3: Score range against modulation index for NIST SRE10 + additive noise (a)
and reverberation (b). Black lines plot the linear regression between score and modulation
index.

is based on the method to compare reliability detectors proposed in Section 3.3.3. We
quantized the modulation index and computed error rates for the trials lying in each
quantization level. In this case, we took non-uniform overlapped quantization levels. Each
level included 20% of the trials and there were a shift of 1% of the trials between levels.
Figures like this one allow us to analyze the goodness of the measure for speaker verification.
We conjectured that, to discriminate between reliable and unreliable trials, for certain values
of the measure we should observe very low error rate, and for others high error rate. With
this in mind, we can compare measures according to the minimum EER and according to
the difference between the maximum and minimum EER in the figure (∆EER). In the same
manner, we could compare DCF curves. Regarding the modulation index, ∆EER is around
20 for both noise and reverberation and the EER is lower than 4% for indexes close to 1.
For additive noise, error rates grow gradually as the index decreases. For reverberation,
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Figure 4.4: SV performance against modulation index.
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error rates grow rapidly at the beginning and then stabilize. We concluded that additive
noise affects similarly to modulation index and error rates while reverberation can affect
error rates without producing a significant reduction of the modulation index.

4.3 Signal-to-Noise Ratio

4.3.1 Description

The signal-to-noise ratio (SNR) is the ratio between the power of the speech signal and the
power of the background noise. Most methods to compute the SNR of speech are based on
measuring noise during silence intervals. This techniques rely on the assumption that noise
is stationary or varies slowly between silence intervals. This is a drawback because, in real
situations, we find signals where silence intervals are too few to follow the noise evolution or
they are too short for a good noise estimation. Instead, we proposed a method based on the
properties of the voiced speech intervals. The most part of the energy of voiced speech is
concentrated in multiples of its pitch frequency while the frequency distribution of additive
noise is more uniform. We estimated the clean signal and noise powers separately by filters
with comb like frequency responses. The proportion of voiced segments is large enough to
track the noise progress in a wide range of real applications and provide a frame by frame
quality measure.

Figure 4.5 depicts the block diagram of our algorithm. Two comb filters were employed,
Hs to estimate the clean signal and Hn to estimate the noise. Before Hn, if the modulation
index of the segment is over a threshold, the signal was filtered by a plainer version of its

Figure 4.5: Block diagram to compute the SNR.
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Figure 4.6: Comb filters frequency response.

LPC (Linear Prediction Coefficients) inverse filter. Thus, we further reduced the presence
of speech signal in the noise estimation. Due to the comb filters design, low frequency
noise (< 60 Hz) remains in the speech estimation while it is eliminated from the noise. We
solved this issue by a pair of complementary low and high pass filters (HLP and HHP. We
filtered the clean speech by HLP to measure the low frequency noise and we added it to the
noise estimation to obtain n̂. The high pass filter removes the low frequency noise from the
speech providing the final estimate ŝ. We computed SNR from ŝ and n̂. Finally, we applied
a smoothing procedure to obtain the SNR of the unvoiced segments and voiced segments
where the pitch measure was considered inaccurate. In the next sections, we explain the
blocks of the figure in more detail.

4.3.1.1 Comb filters

Comb filters have a periodic frequency response consisting of alternate pass and stop bands.
The filter Hs(z, t), that estimates the clean the speech, has pass bands in the multiples of
the pitch frequency nfp where the speech power is maximum and stop bands in (n+1/2)fp
where there is only noise. To estimate the noise, the filter Hn(z, t) has its bands inverted
with respect to Hs(z, t). To provide this kind of response, the filters add or subtract a
guess of the speech signal in the current instant inferred from the samples of adjacent pitch
periods. Thus, it produces constructive or destructive interference. We implemented non
causal IIR filters with the following transfer functions:

Hs(z, t) =
0.5zTp(t) + 1 + 0.5z−Tp(t)

1− αsz−Tp(t)
Hn(z, t) =

−0.5zTp(t) + 1− 0.5z−Tp(t)

1 + αnz−Tp(t)
(4.2)

where Tp(t) is the pitch period at time t and, αs and αn are coefficients that modify the
bandwidth of the filter. We empirically selected αs = 0.25 and αn = 0.7. As the pitch
period changes along the speech segment these are time varying filters. Figure 4.6 shows
their frequency responses.
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For this method to work, we needed a fine pitch estimation, an error of only one sample
in the pitch period degrades the performance. Our pitch estimator was based on the
RAPT algorithm [Talkin, 1995]. The maxima of the normalized autocorrelation of the LPC
prediction error are initial candidates for the pitch period. We feed them into a dynamic
programming algorithm that selects the best one.

4.3.1.2 LPC inverse filter

We must take into account that pitch estimators always produce some precision errors as
well as speech signals are not completely periodic. For these reasons, some residual speech
always remained present in the noise estimation from Hn leading to a sub-estimation of the
SNR. This effect was more significant in cases with high SNR (larger than 15 dB) when
the amount of noise in the noise estimation is smaller than the residue. The inverse LPC
filter A(z) matched to the input signal was included before Hn to reduce that residue. The
output of A(z) is the LPC prediction error where the speech formants are eliminated.

We noted that, sometimes, after adding inverse filter, the system over-estimated the
SNR. We concluded that it was because we estimated the LP coefficients from the noisy
signal, for very colored noises, the coefficients included also the spectral distribution of the
noise. Then, the inverse filter also reduced the amount of noise in the noise estimation. To
solve this issue, we decided not to apply A(z) to very noisy signals and to apply a flatter
version of it to cleaner signals. We made an a priori decision about the noise level based
on the modulation index. If the modulation index was larger than 0.7, we assumed that the
noise level was low and applied the filter A(z/γ) where

γ = (Indx− 0.7)/0.3 . (4.3)

The parameter γ flattens the filter when the modulation index is lower than 1. This methods
improved the SNR estimation for high SNR.

4.3.1.3 Low frequency noise compensation

As shown in Figure 4.6, the clean speech filter Hs has a maximum at 0 Hz. At that frequency
there is no speech ever, so, if there is low frequency noise like in cars or air conditioning,
it will be present in the clean signal estimation. Contrarily, the filter Hn has a minimum
at 0 Hz and the low frequency noise will not be included in the noise estimation. Thus,
we obtained an over-estimation of the power of the clean speech and sub-estimation of the
noise and, therefore, over-estimation of the SNR. To compensate that, we combined of a low
pass and a high pass filters. We passed the output of Hs through a high-pass filter HHP to
eliminate the low frequency noise from the clean speech estimation. Besides, the low-pass
filter HLP estimated the low frequency noise and we added it to the output of the filter Hn.
Both were second order IIR Butterworth filters designed to have a cut frequency of 60 Hz.
After these steps, we obtained the final estimations of the clean speech ŝ(n) and the noise
n̂(s).
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(b) Pink noise

−5 0 5 10 15 20 25 30 35
−5

0

5

10

15

20

25

30

True SNR (dB)

M
e
a
s
u
re

d
 S

N
R

 (
d
B

)

(c) Car noise
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Figure 4.7: True SNR against Measured SNR.

4.3.1.4 SNR estimation and smoothing

As first approximation to the SNR, we computed the ratio between the powers of ŝ(n) and
n̂(s):

CR = 10 log10

(

Pŝ

Pn̂

)

(dB) (4.4)

where CR stands for comb filters ratio. This ratio is affected by two factors. On the one
hand, the gains of the filters introduce a bias in the SNR. On the other hand, as previously
commented, there was a residual amount of speech in the noise estimation due to pitch
errors that leaded to over-estimate the noise power. In our experiments, we observed that
we can calibrate the CR by linear regression to obtain a good approximation of the SNR:

SNR = −1.68 + 1.26 CR (dB) . (4.5)

This algorithm allows us to compute the SNR for voiced segments. To obtain the SNR
for unvoiced segments we considered that they are short enough to suppose that noise does
not abruptly change along them. Thus, we can apply a smoothing procedure on the noise
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Figure 4.8: Score range against SNR for NIST SRE10 + additive noise (a) and reverberation
(b). Black lines plot the linear regression between score and SNR.

power. First, by combining the calibrated SNR and the power of the original signal Ps we
obtained the noise power for voiced segments:

P̂n = Ps − SNR− 10 log10

(

1 + 10−
SNR
10

)

(dB) . (4.6)

Then, P̂n is interpolated in the unvoiced segments and smoothed by using a one pole IIR
filter:

P̂ ′
n = (1− α)P̂n + αP̂ ′

n . (4.7)

We chose the filter coefficient to compensate the effect of pitch detection errors and yet, to
be able to track noise power changes (α = 0.95). Finally, the SNR was re-computed as:

SNR′ = Ps − P̂n + 10 log10

(

1− 10−
Ps−P̂ ′

n
10

)

(dB) . (4.8)

4.3.2 SNR estimation performance

We tuned the SNR estimator on the Albayzin database [Moreno et al., 1993]. Albayzin
is a Spanish spoken database designed for speech recognition. We used a sub-corpus of
the database composed by utterances from a set of 200 phonetically balanced sentences. 4
speakers utter the overall set and 160 speakers a subset of 25 sentences, which makes 4100
sentences. This is a clean database so we added noise to obtain average SNR of 0, 3, 5, 10,
20 and 30 dB. We tested 4 types of noises: white, pink, car and factory.

Figure 4.7 displays the relation between frame level measured and true SNR. We
quantized true SNR into levels separated by 5dB. Dots indicate the average SNR for each
quantization level and bars indicate the standard deviation. For white noise, we appreciate
a sub-estimation of the SNR from values starting at 10 dB, for pink noise at 20 dB, and
for car and factory noises at 25 dB. Nevertheless, car and factory noise over-estimated the
SNR for values around 0 dB. We tuned the algorithm to perform better for SNR lower than
10 dB because there was where the speaker verification accuracy dramatically dropped.
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Figure 4.9: SV performance against SNR.

4.3.3 Correlation with SV performance

Figure 4.8 relates target and non-target scores with the measured SNR of the test segment.
Similarly to what we saw for the modulation index, at low SNR target scores severely decay
while non-targets slightly ascend. Figure 4.9 shows EER and minimum DCF against SNR.
For NIST with additive noise, EER starts at 3.59% for 25 dB of SNR and increases rapidly
from 15 dB down. This indicates an evident correlation between SNR and performance.
For NIST with reverberation, EER starts at 4.90%, a higher value, and begins to rise at 23
dB. That means that reverberation can affect performance without having a great impact
in the SNR estimation. Compared to the modulation index, SNR presents higher minimum
EER and DCF and smaller difference between their maximum and minimum values. Thus
in theory, a classifier based on the modulation index should discriminate better between
reliable and unreliable trials.

4.4 Spectral Entropy

4.4.1 Description

Entropy is a measure related to the peakiness or flatness of a probability distribution.
The spectrum of a signal can be seen as the probability distribution that indicates which
frequencies have a larger probability of appearance. To make the spectrum to look like a
probability distribution we just need to normalize it to sum 1. Thus, the spectral entropy
for a frame t is computed as

H(t) = −
∑

ω

|X(ω, t)|2
∑

ω′ |X(ω′, t)|2
log

|X(ω, t)|2
∑

ω′ |X(ω′, t)|2
(4.9)

where |X(ω, t)|2 is the short term power spectrum of the signal. For our implementation,
we divided the frequency axis into 32 bins so the maximum entropy is 5. The entropy of
the segment was computed as the average over all speech frames. The idea of using the
entropy as quality measure relies in the assumption that a clean signal should have a more
organized spectrum, while a noisy signal should have a flatter spectrum.
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Figure 4.10: Score range against spectral entropy for NIST SRE10 + additive noise (a) and
reverberation (b). Black lines plot the linear regression between score and spectral entropy.

4.4.2 Correlation with SV performance

Figure 4.10 depicts the relation between the scores and the spectral entropy of the segment.
Figure 4.11 shows EER and minimum DCF against entropy. As expected, for higher entropy
the target non-target score distributions are closer and performance decreases. For additive
noise, target scores decrease linearly with entropy. Compared to SNR and modulation index,
the difference between minimum and maximum EER is much smaller (∆EER=11) so we
expect this feature to discriminate worse. For reverberation ∆EER is around 16 which leads
us to think that entropy will be more helpful for datasets with convolutional noise.
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Figure 4.11: SV performance against spectral entropy.
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4.5 Number of Speech Frames

4.5.1 Description

Having longer speech segments allows us to estimate better speaker models and therefore to
reach lower error rates. For example, in NIST SRE the core condition (5 min. vs. 5 min.)
has an EER around 2% while for the 10sec. vs. 10sec. condition it is around 12%. Thus,
we used the number of speech frames detected by our VAD [Ramirez et al., 2004] as quality
measure to predict performance.

4.5.2 Correlation with SV performance

Figure 4.12 presents target and non-target score distributions against the number of speech
frames of the test segment. Figure 4.13 shows EER and minimum DCF against the number
of frames. The core condition of NIST SRE10 is composed of 5 minutes segments, most of
them having more than 2000 speech frames. For reverberation, the curves are more or less
flat meaning that scores and performance do not depend on the number of frames–This is
true for this dataset because 2000 frames is usually enough to produce good performance.
On the contrary, for additive noise, target scores decays as the number of frames decreases
(Figure 4.12a). The decay was linear from 15000 frames down. EER rapidly increased
from 10000 frames down (Figure 4.13a). We observed ∆EER=13 which indicates that the
number of frames will discriminate between reliable and unreliable trials worse than SNR
and modulation index. This was a case where correlation did not mean causality. The error
rates did not increase because there were less speech frames. It was noise what, at the same
time, reduced the detected speech frames and worsened the performance.
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Figure 4.12: Score range against number of speech frames for NIST SRE10 + additive noise
(a) and reverberation (b). Black lines plot the linear regression between score and number
of speech frames.
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Figure 4.13: SV performance against number of speech frames.

4.6 UBM Log-Likelihood

4.6.1 Description

The Universal Background Model (UBM) is a GMM that represents the probability
distribution of the speech features of the development database. Speaker models are
adapted from this UBM. The UBM is usually trained on good quality databases so it
can be considered as the distribution of normal speech. The feature distribution of the
degraded signals will likely differ from the UBM what will lead to worse speaker models.
For example, if the distribution of the trial segments does not match the UBM, we will
compute inaccurate occupation probabilities for the UBM Gaussians. When we use those
occupation probabilities to compute the JFA sufficient statics we will obtain i-vectors whose
distribution do not match the PLDA model. For this reason, the likelihood of the utterance
given the UBM is a measure of speech degradation. This measure was first used in [Harriero
et al., 2009] with good results.

The log-likelihood of the utterance given the UBM normalized by the number of frames
is

lnP (X|m,Σ) =
1

T

T
∑

t=1

ln
K
∑

k=1

N (Xt|mk,Σk) (4.10)

where X = {X1,X2, . . . ,XT} is a sequence of features; N is the Gaussian distribution; mk

and Σk are the mean and covariance of the kth Gaussian; and m and Σ the set of means
and covariances of all the Gaussians.

4.6.2 Correlation with SV performance

Figure 4.14 shows the relation between the target and non-target scores and the UBM log-
likelihood of the segment. Figure 4.15 shows EER and minimum DCF against the UBM
log-likelihood. The figures for noise and reverberation are much closer than for the previous
quality measures. That could mean that the UBM may help to detect unreliable trials
independently of what is the type of degradation of the speech signal.



4.7 i-Vector Extractor Likelihood 65

−84 −82 −80 −78 −76 −74 −72 −70
−15

−10

−5

0

5

10

15
NIST with additive noise

UBM LLK

S
c
o
re

 

 

Target

Non−target

(a)

−84 −82 −80 −78 −76 −74 −72 −70
−15

−10

−5

0

5

10

15
NIST with reverberation

UBM LLK

S
c
o
re

 

 

(b)

Figure 4.14: Score range against the UBM LLk for NIST SRE10 + additive noise (a) and
reverberation (b). Black lines plot the linear regression between score and the UBM LLk.
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Figure 4.15: SV performance against the UBM LLk.

4.7 i-Vector Extractor Likelihood

4.7.1 Description

As explained in Section 2.4.4, the i-vector approach for speaker recognition [Dehak et al.,
2011b] assumes that the GMM super-vector mean M corresponding to a given utterance
can be written as

M = m+Tφ (4.11)

where m is the UBM means super-vector, T is a low-rank matrix and φ is a standard normal
distributed vector. φ is referred as i-vector in the literature. T defines the total variability
space, i.e. the directions in which we can move the UBM to adapt it to the utterance.

Using the same reasoning as for the likelihood of the UBM, degraded signals should fit
into this model worse than the signals that are similar to those of the development set. If
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Figure 4.16: Score range against the i-vector extractor LLk for NIST SRE10 + additive
noise (a) and reverberation (b). Black lines plot the linear regression between score and the
i-vector extractor LLk.

the variability directions given by T are not valid for the degraded signals we will obtain
less discriminative i-vectors. Thus, we proposed the log-likelihood of the utterance given
the i-vector extraction model as quality measure. This log-likelihood is given by

lnP (X|Z,m,Σ,T) = ln

∫

P (X|φ,Z,m,Σ,T)N (φ|0, I) dφ (4.12)

= lnP (X|Z,m,Σ)− 1

2
ln |L|+ 1

2
E [φ]T TTΣ−1F (4.13)

where

lnP (X|Z,m,Σ) = −1

2

K
∑

k=1

Nk ln |2πΣk| −
1

2
tr
(

Σ−1S
)

; (4.14)

Z are the Gaussian assignments of the feature vectors; Σ is a matrix with the covariances of
each Gaussian Σk in the diagonal; N, F and S are the sufficient statistics of the utterance
centered in the UBM. For each Gaussian, they are defined by

Nk =
T
∑

t=1

P (k|Xt) (4.15)

Fk =
T
∑

t=1

P (k|Xt) (Xt −mk) (4.16)

Sk =
T
∑

t=1

P (k|Xt) (Xt −mk)(Xt −mk)
T . (4.17)

Thus, F is a super-vector resulting of the concatenation of the Fk and S is a block diagonal
matrix whose diagonal is composed by concatenating Sk. E [φ] and L are the mean and
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Figure 4.17: SV performance against the i-vector extractor LLk.

precision of the posterior distribution of φ and are given by

L = I+
K
∑

k=1

NkT
T
kΣ

−1
k Tk (4.18)

E [φ] = L−1TTΣ−1F (4.19)

where Tk are the rows of T corresponding to the kth Gaussian.
We need to normalize the log-likelihood by the number of frames T to fairly compare

between different segments.

4.7.2 Correlation with SV performance

Figure 4.16 shows the relation between the target and non-target scores and the i-vector
extractor log-likelihood of the segment. Figure 4.17 shows EER and minimum DCF against
the log-likelihood. Comparing these figures with the ones corresponding to the UBM log-
likelihood (Figures 4.14 and 4.15), we appreciate that the figures are quite similar.

Note that the term lnP (X|Z,m,Σ) in Equation (4.13) is very close to the log-likelihood
of the UBM. Thus, this measure is approximately the log-likelihood of the UBM plus a
second term that accounts for the fact that the utterances GMM can only move in the
directions contained in T. According to the figures, we can say that this second term does
not have a great influence on the total likelihood. This measure does not add information
about the SV performance complementary to the UBM likelihood.

4.8 i-Vector Likelihood Given the PLDA Model

4.8.1 Description

The i-vectors distribution is generally modeled by a linear Gaussian generative model called
Probabilistic Linear Discriminant Analysis (PLDA). There are different flavor of PLDA that
are described in detail in Appendix C. The SV system used in our experiments was based on
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Figure 4.18: Score range against the i-vector LLk for NIST SRE10 + additive noise (a) and
reverberation (b). Black lines plot the linear regression between score and the i-vector LLk.

the simplified version of PLDA called two-covariance model or full-rank PLDA that writes
an i-vector φij of speaker i as:

φij = yi + ǫij. (4.20)

where ys is denoted as the speaker identity variable and ǫ is the channel offset. Between
different observations of the speaker, the identity variable remains constant while the channel
offset varies. The PLDA modelM is defined by the two following probability distributions:

P (y|M) = N
(

y|µ,B−1
)

(4.21)

P (φ|y,M) = N
(

φ|y,W−1
)

(4.22)

where N denotes a Gaussian distribution; µ is a speaker-independent mean; B−1 is the
between speaker covariance matrix and W−1 is the within speaker covariance matrix.

We proposed to use likelihood of the i-vector given the PLDA model as another quality
measure. For the two-covariance model, that is given by

P (φ|M) = N
(

φ|µ,B−1 +W−1
)

. (4.23)

As for the likelihood of the UBM, we expected i-vectors of degraded signals to produce lower
likelihoods than the i-vectors of clean signals.

4.8.2 Correlation with SV performance

Figure 4.18 plots target and non-target scores against the i-vector log-likelihood of the test
segment. Figure 4.19 shows EER and minimum DCF against the log-likelihood. The curves
indicate that the effect of additive noise on the likelihood is radically different to the one of
reverberation. While, for additive noise worse performance corresponds to lower values of
likelihood, for reverberation the opposite happens. That means that reverberation moves
the i-vector closer to the PLDA mean µ while additive noise moves it away. This behavior
makes difficult to apply this measure as performance predictor unless we know the distortion
type of the segments. By comparing with previous measures like SNR or modulation index,
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Figure 4.19: SV performance against the i-vector LLk.

we observe that minimum EER and DCF are noticeably higher so this measure cannot
indicate which trials are the best. Besides, the difference between maximum and minimum
error rates is smaller. In consequence, the PLDA likelihood will not be a good feature to
discriminate between reliable and unreliable trials by itself but, joined to others, it could
add some complementary information.

4.9 VTS Parameters

4.9.1 Description

Figure 4.20 depicts the general model for an acoustic environment with additive and
convolutive noise. The observed distorted speech signal y(m) is generated from the clean
speech signal x(m) according to

y(m) = x(m) ∗ h(m) + n(m) (4.24)

where n(m) is the noise signal and h(m) is the impulsional response of the channel.

Figure 4.20: Model for environment distortion.

The equivalent relation can be established in the spectral domain by applying the Fourier
transform,

|Y (f)| = |X(f)||H(f)|+ |N(f)| . (4.25)
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Mapping (4.25) to the cepstral domain we obtain this well established non-linear
distortion model:

y = x+ h+ g(x,h,n) (4.26)

g(x,h,n) = C ln
(

1 + exp
(

C−1 (n− x− h)
))

(4.27)

where C is the non-square discrete cosine transform (DCT) matrix used to compute the
MFCC and C−1 is its pseudo-inverse and; y, x, h and n are the vector valued distorted
speech, clean speech, channel and noise in the MFCC domain.

Several methods had been proposed to jointly compensate additive and convolutive
(JAC) distortions in speech recognition systems. One of the most successful approaches
was introduced in [Moreno et al., 1996], and is based on using vector Taylor series (VTS)
to approximate the non-linearity in (4.26) with a linear function. VTS makes analytically
tractable the problem of estimating the noise and channel distributions of the segment. In
that first work, the noise and channel means were used to compensate the MFCC features.
The work in [Acero et al., 2000], instead of trying to estimate the clean features, proposes to
adapt the GMM of the clean speech to the distorted space. This line of work was continued
in [Li et al., 2007,Li et al., 2009,Kalinli et al., 2009] reaching considerably better performance
than adapting the features. The approaches based on adapting the model succeed because
they modify the GMM variances the take into account the uncertainty about the noise
estimation while the approaches based on feature compensation just make point estimates
of the noise values.

The first order VTS expansion of (4.26) with respect to x, n and h around their mean
values is given by

y ≈ µx + µh + g(µx, µh, µn) +G(x− µx) +G(h− µh) + (I−G)(n− µn) (4.28)

where

∂y

∂x

∣

∣

∣

∣

µx,µh,µn

=
∂y

∂h

∣

∣

∣

∣

µx,µh,µn

= Cdiag

(

1

1 + exp (C−1(µn − µx − µh))

)

C−1 = G (4.29)

∂y

∂n

∣

∣

∣

∣

µx,µh,µn

= I−G . (4.30)

It is assumed that x is distributed as a GMM with mean µx = {µxk
}Kk=1 and covariance

Σx = {Σxk
}Kk=1; n is Gaussian distributed with mean µn and covariance Σn; h is constant

along the utterance with value µh; and x, n and h are statistically independent a priori.
Being x GMM distributed, it is more appropriate to apply a different expansion for each
component of the mixture. Then, if y belongs to the Gaussian k, we should write

y ≈ µxk
+ µh + g(µxk

, µh, µn) +Gk(x− µx) + (I−Gk)(n− µn) . (4.31)

From (4.31), deriving the mean and variances of the GMM in the distorted space is
straightforward. For the static MFCC, the mean vectors of the degraded GMM become

µyk
≈ µxk

+ µh + g(µxk
, µh, µn) (4.32)

and the covariance matrix

Σyk
≈ GkΣxk

GT
k + (I−Gk)Σn(I−Gk)

T (4.33)
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Figure 4.21: EER against VTS N and R measures.

For the means and variances corresponding to ∆ and ∆∆ the adaptation formulas are

µ∆yk
≈ Gkµ∆xk

+ (I−Gk)µ∆n (4.34)

µ∆∆yk
≈ Gkµ∆∆xk

+ (I−Gk)µ∆∆n (4.35)

Σ∆yk
≈ GkΣ∆xk

GT
k + (I−Gk)Σ∆n(I−Gk)

T (4.36)

Σ∆∆yk
≈ GkΣ∆∆xk

GT
k + (I−Gk)Σ∆∆n(I−Gk)

T . (4.37)

The GMM of clean speech is previously trained on a set of clean signals. Then, for each
degraded segment, the parameters µh, µn and Σn are estimated using an EM algorithm as
described in [Li et al., 2009]. µn and Σn are usually initialized with silence frames of the
utterance. The value of µh is initialized to zeros.

We proposed to use the static means of noise µn and channel µh as starting point to derive
some quality measures. We expected that µn could help to infer the effect of additive noise
on the SV performance and µh the effect of reverberation. To reduce the cost of computing
µn and µh, we employed a GMM smaller than the one of the SV system. Our clean GMM
was gender independent with 128 Gaussians and was trained on NIST SRE04–06.

The dimensionality of µn and µh is quite high so many pattern recognition techniques
will not handle well these features. We applied a post-processing step of dimensionality
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Figure 4.22: Score range against jitter for NIST SRE10 + additive noise (a) and
reverberation (b). Black lines plot the linear regression between score and jitter.

reduction to compress the information contained in them. First, we concatenated both
means µn and µh into one feature vector µ. Afterwards, we applied two linear projections
to µ based on linear discriminant analysis (LDA). The first projection AN was trained on
the dataset NIST SRE08 with additive noise where we took the SNR levels as the classes
to discriminate. The second projection AR was trained on NIST SRE08 with reverberation
by taking the different reverberation times as classes. We denote by VTS N the measures
with AN and by VTS R the ones obtained with AR.

[

VTS N
VTS R

]

=

[

AN

AR

] [

µh

µn

]

. (4.38)

We expected that VTS N will be correlated with the SV performance in the presence of
noise while VTS R will be useful in the presence of reverberation.

4.9.2 Correlation with SV performance

Figure 4.21 plots the first two coefficients of VTS N and VTS R against the EER. For
additive noise, curves evidence a correlation between N0, N1 and R0 and EER. Low values
of the features correspond to higher error rates. On the other hand R1 is completely
independent of the EER. Regarding the dataset with reverberation, we find that N0 and R0

are also clearly correlated with EER with low error rates for low values of the features and
vice versa. N1 and R1 are also rather correlated with error with high error rates for central
values and lower error rates for extreme values of the features. The minimum EER and
∆EER reached by N0 and R0 are comparable to those exhibited by the modulation index
that is one of the most promising features shown until now. In the following chapters, we
will expose that these measures were between the best performers distinguishing reliable
and unreliable trials with classifiers based on Bayesian networks.



4.10 Jitter 73

4.10 Jitter

4.10.1 Description

The jitter of the speech signal measures the cycle to cycle variation of the fundamental
frequency f0. It can be interpreted as a frequency modulation noise [Monzo et al., 2007].
We computed it by following the procedure described in [Monzo et al., 2008]. The pitch
frequency was obtained with the same pitch detector that we used to compute our SNR,
based on the RAPT algorithm [Talkin, 1995]. We used a logarithmic scale for the pitch that
maps from Hertz to semitones

f ′
0 = 12 log2 (f0/fref) (semitones) (4.39)

where fref is the average pitch frequency of the segment. The normalization relative to the
average frequency provides a better subjective representation of the frequency variations.

We compensated the effect of the sentence prosody on the pitch curve. With that purpose
we detected the increase and decrease intervals of f ′

0 by analyzing the slope. We subtracted
the result of applying linear regression to each interval from the original f ′

0. Finally, the
jitter of a frame i was computed from the compensated f ′

0 as

Ji =
1

Ni

Ni
∑

j=1

(

f ′
0i
(j + 1)− f ′

0i
(j)
)2

(4.40)

where Ni is the number of pitch cycles in the ith frame.

4.10.2 Correlation with SV performance

Figure 4.22 shows how score distributions evolve as a function of the test segment jitter.
Figure 4.23 displays EER and minimum DCF against the jitter. For both noise and
reverberation, the target distribution is more separated from the non-target one for higher
jitter values. Accordingly, EER and DCF are also better for higher jitter. However the
differences between low and high jitter are not as pronounced as for other measures. For
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Figure 4.23: SV performance against jitter.
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Figure 4.24: Score range against shimmer for NIST SRE10 + additive noise (a) and
reverberation (b). Black lines plot the linear regression between score and shimmer.

example, ∆EER is around 6–8 that is much lower than the 20 that we showed for the
modulation index. The minimum EER is also quite high (8–10%). Therefore, this measure
of its own will not accurately detect reliable trials. Nevertheless, added to other measures
could improve the performance of the reliability detector.

4.11 Shimmer

4.11.1 Description

The shimmer of a speech signal measures the cycle to cycle variation of the amplitude of
the waveform. It can be interpreted as a amplitude modulation noise [Monzo et al., 2007].
We computed it by following the procedure described in [Monzo et al., 2008]. We computed
the logarithm of the peak to peak amplitude for each period of f0 in the voiced frames. The
effect of the prosody was eliminated in the same manner described in Section 4.11.1 for the
jitter.

Finally, the shimmer of a frame i was computed as

Si =
1

Ni

Ni
∑

j=1

(

Appi(j + 1)− Appi(j)
)2

(4.41)

where Appi is the logarithm of the peak to peak amplitude with prosody compensation and
Ni is the number of pitch cycles in the ith frame.

4.11.2 Correlation with SV performance

Figure 4.24 displays the target and non-target scores distributions against the shimmer of
the segment. Figure 4.25 plots EER and minimum DCF against shimmer. Scores do not
evolve linearly with shimmer, especially for reverberation. Scores get closer for shimmer
around 0.15 and move away for lower and higher values. The performance in terms of EER
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Figure 4.25: SV performance against shimmer.

and DCF, for additive noise, is close to the one of jitter with similar minimum and ∆ values.
For reverberation, it performs poorly with a very high minimum EER (14%).

4.12 Saturation Detection

4.12.1 Description

Saturation generally occurs in systems where signals are converted from analog to digital.
The samples that overflow the dynamic range of the converter are saturated. The saturation
level depends on the number of bits of the converter. Saturation can considerably degrade
performance in speech and speaker recognition systems. We developed a saturation detector
that considers that the saturation level is unknown a priori. In essence, the saturation level
can be lower than maximum dynamic range of the file. This assumption is based on the
possibility that the signal can suffer different amplitude changes in the transmission channel
after it saturates. Besides, we would observe different positive and negative saturation levels
if we removed the DC-offset after saturation.

Figure 4.26 shows the block diagram that implements our saturation detector. The
algorithm was based on several measures. First, we considered that saturated samples
should have almost identical values close to the saturation levels. Therefore, frames having
a large number of local maxima of similar value are likely to be saturated. We clustered
together frames with similar local maxima. If a local maximum appears many times inside
a frame or in a cluster of frames we marked all the frames of that cluster as saturated.

Another indicator of saturation was based on the fact that standard speech samples
follow a Laplace distribution. That distribution changes for saturated speech because the
concentration of samples in the high part of the histogram grows. We measured the deviation
from normal speech by computing the ratio between the number of samples in the high and
low parts of the histogram.

Finally, saturation is a non-linear distortion and, as such, it makes new harmonics to
appear in high frequencies. We measured this effect with the ratio between the energy in
high frequency (3.5–4 kHz) and medium-high frequency (3–3.5 kHz).
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Figure 4.26: Block diagram of the saturation detector.

This three measures (number local maxima by frame, high/low histogram ratio and
high/medium-high energy ratio) were combined by an heuristic method to decide which
frames are saturated.

4.12.1.1 Local maxima by frame

Saturated samples are all clipped to values close to the saturation level. Thus, in saturated
signals we find many samples with almost identical values. Besides, those samples are local
maxima, that is, adjacent samples have smaller absolute values. We looked for frames having
a large number of those maxima and marked them as candidates to be saturated. We denote
by M the set of local maxima of the frame. We defined the set S1 of samples candidates to
be saturated as

S1 =

{

s(n) ∈M
∣

∣

∣

∣

max(M)− s(n)
max(M)

< ξcluster

}

(4.42)

where the threshold ξcluster was selected empirically. Additionally, we considered that
samples next to the saturated local maxima could also be saturated if their value were
close to the local maxima. We defined the set S2 of saturated candidates next to samples
in S1 as

S2 =

{

s(n)

∣

∣

∣

∣

∃x ∈ {s(n− 1), s(n+ 1)} ∩ S1,
x− s(n)

x
< δsat

}

. (4.43)

Finally, the candidates to be saturated samples are the ones that belong to the set
S = S1 ∪ S2. The number of elements of S, |S| is a measure of the degree of saturation of a
frame. We applied this procedure for negative and positive samples by separate because for
signals with had DC offset when they were saturated the positive and negative saturation
levels will be different.
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4.12.1.2 Frame clustering

In a complete signal, there are frames with a high number saturated samples and others
with one or two samples. If we just apply a threshold on |S| to decide whether a frame is
saturated, we will detect the formers but not the latter. To detect all the saturated frames
we clustered together all the frames with similar absolute maxima. From now on, we denote
by Si the samples candidates to be saturated in the frame Fi. We define n as the current
number of clusters. We define A as the set of frames that does not belong to any cluster Cj

with j = 1, . . . , n.

A = {Fi|Fi /∈ Cj, j = 1, . . . , n} . (4.44)

The frame clustering procedure is listed in Algorithm 1. It starts with zero clusters and all
the frames in A. While A is not empty, it selects the frame from A that has the largest
absolute maximum xn and it creates a cluster with all the frames with absolute maxima
close to xn.

Algorithm 1 Frame clustering algorithm.
n = 0
A = {Fi, ∀i}
while A 6= ∅ do

n = n+ 1
xn = maxi ({max(Si)|Fi ∈ A})
Cn =

{

Fi ∈ A|xn−max(Si)
xn

< ξcluster

}

A = A− Cn

end while

For every cluster, we calculated the total number of saturated candidates, the average
candidates by frame and the maximum candidates by frame:

sj =

∣

∣

∣

∣

∣

∣

⋃

Fi∈Cj

Si

∣

∣

∣

∣

∣

∣

(4.45)

mj =
sj
|Cj|

(4.46)

xj =max
i
{|Si| |Fi ∈ Cj} (4.47)

with j = 1, . . . , n.
Each cluster corresponding to one of the saturation levels presents a high sj value. We

took the N clusters with larger sj where N = 1 if there is one side of the conversation
in each channel and N = 2 if both sides of the conversation are summed into the same
channel. Then, we imposed a threshold to mj and xj to decide whether the cluster frames
were saturated.

4.12.1.3 High/Low histogram ratio

While the samples of normal speech follow a Laplace distribution, saturated speech
distributes concentrating a larger number of samples in high absolute values, see Figure 4.27.
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(a) (b)

Figure 4.27: Histograms of non saturated (a) and saturated (b) signals.

We measured this effect by calculating the ratio between the number of samples in the high
part of the histogram and in the low part of the histogram:

R(x) =

∫ max(|s|)

max(|s|)−x
f (|s|) ds

∫ x

0
f (|s|) ds

(4.48)

where x defines the range of values that we consider high and low.
Not all the files have the same optimum value for x. To avoid fixing the value of

x, we supposed that the optimum x has a probability distribution p(x) in the domain
[0,max(|s|)/2], and we computed the expectation of R:

R =

∫ max(|s|)/2

0

R(x)p(x) dx . (4.49)

We observed that results are not very dependent on the form of p(x). Finally, we chose a
triangular distributed p(x).

4.12.1.4 High/Medium-high energy ratio

When a signal is saturated it experiences a non-linear distortion. Non-linear distortions
move energy from some frequencies to others. Therefore, we could detect saturation by
searching for energy in frequencies where it should not be. In telephone speech, that is in
frequencies over 3.5 kHz. We computed the ratio between the energy in the interval 3.5-4
kHz and 3-3.5 kHz. This ratio should be higher for saturated speech than for non-saturated.
Figure 4.28 shows the comparison between the spectrum of a signal before and after applying
a strong saturation.

4.12.1.5 Decision

To decide if a frame is saturated we used a heuristic algorithm based on combining the all
three measures explained above. We decided that a frame was saturated if it belonged to
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Figure 4.28: Saturated vs. no saturated spectrum.

cluster marked as likely saturated and if the high/low histogram and high/medium-high
frequency ratios were over a threshold.

4.12.2 Correlation with SV performance

We saturated the test part of NIST SRE10 in different degrees as described in Section 3.4.2.3.
Figure 4.29 plots EER and minimum DCF against the detected percentage of saturated
frames in the test segment. A low percentage of saturation did not affect too much the error
rates. It was from 40% of saturated frames that the EER and DCF started to grow faster. A
frame was considered saturated with just one saturated sample. This results indicate that,
to note the effect of saturation on the MFCC, we need to have many saturated samples in
the frame. That only happens when we detect a high rate of saturated frames.
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Figure 4.29: SV performance against detected percentage of saturated frames.
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4.13 Combining Quality Measures

4.13.1 Description

We could combine the measures above described just by concatenating them into one feature
vector. However, high dimensionality vectors may not be appropriate as input for some
pattern recognition algorithms like models with Gaussian mixture distributions. In those
cases, some dimensionality reduction preprocessing is recommended. We applied the same
technique that we used in Section 4.9 to reduce the dimensionality of the VTS parameters.
We formed a feature vector x by concatenating: signal-to-noise ratio, modulation index,
entropy, UBM log-likelihood, VTS N0, VTS N1, jitter and shimmer. Then, we trained two
LDA projections on NIST SRE08, one BN to discriminate between noise levels and another
one BR to discriminate between reverberation times. We denote by N the feature resulting
by projecting x with BN and by R the one obtained by projecting with BR.

[

N
R

]

=

[

BN

BR

]

x . (4.50)

4.13.2 Correlation with SV performance

Figure 4.30 plots the first three coefficients of N and R against EER. Regarding the
dataset with additive noise, the figure proves that N0, N1 and R0 are very correlated
with performance. The difference between the EER at different values of the features
is significant. N0 and R0 present minimum EER and ∆EER comparable with those of
modulation index and VTS parameters. For N1, ∆EER is about 30% smaller. For values
of R1 under -1.5, (the most part of the curve), the error rate is constant; for values above
-1.5 the error rate decreases. N2 is independent of the error. Finally, R2 presents some
dependency but it is small compared to N0 and R0. Now, looking at the curves for
reverberation, we detect again an obvious relation between performance and N0 and R0.
N2 and R1 denote a mild dependency with EER but far from that of N0 and R0. The curves
for N1 and R2 are almost flat so we can deduce that they are independent of the EER.

4.14 Comparison of Quality Measures

In the following chapters, we will model the relation between the reliability of the speaker
verification decisions and the quality measures with Bayesian networks. We will compare
networks employing different quality measures and, thus, we will determine which ones
contain more information regarding speaker verification performance. However, the figures
presented in this chapter relating EER and DCF with each measure can provide some
insights about what we should expect. As we said in previous sections, a good quality
measure should be able to discriminate between the best and the worst trials. With this
in mind, we conjectured that a quality measure is good if some values of the measure
correspond to trials that are mostly well classified while other values always correspond to
trials badly classified. On the other hand, if the quality measure is bad the rate of miss
classified trials will be independent of the value of the measure. In other words, considering
the figures that plot EER against the value of the measure, a measure should be better than
others if it exhibits a larger difference between the highest and lowest error rate. Besides,
the measures with larger difference of error rates should present lower minimum error rates.
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Figure 4.30: EER against N and R measures.
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Table 4.1: Ranking of quality measures ordered by ∆EER

(a) Additive noise.

Rank Measure Min EER(%) ∆EER(%)

1 MI 2.91 19.96
2 VTS R0 2.72 17.86
3 VTS N0 2.64 17.67
4 R0 2.95 16.90
5 N0 3.08 16.89
6 SNR 3.59 15.24

7 # frames 4.87 13.11
8 UBM LLk 4.42 12.89
9 i-vector JFA LLk 4.77 11.96
10 N1 5.03 11.56
11 i-vector PLDA LLk 6.61 10.03
12 Entropy 4.21 11.34
13 VTS N1 5.23 9.68
14 R1 6.05 7.44
15 Shimmer 7.14 7.23
16 R2 6.96 5.97
17 Jitter 7.73 5.33
18 N2 8.75 3.63
19 VTS R1 9.54 2.88

(b) Reverberation.

Rank Measure Min EER(%) ∆EER(%)

1 MI 3.88 20.19
2 R0 4.39 19.64
3 UBM LLk 4.55 19.37
4 N0 4.45 18.79
5 i-vector JFA LLk 4.83 18.72
6 VTS R0 5.00 18.60
7 VTS N0 4.81 18.42
8 SNR 4.90 16.53
9 Entropy 6.09 15.92

10 i-vector PLDA LLk 10.02 10.04
11 Jitter 10.23 8.01
12 VTS R1 12.34 7.91
13 VTS N1 12.37 6.05
14 R1 13.09 5.64
15 N2 12.51 5.36
16 Shimmer 14.07 5.31
17 N1 13.95 3.86
18 # frames 13.62 3.47
19 R2 14.47 2.80

Table 4.1a orders the quality measures by EER difference (∆EER) for the dataset with
additive noise and Table 4.1b do it for the dataset with reverberation. The maximum ∆EER
for both noise and reverberation is around 20. We considered that the best measures are the
ones having ∆EER larger than 75% of the maximum (∆EER¿15). Thus, the best measure
for detecting performance degradation in the presence of additive noise are modulation
index, VTS N0, VTS R0, N0, R0 and signal-to-noise ratio. Regarding reverberation the
best ones are modulation index, R0, UBM log-likelihood, N0, the likelihood of the i-
vector extractor, VTS R0, VTS N0, signal-to-noise ratio and entropy. These measures
also have lower minimum error rates, they are lower than 3.6 for noise and lower than 6.1
for reverberation. The fact that minimum error rates are larger for reverberation than for
noise indicates that small reverberation affect performance but it is not detected by our
quality measures and only when the reverberation becomes larger the effect can be noted in
the measures. Looking at Table 3.2 EER under 6 correspond to reverberation times lower
than 75 msec. For additive noise, looking at Table 3.1 an EER under 3.6 corresponds to
clean and 20 dB trials.

Correlated measures are expected to provide similar reliability detection performance.
We computed the normalized cross correlation between measures for both datasets noisy and
reverberant. We found that modulation index, VTS N0, VTS R0, N0 and R0 are strongly
correlated (> 0.9). We found also some correlation (> 0.7) between those measures and
SNR and between UBM log-likelihood and entropy.

4.15 Summary

In this chapter, we described a set of quality measures that can be used to estimate the
reliability of the speaker verification decisions. Some of them have been previously used in
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other works: signal-to-noise ratio, spectral entropy, number of speech frames, log-likelihood
of the MFCC given the UBM, jitter and shimmer. The rest are novel contributions of this
thesis: likelihood of the features given i-vector extractor model, log-likelihood of the i-vector
given the PLDA model, VTS parameters, and saturation detection.

The algorithms to estimate SNR and saturation were developed as part of our work.
Our SNR estimator takes advantage of the properties of voiced speech. Energy of voiced
speech is contained in multiples of the pitch frequency. To estimate the speech power, a
comb filter samples the energy in the multiples of the pitch frequency. Another filter infers
the noise power by sampling in the frequencies between multiples. The ratio between both
energies is related to the SNR of the signal. Then, we applied an heuristic procedure to
calibrate that ratio into a good approximation of the SNR.

We designed a saturation detector that could be used in situations where the saturation
level is unknown. The algorithm is based on three measures. First, we look for local maxima
in the speech signal. If there are many local maxima with the same value it is probable
that the signal is saturated and that value correspond to the saturation level. Second, we
check whether the distribution of speech samples deviates from the Laplace distribution.
We do it by evaluating the ratio between the number of samples in high and low parts of
the histogram. And third, we took into account that saturation is a non-linear distortion so
it makes energy to appear in frequencies where there was not before. To quantify that, we
compute the ratio between the energy in high and medium-high frequencies. Finally these
three features are combined heuristically to decide which frames are saturated.

One of the more promising features where the ones that we called VTS parameters. The
non-linear effect of noise and reverberation on MFCC was approximated by a linear function
by applying vector Taylor series. That function allows us to compute the mean and variances
of a GMM for noisy speech from the GMM trained on clean speech. The Taylor series
coefficients depend on the mean and variances of the noise and channel in cepstral domain.
We estimated them for each segment by EM iterations. We derived quality measures by
reducing the dimensionality of the means of noise and channel with linear discriminant
analysis optimized to discriminate between noise and reverberation levels.

We also combined several measures by concatenating them and applying LDA projections
optimized to discriminate noise levels and reverberation times. We ranked our measures by
their ability to distinguish between groups of trials with low and high EER. These rankings
revealed that, for additive noise, modulation index, signal-to-noise ratio, VTS parameters
and the combination off all measures are better. And for reverberation, we have the same
as for noise adding the UBM log-likelihood and entropy.





Chapter 5

Reliability Estimation from the
Speaker Verification Score and
Quality Measures

5.1 Introduction

In the previous chapter, we presented some quality measures and proved that they are related
to the speaker verification performance. Now, we need some kind of mathematical model to
combine those measures into a unique value that expresses the reliability of each verification
decision. Previous works on this matter were already commented in Section 3.2 of Chapter 3.
In the present chapter, we revisit Richiardi’s approach [Richiardi et al., 2005, Richiardi
et al., 2006b] based on Bayesian networks (BN). The networks establish causal relationships
between the random variables involved in the speaker verification process (SV score, quality
measures, true trial label or trial decision, etc.). The trial reliability is one of those variables
and can take two possible values: true if the SV decision is right or false if it is wrong. The
BN facilitates computing the posterior probability for the reliability. The results shown
in [Richiardi et al., 2006a] indicate that BNs outperform previous techniques for estimating
the trial reliability.

In [Richiardi et al., 2006b], the authors only used SNR spectral entropy. Here, we extend
Richiardi’s work by introducing a wider set of measures. Besides, we compare some variants
of the BN configuration where we modify the dependencies between variables.

This chapter is organized as follows. Section 5.2 defines reliability and describes the
Bayesian networks for reliability estimation. The network is defined through its graphical
model and the conditional distribution of each node given its parents. We considered
several network variants: networks with or without the SV score; and networks with quality
measures dependent or independent on the trial label. Section 5.3 presents experiments on
NIST SRE with added noise and reverberation and other databases with real distortions.
From all the measures listed in the previous chapter, we show results with the ones that
performed better in combination with the BN. We obtained good results training the
networks on SRE08 and testing on SRE10 but those networks did not generalize well for
the rest of datasets. Finally, Section 5.4 summarizes the chapter.
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Figure 5.1: BN for reliability estimation based on score and quality measures.

5.2 Bayesian Networks for Reliability Estimation

5.2.1 Bayesian network description

To estimate a global measure of the trial reliability from the quality measures, we adopted
the approach introduced in [Richiardi et al., 2005, Richiardi et al., 2006a]. These works
model the relationships between the random variables involved in the verification process
with a Bayesian network (BN). A Bayesian network is a directed graphical model [Bishop,
2006] that describes the dependencies of a set of random variables.

Figure 5.1 shows the BN that illustrates our problem. Empty nodes denote hidden
variables, shaded nodes denote observed variables and small solid nodes denote deterministic
parameters. A node or group of nodes surrounded by a box, called a plate, labeled with N
indicates that there are N nodes of that kind (for example N trials). The arcs between the
nodes point from the parent variables to the children variables. The arcs directionality can
be interpreted as a cause-effect relationship, that is, the value of the children variables is
conditioned by the value of its parents. Finally, to have the network completely defined we
need the set of conditional probability distributions of each variable given its parents.

Following, we introduce the variables included in the graph. For each trial i, we have a
label θi ∈ {T ,N} where T is the hypothesis that the enrollment and test segments belong
to the same speaker and N that they belong to different speakers. πθ = (PT , PN ) is the
hypothesis prior where PT is the target prior and PN = 1−PT is the non-target prior. The
variable θ̂i is the SV decision after applying a threshold ξθ to score s.

θ̂i =

{

T if si ≥ ξθ
N if si < ξθ

(5.1)
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The variable Ri ∈ {R,U} is the trial reliability where R is the hypothesis that the
decision is reliable and U that it is unreliable. Reliability is defined as

Ri =

{

R if θ̂i = θi
U if θ̂i 6= θi

(5.2)

Finally, πR = (PR, PU) is the reliability prior where PR is the prior probability of reliable
decision and PU = 1−PR is the prior of non-reliable decision. θi and Ri are observed when
training the network and hidden during the evaluation phase.

The SV score si depends on the true label of the trial θi and on the reliability Ri through
a Gaussian conditional distribution

P (si|θi = θ, Ri = R) = N
(

si|µsθR ,Λ
−1
sθR

)

. (5.3)

The score dependence on θi is justified because if θi = T , si is expected to be high and if
θi = N , si is expected to be low. However, for target trials, si will be really high only if the
trial is reliable, otherwise si will be low. The contrary will happen for non-targets, if the
trial is reliable si will be low and it will be high otherwise. Because of that, we say that si
also depends on Ri.

The quality measures of the trial Qi also depend on θi and Ri and are modeled by a
mixture of Gaussians

P (Qi|θi = θ, Ri = R) =
K
∑

k=1

wkN
(

Qi|µQθRk
,Λ−1

QθRk

)

. (5.4)

We say that Qi depends on Ri because, for example, if a trial is unreliable due to noise in
the speech, that will be detected for the quality measure SNR. We also add an arc between
θ and Q because degradations can affect differently to target and non-target trials. For
example, a small amount of noise reduces much the score of the targets but it does not
increase the score of the non-targets.

We can write the joint probability distribution of the variables as a product of the
conditional distributions of the BN:

P
(

si,Qi, Ri, θi, θ̂i|πθ, πR
)

= P (si|Ri, θi)P (Qi|Ri, θi)P
(

θ̂i|θi, Ri

)

P (θi|πθ)P (Ri|πR) .
(5.5)

P
(

θ̂i|θi, Ri

)

is a discrete distribution that is 1 if θ̂i = θi and Ri = R or if θ̂i 6= θi and R = U
and it is 0 otherwise.

From (5.5), we can compute the posterior of R given the observed variables by applying
the Bayes rule:

P
(

Ri|si,Qi, θ̂i, πθ, πR

)

=

∑

θ∈{T ,N} P
(

si,Qi, Ri, θi, θ̂i|πθ, πR
)

∑

R∈{R,U}

∑

θ∈{T ,N} P
(

si,Qi, Ri, θi, θ̂i|πθ, πR
) . (5.6)

Before performing inference, we need to learn the parameters of the conditional
distributions that define the network. The training samples must consist of a set of
trials with different degradation levels. The labels θ of the training set are known, and
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Figure 5.2: BN with Q independent of θ.

as the decisions θ̂ are observed, the reliabilities R also become observed. As all the
variables are observed the distributions P (si|θi, Ri) can be trained by simple maximum
likelihood. For the distributions P (Qi|θi, Ri), that are GMM, the variables that indicate
the Gaussian occupations are still hidden. To train these GMM, we used standard EM
iterations [Dempster et al., 1977].

This model has some drawbacks coming from the fact that, to train the network, we
make hard decisions on the reliability variable of the training trials. First of all, the trial
classification, as reliable or unreliable, depends on the SV threshold. That implies that if
we change the operating point of the SV system the trials that are reliable or unreliable also
change and we need to retrain the network. Secondly, for example, if we have two target
trials with similar quality measures but with SV scores slightly under and over the threshold
respectively, intuitively both should be given the same degree of reliability, but instead, one
of them will be used to train the distributions conditioned on the reliable hypothesis and
the other to train the distribution conditioned on the unreliable hypothesis. Thus, similar
values of the measures are used to train opposite models what we think that damages the
discriminative capabilities of the BN. In the next chapter, we will present an alternative
model that overcomes these drawbacks and does not need to be retrained if we change the
operating point of the system.

5.2.2 Bayesian network variants

Our Bayesian network differs from that in [Richiardi et al., 2006a], shown in Figure 5.2, in
which ours adds a link from θ to Q. In this manner, our BN takes into account that speech
degradations can affect differently to targets and non-target trials while the other does not.
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Figure 5.3: BN for reliability estimation based only on quality measures.

In Section 5.3, we show results comparing both BN configurations. The joint probability
distribution of the BN with Q conditionally independent from θ is simplified as

P
(

s,Q, R, θ, θ̂|πθ, πR
)

= P (s|R, θ)P (Q|R)P
(

θ̂|θ, R
)

P (θ|πθ)P (R|πR) (5.7)

where

P (Qi|θi = θ, Ri = R) =
K
∑

k=1

wkN
(

Qi|µQRk
,Λ−1

QRk

)

. (5.8)

We just need to plug (5.7) into (5.6) to compute the reliability.
Previous models estimate the reliability given the score and quality measures. However,

we also would like to assess the ability of the quality measures to estimate the reliability on
their own without using the score. For that, we removed the score s from the network as
shown in Figure 5.3. The joint distribution of this network is the same as in (5.5) and (5.7)
removing the term P (s|R, θ).

5.3 Experiments

5.3.1 Experiments on NIST SRE with noise added

For the experiments in this section, we used data from NIST SRE with noise added as
described in Section 3.4.2.1 of Chapter 3. This dataset has two trial lists: NIST SRE08
to train the reliability detection model and NIST SRE10 for evaluation. SV scores were
computed used with system described in Section 3.4.1. If we pool all the noisy and clean
trials of NIST SRE10 (all possible combinations of enrollment and test SNR), we obtain
minimum DCF=0.99 and actual DCF=2.96. Our goal was to discard the unreliable trials
in order to make the actual DCF lower than 1.0 while keeping fix the threshold that we set
based on clean trials.

We start comparing different configurations of the Bayesian networks. Figure 5.4
compares the case where the reliability posterior is computed given the SV score and the
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(a) Signal-to-noise ratio.
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(b) Modulation index.

Figure 5.4: % Discarded trials vs. actDCF for different BN configurations.

quality measures, with the case where it is computed given the quality measures only. It
also compares the case where the measures conditionally dependent of the label θ against
the case they are independent. The figure plots the actual DCF against the percentage of
discarded trials. The actual DCF was computed as described in Section 3.3.2, that is, we
computed the DCF by taking into account only the trials classified as reliable. To plot these
curves we put a varying threshold on the reliability posterior given by the network and, for
each threshold, we computed the DCF and the percentage of discarded trials. The lower
and steepy the curves are, the better. That means that we remove the worst trials first.
When the curves stop descending and rise again, it means that the reliability detector is
starting to discard trials that were correctly classified.

For this comparison we used networks based on two quality measures: signal-to-noise
ratio and modulation index. We observe that all the networks behave similarly while
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Figure 5.5: % Discarded trials vs. actDCF for NIST SRE10 + noise using several quality
measures.
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Table 5.1: % Discarded trials vs. actDCF for NIST SRE10 + noise

Q K
% Discarded Trials
25 50 75

SNR 2 0.79 0.53 0.55
MI 2 0.82 0.57 0.52
VTS N0 4 0.76 0.45 0.51
FCov VTS N0−1 4 0.81 0.43 0.48
FCov VTS NR0 4 0.76 0.46 0.48

FCov SNR MI H UBM-LLk 8 0.90 0.55 0.53
FCov All 8 1.04 0.53 0.44
FCov N0−1 4 0.81 0.49 0.53
NR0−1 4 0.98 0.44 0.37
FCov NR0−1 4 0.92 0.50 0.54

removing the first 25% of trials. Those trials correspond to the ones with the lowest SNR
pairs. In this point, the DCF dramatically improves from 2.96 to 0.80. From there, if
we continue removing trials we observe differences between the curves. In general, the
networks only based on quality measures perform worse than the networks based on score
and measures. Only for the SNR and discarding more than 80% of the trials, the network
with only measures is better. Comparing the curves from BN with measures conditionally
dependent and independent of θ we find that, most of the time, the former are under the
latter. However, if we were willing to discard more than 75% of the trials, we could achieve
lower DCF with the network with SV scores and measures independent of θ. In most
applications, we probably do not want to discard so many trials so we prefer the model with
quality measures dependent on θ. From now on, we will show results only with that model.

Figure 5.5 and Table 5.1 compare the costs that we obtained by putting into the networks
several quality measures from those described in Chapter 4. We divided the figure and the
table into two parts: one where each BN only uses one quality measure (5.5a) and another
where the BN combines several quality measures (5.5b). We tried more measures than
those shown here. However for the sake of clarity, we only present the ones that yielded
better performance. Following, we sum up the notation used for the measures. Signal-
to-noise ratio is denoted by SNR, modulation index by MI, entropy by H and UBM log-
likelihood by UBM-LLk. The term VTS N refers to the VTS coefficients with LDA trained
to discriminate between different levels of SNR and, VTS R is the same but with LDA
trained to discriminate between reverberation times. The numbers behind N or R indicate
the output dimension of the LDA projection, for example N0−1 means that we keep the first
two coefficients. When we write VTS NR, we mean that we concatenate the both LDA
projections, the one for noise and the one for reverberation. When we say that we used
All the measures we mean: SNR, MI, H, UBM-LLk, VTS NR0, jitter and shimmer. In the
same way as for the VTS parameters, the terms N , R and NR refer to LDA projections of
All the quality measures to discriminate noise or/and reverberation times. We denote by
FCov the networks that used full-covariance matrices for the mixtures P (Q|R, θ), otherwise
diagonal covariances were used. The table also shows the best number of components K of
the mixtures for each quality measure. The performance of all the represented measures was
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Figure 5.6: % Discarded trials vs. actDCF for NIST SRE10 + reverberation using several
quality measures.

quite similar. The best results were for the VTS based measures and All LDA projected.

5.3.2 Experiments on NIST SRE with reverberation added

We also experimented on NIST SRE with reverberation added as described in Section 3.4.2.2.
As in the previous section, trials created from NIST SRE08 were used to train the network
and NIST SRE10 for evaluation. If we pool the NIST SRE10 trials with all possible
reverberant conditions (all possible enrollment reverberation times against all the test
reverberation times) our SV system obtains minimum DCF=0.99 and actual DCF=4.5.

Figure 5.6 and Table 5.2 display costs against percentage of trials discarded for BN
using different measures. Subfigure 5.6a refers to networks using only one quality measure
and Subfigure 5.6b to networks combining several measures. We only plot curves for the
measures of Chapter 4 attaining lower costs. For the first 40% of discarded trials all measures
performed the same, from there, we observe differences. The best results were achieved by

Table 5.2: % Discarded trials vs. actDCF for NIST SRE10 + reverberation

Q K
% Discarded Trials
25 50 75

UBM-LLk 1 2.67 0.74 0.43
VTS R0 1 2.67 0.92 0.94
FCov VTS R0−1 2 2.70 0.87 0.65
FCov VTS NR0−1 2 2.70 0.90 0.65

FCov SNR MI H UBM-LLk 4 2.69 0.69 0.41
FCov All 8 2.71 0.65 0.33
FCov R0−1 4 2.69 0.74 0.42
FCov NR0−1 4 2.68 0.70 0.34
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Figure 5.7: % Discarded trials vs. actDCF for NIST SRE10 + noise and reverberation using
several quality measures.

combining All the measures and with their LDA projection NR0−1. Both curves are very
close. After that, we find the UBM-LLk, the combination of SNR, MI, H and UBM-LLk; and
the LDA projection R0−1. Further, we have the LDA projections from the VTS parameters
VTS R0−1 and VTS NR0−1. The measure VTS R0 performed badly, we needed to keep two
dimensions of the projection to obtain good performance. The rest of measures tried but
not shown here yielded worse results.

5.3.3 Experiments on NIST SRE with noise and reverberation
added

Here, we pool the noisy and reverberant NIST SRE trial lists. We trained the BN with
pooled NIST SRE08 and test on NIST SRE10. With this experiment, we intended to find

Table 5.3: % Discarded trials vs. actDCF for NIST SRE10 + noise and reverberation

Q K
% Discarded Trials
25 50 75

MI 4 2.15 0.89 1.00
UBM-LLk 1 2.13 0.82 0.68
FCov VTS N0−1 4 2.15 0.94 0.83
FCov VTS R0−1 2 2.15 0.89 0.95
FCov VTS NR0−1 4 2.15 0.85 0.63

FCov SNR MI H UBM-LLk 4 2.14 0.68 0.40
FCov All 8 2.17 0.67 0.32
FCov N0−1 8 2.14 0.79 0.92
FCov R0−1 8 2.11 0.74 0.58
FCov NR0−1 8 2.14 0.60 0.26
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(a) Agnitio Benchmark.
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(b) Ahumada.

Figure 5.8: % Discarded trials vs. actDCF for Agnitio Benchmark and Ahumada datasets.

out if the network can cope with two types of degradations at the same time.
Figure 5.7 and Table 5.3 display costs against percentage of discarded trials for BN using

different measures. Subfigure 5.7a refers to networks using only one quality measure and
Subfigure 5.7b to networks combining several measures. Approximately, while discarding
less than 35% of the trials all the BN behaved similarly. After that, we found that the
best results were obtained by combining several measures. The best one was the projection
NR0−1 from All the measures. It was followed by the concatenation of All the measures
without LDA; and after that, the combination of SNR, MI, H and UBM-LLk. The best
single feature was the LDA projection from VTS parameters VTS NR0−1. The rest of
measures shown were clearly worse. Results prove that we can use this type of networks to
deal with different types of degradation.

5.3.4 Experiments on databases with real distortions

Finally, we experimented on databases with real distortions. We used the datasets Agnitio
benchmark and Ahumada described in Sections 3.4.2.4 and 3.4.2.5. Getting access to large
datasets with real distortions (noise, reverberation, etc) to train the reliability models is
difficult. The aim of this experiments was to find out if we can use a BN trained on an
artificially degraded dataset to detect unreliable trials on real databases. Thus, we trained
the BN on NIST SRE08 with noise and reverberation added and we evaluated the model

Table 5.4: % Discarded trials vs. actDCF for Agnitio Benchmark and Ahumada.

(a) Agnitio Benchmark.

Q
% Discarded Trials
25 50 75

FCov VTS NR0−1 0.13 0.09 0.00
FCov SNR MI H UBM-LLk 0.72 0.68 0.81
FCov All 1.43 1.68 2.35
FCov NR0−1 0.87 0.81 0.86

(b) Ahumada.

Q
% Discarded Trials
25 50 75

FCov VTS NR0−1 0.72 0.17 0.24
FCov SNR MI H UBM-LLk 1.27 0.62 0.46
FCov All 3.53 4.66 6.95
FCov NR0−1 2.17 2.14 2.63



5.4 Summary 95

on Agnitio benchmark and Ahumada.
Figure 5.8a and Table 5.4a shows actual costs against percentage of discarded trials for

Agnitio Benchmark. Figure 5.8b and Table 5.4b shows costs for Ahumada. In the previous
sections, we only showed results with the quality measures that obtained the lowest costs on
the evaluation set. Here, instead of that we show results with the measures that obtained
the best results on NIST SRE10 + noise and reverberation. In most real scenarios, we are
not going to count with a labeled dataset that allows us to choose the best measure. Thus,
we think that it is more realistic to use the artificial dataset to choose the quality measure
that we are going to use in our BN and to tune hyper-parameters like the optimum number
of components of the GMM, etc. We discovered that some of the measures that performed
well on NIST SRE10 performed poorly on these databases. The VTS NR0−1 is the only one
that provides low costs while discarding a low number of trials (20–30%). The combination
of SNR, MI, H, and UBM-LLk also performed quite well on Ahumada but not so well on
Agnitio Benchmark where the lowest cost that it reached was 0.65. The combination of all
the measures performed very bad making the cost to grow rapidly.

5.4 Summary

In this chapter, we revisited the work in [Richiardi et al., 2006a] about reliability estimation
with Bayesian networks. We gave the mathematical foundations of the method and
experimented on artificial and real databases. We trained our model on NIST SRE08
with noise and reverberation added and evaluated it on NIST SRE10 also with noise
and reverberation, Agnitio benchmark and Ahumada. BN performance was measured by
comparing the reduction of actual cost as we discard trials classified as unreliable.

We tried several configurations of the BN by altering the dependencies of the conditional
distributions that define the network. In general, the best results were achieved by
computing the reliability posterior based on the speaker verification score and the quality
measures where the distribution of quality measures was assumed conditionally dependent
on the trial label. Hence, we deduced that signal quality degradations affects differently to
target and non-target trials. That means that the amount of noise needed to make a target
trial unreliable is different than for a non-target.

We experimented with the quality measures described in Chapter 4 one by one and
with several combinations of measures. We showed results with the ones that performed
better. Most of those measures had not been evaluated before as inputs of this type of
Bayesian network. Signal-to-noise ratio and modulation index were good measures for
the dataset contaminated with noise and the UBM log-likelihood for the dataset with
reverberation. The measures based on LDA dimensionality reduction of the VTS parameters
(VTS NR0−1) also performed well for both types of degradation. The BNs that combined
multiple features also attained good performance. The combination of All the measures and
its LDA dimensionality reduction (NR0−1) were the best ones.

We evaluated the generalization capability of the method by training the BN on a
synthetic dataset and evaluating in real datasets like Agnitio benchmark and Ahumada.
Results evidenced that the quality measures that performed best on the synthetic dataset
performed poorly or even made the cost grow over the original cost. Only the measure based
the VTS parameters (VTS NR0−1) performed well.





Chapter 6

Reliability Estimation by Modeling
the Variability of the Speaker
Verification Score in Adverse
Environments

6.1 Introduction

In this chapter, we continue working on methods to estimate the reliability of the speaker
verification decisions from a set of quality measures. The model that we considered in the
previous chapter has several drawbacks, as we pointed out. Its main defect is that the trials
considered reliable and unreliable change depending on the operating point of the speaker
verification system. The operating point of the system is defined by the prior probability
of finding a target trial. In practice, this affects to the selection of the SV threshold, a low
prior implies a high threshold and vice versa. Thus, if we move the operating point the SV
decisions change and, consequently, the trial reliability. In that event, we need to re-train
our model.

Intending to overcome those problems, we propose to model SV scores and quality
measures with a novel Bayesian network configured in a different manner. This BN does
not, explicitly, contain a variable to indicate if the trial is reliable or not. Instead, we added
a hidden variable meaning the score that the SV system would produce if the trial were
not affected by any degradation. We called this variable clean score. Our BN models how
the SV score deviates from the clean score for different types of distortions. The type of
distortion of the was another hidden variable, which we called the quality state. Given the
SV score and the quality measures, the BN allows to infer a posterior distribution for the
hidden score and from it, we can decide about the trial reliability.

This chapter is organized as follows. Section 6.2 introduces our new Bayesian network
that models variations of the score distributions on distorted trials. The network relates
all the variables involved in the trial, i.e., the clean and noisy scores, the quality state, the
quality measures and the trial label. For a given value of the quality state, we will observe
a different distribution of quality measures and a different variation of the noisy score with
respect to the clean score. This variation will also depend on whether the trial is target or
non-target. Section 6.3 defines the concept of reliability in this new context. The reliability
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posterior is the probability for the SV score to be over or under the threshold–depending on
whether the trial was classified as target or non-target–, which is computed by integrating the
posterior of the clean score. Section 6.4 explains how to compute the posterior distribution
of the hidden score. Depending on which variables are hidden or observed, we distinguish
several cases. The general case corresponds to a common trial, where both trial label and
the type of distortions are unknown. Even in this case the posterior can be expressed
in closed form. Section 6.5 shows how to employ our Bayesian network to compute an
improved speaker verification likelihood ratio that intends to be a better approximation to
the ideal score. This ratio is based on the target posterior given the observed score and
the quality measures. It does not depend on the clean score or the quality state that are
effectively integrated out. In Section 6.6, we present expectation maximization algorithms
to train the parameters of the network. We considered three flavors depending on which
variables are observed during the training phase. In the general case, the clean score and
the distortion level are hidden. However, for databases with artificial distortions where we
have clean and distorted versions of the same trial, we can assume the clean score as known.
Furthermore, in and artificial dataset we probably know the type of distortion. Then, all
variables are observed and training the network is trivial. In Section 6.7, we show the results
of our experiments. We experimented on NIST SRE with noise and reverberation, Agnitio
benchmark and Ahumada. We did two types of experiments: reliability detection and LLR
improvement. The reliability detection consisted in rejecting unreliable trials so that the
rest of trials provide low error rates. We used the best results in the previous chapter as
baseline. We will see that, in most cases, the new network outperforms the baseline. Again,
VTS parameters, modulation index and UBM log-likelihood were good quality measures.
Besides, the new network generalizes better for the non NIST databases. Regarding the
LLR improvement experiments, we computed error rates on the improved LLR without
rejecting trials. We will see that it dramatically improved actual costs. Finally, Section 6.8
summarizes the conclusions of the chapter.

6.2 Bayesian Network to Model the Score Variability

in Adverse Environments

The speaker verification score is usually a log-likelihood ratio between the probabilities of
the trial data given the target and non-target hypothesis. As such, it gives an idea of how
much the enrollment and test segments are alike. If the score is very high, it provides a large
confidence that both segments have been uttered by the same person; and vice versa, if it is
very low, we can be quite sure that both segments belong to different speakers. When the
enrollment or test segments are recorded in environments that degrade the quality of the
speech signal the score also degrades and loses its capacity to discriminate between target
and non-targets.

We thought that counting with a method to model how the SV scores mutate when
the speech is affected by different types of distortions would be very valuable. One
of the applications of such model would be to recover a non-degraded version of the
speaker verification score. For that purpose, we defined the Bayesian network illustrated
by the graphical model in Figure 6.1. We remember that empty nodes denote hidden
variables, shaded nodes denote observed variables and small solid nodes denote deterministic
parameters. The plate surrounding the nodes indicates that we consider N trials.
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Figure 6.1: BN to model SV score variations in adverse environments.

Following, we explain the variables included in the graph. For each trial i, we have the
corresponding score ŝi provided by the speaker verification system. We will refer to this
score as observed score or noisy score.

The trial label θi ∈ {T ,N} where T is the hypothesis that the enrollment and the test
segments belong to the same speaker; and N the hypothesis that they belong to different
speakers. It is observed in the training phase and hidden in the test phase. πθ = (PT , PN ) is
the hypothesis prior where PT is the target prior and PN = 1− PT is the non-target prior.

We denote by si a hypothetical score that we would obtain if the trial were not affected by
any source of degradation. In the general case, si is hidden. However, if we train the BN with
a high quality database that we have degraded artificially (adding noise or reverberation),
we can know which clean trial corresponds to each degraded trial. In this case si could be
taken as observed and that makes the estimation of the parameters of the network simpler.
We will refer to this score as hidden score or clean score. We put a Gaussian prior on si
conditioned on the label θi:

P (si|θi = θ) = N
(

si|µsθ ,Λ
−1
sθ

)

. (6.1)

There are two Gaussian distributions, one for the target hypothesis and another for the
non-target.

The relation between si and ŝi was assumed linear:

ŝi = si +∆si (6.2)

where ∆si is described by a Gaussian conditional distribution as defined below.
The variable zi is called the quality state. It is a 1-of-K binary vector with elements zik

for k = 1, . . . , K. It represents the different types and/or levels of degradation that the trial
could suffer. For example, it could correspond to signal-to-noise ratio levels. If we supposed
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that our recordings can have 6 different SNR of enrollment and test, the variable zi could
take 36 different values. We can write the prior distribution of z as

P (zi) =
K
∏

k=1

πzik
zk

(6.3)

where the weights πz represent the prior probabilities for each degradation type.
The distribution of ∆s is conditioned on zi and θi so

P (ŝi|si, zik = 1, θi = θ) = N
(

ŝi|si + µ∆skθ ,Λ
−1
∆skθ

)

. (6.4)

There are 2×K different distributions, one for each pair of values of zi and θi.
The observed quality measures are denoted by Qip with p = 1, . . . , P . We have assumed

a very general model where the subscript p divides the quality measures into groups of
measures that are supposed to be independent between them given zi. In this way, we
can force independence between variables that we think that should not be correlated. We
define the set Qi = {Qip}Pp=1. Then, the distribution of Qi conditioned on the quality state
zk is a block diagonal Gaussian:

P (Qi|zik = 1) =
P
∏

p=1

N
(

Qip|µQpk
,Λ−1

Qpk

)

. (6.5)

Finally, we denote by M the set of all the model parameters, M =
(

µs,Λs, µ∆s,Λ∆s, µQp ,ΛQp , πz
)

.
Even though, the scores si and ŝi are unidimensional, we denoted them in boldface, as

vectors, because this model could be generalized to the case where we have several speaker
verification systems. In that case, they would be vectors and we could do score fusion with
the help of the network. However, in this thesis, all the experiments were performed with
only one speaker verification system.

6.3 Reliability Definition

In the BN of the previous chapter, the trial reliability was a variable that was part of the
Bayesian network. In the new BN, we exchange the reliability for the hidden score. Now,
we are going to define the reliability concept in this new context.

In a traditional speaker verification system, the decision θ̂ is taken by thresholding the
SV score ŝ as

θ̂ =

{

T if ŝ ≥ ξθ
N if ŝ < ξθ

(6.6)

where ξθ is the decision threshold. From now on, we will omit the subscript i in the variables
when the equations refer to only one trial.

To know if that decision is reliable, first, we used the Bayesian network to compute
the posterior distribution of the clean score s given the observed score and the quality
measures P (s|ŝ,Q) (We omit the rest of dependencies in the distribution to keep the
notation uncluttered). Then, we defined the probability of reliable decision as

P (R = R|ŝ,Q) =

{

P (s > ξθ|ŝ,Q) if θ̂ = T
P (s < ξθ|ŝ,Q) if θ̂ = N (6.7)
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where

P (s > ξθ|ŝ,Q) =

∫ ∞

ξθ

P (s|ŝ,Q) ds (6.8)

P (s < ξθ|ŝ,Q) =

∫ ξθ

−∞

P (s|ŝ,Q) ds . (6.9)

This definition of reliability is based on checking the coherence between the decision taken
from the observed score and the decision that we would take from the posterior of the hidden
score.

Finally, we decided if the trial is reliable R or unreliable U by thresholding the reliability
posterior

R̂ =

{

R if P (R = R|ŝ,Q) ≥ ξR
U if P (R = R|ŝ,Q) < ξR

(6.10)

where ξR is the reliability threshold.

6.4 Posterior Distribution of the Hidden Score

6.4.1 General case

According to (6.7), to compute the reliability posterior we need the posterior of the hidden
score. In the general case, with θ and z hidden, the posterior of s is a mixture of Gaussians:

P (s|ŝ,Q) =
∑

θ∈{T ,N}

K
∑

k=1

P (θ, zk = 1|ŝ,Q)N
(

s|µ′
skθ
,Λ′−1

skθ

)

(6.11)

where

Λ′
skθ

=Λ∆skθ +Λsθ (6.12)

µ′
skθ

=Λ′−1
skθ

(Λ∆skθ (ŝ− µ∆skθ) +Λsθµsθ) . (6.13)

The weights of the mixture are given by

P (θ, zk = 1|ŝ,Q) =
P (ŝ|θ, zk = 1)P (Q|zk = 1)P (θ) πzk

∑

θ∈{T ,N}

∑K
k=1 P (ŝ|θ, zk = 1)P (Q|zk = 1)P (θ) πzk

(6.14)

where we need to evaluate the distribution of the observed score given the pair (θ, zk = 1).
It can be proven that is Gaussian:

P (ŝ|θ, zk = 1) =N
(

ŝ|µ′
ŝkθ
,Λ′−1

ŝkθ

)

(6.15)

with

Λ′
ŝkθ

=ΛsθΛ
′−1
skθ

Λ∆skθ =
(

Λ−1
sθ

+Λ−1
∆skθ

)−1
(6.16)

µ′
ŝkθ

=µsθ + µ∆skθ . (6.17)

Derivations for these equations can be found in Appendix B.
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(a) θ and z observed.
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ŝi zi
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µsΛs

µ∆sΛ∆s

N

(b) θ hidden and z observed.

Figure 6.2: Particular cases of BN to model SV score variations.

Then, we obtained the probability of reliable trial with (6.11), (6.7) and the formula for
integral of the univariate Gaussian:

P (R = R|ŝ,Q) =































1
2
− 1

2

∑

θ∈{T ,N}

∑K
k=1 P (θ, zk = 1|ŝ,Q) erf

(

√

Λ′
skθ

2

(

ξθ − µ′
skθ

)

)

if θ̂ = T
1
2
+ 1

2

∑

θ∈{T ,N}

∑K
k=1 P (θ, zk = 1|ŝ,Q) erf

(

√

Λ′
skθ

2

(

ξθ − µ′
skθ

)

)

if θ̂ = N
(6.18)

where erf is the Gaussian error function.

6.4.2 Case with θ and z observed

We could consider the unrealistic case where θ and z are observed. We say that it is
unrealistic because θt is precisely what we want to find out in the test phase. This case
is illustrated in the graphical model of Figure 6.2a. The clean score posterior in (6.11)
simplifies to an unique Gaussian:

P (s|ŝ, θ, zk = 1) =N
(

s|µ′
skθ
,Λ′−1

skθ

)

(6.19)

and probability of reliable trial reduces to:

P (R = R|ŝ, θ, zk = 1) =















1
2

(

1− erf

(

√

Λ′
skθ

2

(

ξθ − µ′
skθ

)

))

if θ̂ = T

1
2

(

1 + erf

(

√

Λ′
skθ

2

(

ξθ − µ′
skθ

)

))

if θ̂ = N
. (6.20)
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Figure 6.3: Score distributions involved in the calculus of P (R = R|ŝ, θ = T , zk = 1)

Figure 6.3 shows an example of the score distributions involved in the calculus of
P (R = R|ŝ, θ = T , zk = 1) with k corresponding to the pair of SNR of enrollment and
test (10 dB, 10 dB). The blue curve is the prior distribution of the scores for clean target
trials P (s|θ = T ). The red curve is the distribution of observed scores for noisy trials
P (ŝ|θ = T , zk = 1). The green curve is the posterior of the clean score P (s|ŝ, θ = T , zk = 1)
and the filled area under the curve represents the reliability posterior for the trial. Even
though the observed score ŝ is only slightly over the threshold ξθ most of the area under the
posterior of s is filled so the trial has a high reliability. That happens because, as θ = T is
known, the posterior that we obtain reaffirms the target decision.

6.4.3 Case with θ hidden and z observed

Now, we consider a more realistic case where θ is hidden but z is observed. That is, we do
not know if the trial is target or non-target but we know the type of degradation to which it
is subject. This case is illustrated in the graphical model of Figure 6.2b Then, the posterior
of s is a mixture of two Gaussians

P (s|ŝ, zk = 1) =
∑

θ∈{T ,N}

P (θ|ŝ, zk = 1)N
(

s|µ′
skθ
,Λ′−1

skθ

)

(6.21)

where the weights of the mixture are the posteriors of the labels θ given the observed score
ŝ and the quality state z. They are computed as

P (θ = T |ŝ, zk = 1) =
P (ŝ|T , zk = 1)PT

∑

θ∈{T ,N} P (ŝ|θ, zk = 1)P (θ)
(6.22)

=
1

1 + exp (− lnR (ŝ, zk = 1)− logit(PT ))
(6.23)

where

lnR (ŝ, zk = 1) = lnP (ŝ|T , zk = 1)− lnP (ŝ|N , zk = 1) (6.24)
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Figure 6.4: Score distributions involved in the calculus of P (R = R|ŝ, zk = 1)

and the distributions P (ŝ|N , zk = 1) are given by (6.15).

Figure 6.4 shows an example of the score distributions involved in the calculus of
P (R = R|ŝ, zk = 1) with k corresponding to the pair of SNR of enrollment and test (10dB,
10dB). The blue curves are the prior distributions for the scores of the clean target and
non-target trials P (s|θ). The red curves are the distributions for the observed scores of
noisy trials P (ŝ|θ, zk = 1). The mean of the noisy targets distribution does not change
much with respect to the one of clean targets but the noisy non-targets distribution is very
shifted up. Both noisy distributions present larger variance than their clean counterparts.
The green curve is the posterior distribution of the clean score P (s|ŝ, zk = 1) and the filled
area under the curve is the posterior reliability of the trial. As we saw above, the posterior
of s is a mixture of two Gaussians. To compute the weights of the mixture we plugged-in
the observed score ŝ into (6.22). In the figure, we observe that the values of P (ŝ|T , z)
and P (ŝ|N , z) are close but as the target prior PT = 0.091 (Effective prior used in NIST
SRE before year 2010) was low, the Gaussian corresponding to the non-target hypothesis
obtained a much larger weight. Thus, the resulting posterior tell us that it is very likely
that the hidden score s is much lower than the observed score ŝ so the reliability of the
decision taken based on ŝ is very low.

6.5 Quality Dependent Likelihood Ratio

We can apply this BN, not only to detect unreliable trials, but to obtain an improved SV
likelihood ratio. Normally, the output of the SV system is a likelihood ratio and, from it,
we can compute the target posterior. By inverting the formula, we can obtain the likelihood
ratio from the target posterior given by the network:

LR(ŝ, Q) =
P (θ = T |ŝ,Q)

1− P (θ = T |ŝ,Q)

1− PT

PT
(6.25)

where

P (θ = T |ŝ,Q) =
K
∑

k=1

P (θ = T , zk = 1|ŝ,Q) (6.26)
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and the values of P (θ = T , zk = 1|ŝ,Q) are given by (6.14). This ratio depends on the
observed score and the quality measures but not on the hidden score or the quality states
that are effectively integrated out. In applications where we need to classify all the trials,
we can substitute the standard ratio given by the SV system by this new one. Given that
this ratio takes into account an additional source of information like the quality measures,
we should expect an improved performance.

6.6 Bayesian Network Training

The parameters of the Bayesian network need to be estimated from a development dataset
that include a large amount of trials with different degradation types and/or levels. We
assumed that the labels θ of the development set are known. We distinguished three cases
according to which variables are hidden and observed: s and z observed; s observed and z
hidden; and the general case where both variables are hidden.

6.6.1 Training with s and z observed

Let us consider a development set of trials artificially degraded from a high quality set. For
example, we could create that dataset by adding noise or reverberation to the enrollment
and/or test segments involved in each trial. In a case like this, we can track which clean
trial is associated to each degraded trial. We assumed that a clean trial i has equal observed
and hidden scores si = ŝi and that any trial j obtained by degrading the trial i has a hidden
score (clean score) sj = ŝi. Thus, s is observed when training the network.

Besides, we can assign a different value of the quality state to each kind of distortion.
For example, if we had a dataset with 6 different SNR levels for enrollment and another 6
levels for test the quality state z would be able to take 36 possible values, one by each SNR
pair. As we know which distortion we applied to each trial, z is also observed.

Estimating the parameters of the network reduces to compute the means and
variances

(

µs,Λs, µ∆s,Λ∆s, µQp ,ΛQp

)

of the Gaussian conditional distributions P (si|θi),
P (ŝi|si, zi, θi), and P (Qi|zi); and the weights πz that indicate the priors of each distortion
type. As in this case, all the distributions are conditioned on observed variables, computing
those parameters by maximum likelihood is straightforward.

6.6.2 Training with s observed and z hidden

Another possible scenario consists of training with an artificial dataset, which allows us
to observe the clean score s, while assuming that z is hidden. In this case, the algorithm
clusters automatically the types of distortions present in the dataset based on the values of
the quality measures. Having a hidden variable, the training procedure is not as simple as
in the previous section and we need to apply the EM algorithm [Bishop, 2006].
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6.6.2.1 E-step

In the E-step, we have to compute the posterior of the hidden variables given the observed
variables P (zi|ŝi, si,Qi, θi):

P (zik = 1|ŝi, si,Qi, θi) =
πzkP (ŝi|si, θi, zik = 1)P (si|θi)P (Qi|zik = 1)

∑K
k=1 πzkP (ŝi|si, θi, zik = 1)P (si|θi)P (Qi|zik = 1)

(6.27)

where we have to plug-in Equations (6.1), (6.4) and (6.5). We defined γ(zik) =
P (zik = 1|ŝi, si,Qi, θi) to keep the following equations uncluttered.

6.6.2.2 M-step

In the M-step, we maximize the EM auxiliary function:

Q(M) =
N
∑

i=1

E [lnP (ŝi,Qi, si|θi, zi)] . (6.28)

By maximizing with respect to πz, we obtain:

πzk =
Nzk

∑K
k=1Nzk

(6.29)

where

Nzk =
N
∑

i=1

γ(zik) . (6.30)

By maximizing with respect to µQpk
and ΛQpk

, we obtain:

µQpk
=

1

Nzk

N
∑

i=1

γ(zik)Qip (6.31)

Λ−1
Qpk

=
1

Nzk

N
∑

i=1

γ(zik)
(

Qip − µQpk

) (

Qip − µQpk

)T
. (6.32)

If we maximize respect to µs and Λs we obtain:

µsθ =
1

Nθ

N
∑

i=1

tiθsi (6.33)

Λ−1
sθ

=
1

Nθ

N
∑

i=1

tiθsis
T
i − µsθµ

T
sθ

(6.34)

where tiθ = 1 if θi = θ and tiθ = 0 if θi 6= θ; and Nθ =
∑N

i=1 tiθ.
Finally, we maximize respect to µ∆s and Λ∆s obtaining

µ∆skθ =
1

Nθzk

N
∑

i=1

γ(θi, zik) (ŝi − si) (6.35)

Λ−1
∆skθ

=
1

Nθzk

N
∑

i=1

γ(θi, zik) (ŝi − si) (ŝi − si)
T − µ∆skθµ

T
∆skθ

(6.36)
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where we defined

γ(θi, zik) =tiθγ(zik) (6.37)

Nθzk =
N
∑

i=1

γ(θi, zik) . (6.38)

6.6.2.3 EM initialization heuristics

The EM algorithm needs that we initialize the parameters of the network before we can
start to iterate. First, we initialized the distributions P (Q|zk = 1) =

∏P
p=1 P (Qp|zk = 1).

For that, we trained a GMM with diagonal covariance Gaussians for Q where the GMM
occupations were randomly initialized. Then, we assigned each component of the GMM to
one distribution P (Qp|zk = 1). The weights of the GMM were employed to initialize the
values of πzk . Then, we computed the membership probabilities of each trial to each quality
state zk given the quality measures:

P (zik = 1|Qi) =
πzkP (Qi|zik = 1)

∑K
k=1 πzkP (Qi|zik = 1)

. (6.39)

We approximated γ(zik) ≈ P (zik = 1|Qi) and initialized µ∆skθ and Λ∆skθ by applying (6.35)
and (6.36).

Initialization of µsθ and Λsθ is straightforward because θ and s are observed.

6.6.3 General case, training with s and z hidden

We may want to train the Bayesian network on a real dataset instead of doing it on a
synthetic dataset. Then, we will not have any clean trial corresponding to each noisy trial
so we will have to train the network assuming s hidden. The degradation type of each trial
will also be unknown so z will be hidden. This is the most general case that we can find
and we solved it with another EM algorithm.

6.6.3.1 E-step

In the E-step we compute P (si, zi|ŝi,Qi, θi)

P (si, zi|ŝi,Qi, θi) = P (si|ŝi, θi, zi)P (zi|ŝi,Qi, θi) . (6.40)

The first term is given by (6.19).

The second term is

P (zik = 1|ŝi,Qi, θi) =
πzkP (ŝi|zik = 1, θi)P (Qi|zik = 1)

∑K
k=1 πzkP (ŝi|zik = 1, θi)P (Qi|zik = 1)

(6.41)

where we plug-in (6.15) and (6.5). We define γ(zik) = P (zik = 1|ŝi,Qi, θi) to keep the
following equations uncluttered.
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6.6.3.2 M-step

In the M-step, we maximize the EM auxiliary function:

Q(M) =
N
∑

i=1

E [lnP (ŝi,Qi, si, zi|θi)] . (6.42)

The equations for πz, µQpk
and ΛQpk

are the same as for the case with s observed.
Now, we maximize with respect to µs and Λs obtaining:

µsθ =
1

Nθ

N
∑

i=1

K
∑

k=1

γ(θi, zik)µ
′
sikθ

(6.43)

Λ−1
sθ

=
1

Nθ

N
∑

i=1

K
∑

k=1

γ(θi, zik)
(

Λ′−1
skθ

+ µ′
sikθ

µ′T
sikθ

)

− µsθµ
T
sθ

(6.44)

(6.45)

where we defined tiθ = 1 if θi = θ, and

γ(θi, zik) =tiθγ(zik) (6.46)

Nθ =
N
∑

i=1

tiθ . (6.47)

Finally, we maximize with respect to µ∆s and Λ∆s and obtain:

µ∆skθ =
1

Nθzk

N
∑

i=1

γ(θi, zik)
(

ŝi − µ′
sikθ

)

(6.48)

Λ−1
∆skθ

=
1

Nθzk

N
∑

i=1

γ(θi, zik)
(

ŝi − µ′
sikθ

) (

ŝi − µ′
sikθ

)T
+Λ′−1

skθ
− µ∆skθµ

T
∆skθ

(6.49)

where we defined

Nθzk =
N
∑

i=1

γ(θi, zik) . (6.50)

6.6.3.3 EM initialization heuristics

For the general case, the distributions ofQ, P (Q|zk = 1) and the weights πzk were initialized
as explained in Section 6.6.2.3.

Again, we computed the membership probabilities P (zik = 1|Qi) with (6.39). We
approximated γ(zik) ≈ P (zik = 1|Qi) and use it to estimate the observed score distributions
P (ŝ|θ, zk = 1) by approximating their means and variances as

µ′
ŝkθ

=
1

Nθzk

N
∑

i=1

γ(θi, zik)ŝi (6.51)

Λ′
ŝkθ

=
1

Nθzk

N
∑

i=1

γ(θi, zik)ŝiŝ
T
i − µ′

ŝkθ
µ′
ŝkθ

. (6.52)
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For each quality level k we compute the Fisher ratio between the both distributions
P (ŝ|θ = T , zk = 1) and P (ŝ|θ = N , zk = 1). When the Fisher ratio is high the target and
non-target score distributions are more separated and the error rate is lower. We assumed
that the component k∗ with the highest Fisher ratio corresponds to the clean trials. Then,
we divided the mean and variances of P (ŝ|θ, zk∗ = 1) between the distributions P (s|θ) and
P (ŝ|s, θ, zk∗ = 1) considering that in k∗ the value of ∆s should be very small. We assigned
all the mean and most of the variance to P (s|θ)–75% of the variance–and the rest to
P (ŝ|s, θ, zk∗ = 1)–25% of the variance. Thus, we initialized the clean score the distribution
P (s|θ) as:

µsθ =µŝk∗θ (6.53)

Λsθ =Λ′
ŝk∗θ

/0.75 (6.54)

and the distribution P (ŝ|s, θ, zk∗ = 1) was initialized as

µ∆sk∗θ =0 (6.55)

Λ∆sk∗θ =Λ′
ŝk∗θ

/0.25 . (6.56)

We distributed the variance of P (ŝ|θ, zk∗ = 1) between P (s|θ) and P (ŝ|s, θ, zk∗ = 1) so that
neither of them have an infinite precision.

Finally, for the rest of components, we initialized P (ŝ|s, θ, zk = 1) from P (ŝ|θ, zk = 1)
and P (s|θ). From Equations (6.17) and (6.16), we isolated µ∆skθ and Λ∆skθ :

µ∆skθ =µ
′
ŝkθ
− µsθ (6.57)

Λ∆skθ =
(

Λ′−1
skθ
−Λ−1

sθ

)−1
(6.58)

If Λ′−1
skθ
−Λ−1

sθ
is not positive definite we just did

Λ∆skθ =Λ′
skθ

. (6.59)

6.7 Experiments

6.7.1 Experiments on NIST SRE with noise added

For these experiments, we used the dataset described in Section 3.4.2.1, a dataset artificially
degraded by adding noise to telephone signals from NIST SRE08 and SRE10. Trials
from SRE08 were used to train the BN and SRE10 to evaluate the reliability detection
performance. By pooling all the noisy trials of NIST SRE10, our SV system obtained
actual DCF=2.96. We discarded unreliable trials to reduce it to values lower than one.

6.7.1.1 BN trained with s and z observed

As explained in Section 6.6.1, we could define a quality state for each pair of enrollment
and test signal-to-noise ratios (SNRenroll,SNRtst). Then, for our dataset, z could take 36
different values. As we degraded the datasets ourselves, we know the actual SNR of the
segments and we can train the network assuming that the quality states z are observed
variables. Besides, for each noisy trial we know the corresponding clean trial so the clean
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Figure 6.5: % Discarded trials vs. actual DCF for NIST SRE10 + noise using BN trained
with ŝ and z observed.

score s is also observed. In this scenario where all the variables are observed, training the
network by maximum likelihood is simple, as explained in Section 6.6.1.

In the test phase, both s and z were hidden and their posteriors were estimated as
shown in Section 6.4.1. We also did two cheating experiments. The first one consisted in
computing the posterior of s given observed labels θ and quality states z, that is the case
shown in Section 6.4.2. This case is never going to happen given that the purpose of SV
is precisely estimating θ but this ideal scenario provides a lower bound to the actual DCF
that we could obtain. For the second one, we computed the posterior of s given observed
z and hidden θ. This scenario is also unrealistic because for most of the datasets the noise
level is unknown, but it also provides a reference point for comparison.

From the posterior of s, we computed the posterior probability for taking a reliable
decision with (6.7). The reliability posterior P (R|ŝ,Q) was thresholded to decide which
trials were unreliable and needed to be discarded. By applying a varying threshold we
obtained curves plotting actual DCF against percentage of discarded trials. In this context
the DCF was computed taken into account only the trials classified as reliable as we
explained in Section 3.3.2. Figure 6.5 compares curves of actual cost against percentage
of discarded trials for several quality measures and for both cheating experiments. Besides,
we added a curve with the best result achieved by the BN employed in the previous chapter.
We took that as baseline. In Table 6.1, we show the costs values obtained by sampling the
curves in 25%, 50% and 75% of discarded trials. We divided the figure and the table into
two parts: one where each BN only uses one quality measure (Figure 6.5a) and another
where the BN combines several quality measures (Figure 6.5b). As in the previous chapter,
to simplify the visualization of the results, we only present results with the measures that
provided lower costs. Following, we remind the notation used for the measures. Signal-
to-noise ratio is denoted by SNR, modulation index by MI, entropy by H and UBM log-
likelihood by UBM-LLk. The term VTS N refers to the VTS coefficients with LDA trained
to discriminate between different SNR levels and, VTS R is the same but with LDA trained
to discriminate between reverberation times. The numbers behind N or R indicate the
output dimension of the LDA projection that we keep, for example N0−1 means that we
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Table 6.1: % Discarded trials vs. actual DCF for NIST SRE10 + noise with the BN trained
with ŝ and z observed.

Q
% Discarded Trials
25 50 75

Oracle z and θ 0.5 0.01 0.02
Oracle z 0.75 0.23 0.07

SNR 0.76 0.51 0.22
MI 0.72 0.26 0.08
VTS N0 0.71 0.26 0.08
FCov VTS N0−1 0.71 0.25 0.07
FCov VTS NR0 0.71 0.25 0.07

FCov SNR MI H UBM-LLk 0.72 0.27 0.09
FCov ALL 0.71 0.26 0.09
FCov N0−1 0.71 0.26 0.08
FCov NR0−1 0.71 0.26 0.08

Baseline FCov VTS NR0 0.76 0.46 0.48

keep the first two coefficients. When we write VTS NR, we mean that we concatenate the
both LDA projections, the one for noise and the one for reverberation. When we say that we
use All the measures we mean: SNR, MI, H, UBM-LLk, VTS NR0, jitter and shimmer. In
the same way as for the VTS parameters, the terms N , R and NR refer to LDA projections
of All the quality measures to discriminate noise or/and reverberation times. We denote
by FCov the networks where the distribution of the quality measures conditioned to each
quality state P (Q|zk = 1) for k = 1, . . . , K is a full-covariance Gaussian. Otherwise, it is a
product of full-covariance bi-dimensional Gaussians (equivalent to block diagonal Gaussian).
There was one bi-Gaussian for each quality measure. The first dimension of each Gaussian
corresponded to the enrollment segment measure, and the second one corresponded to the
test segment measure.

As expected, the cheating experiment with observed test θ and z (Oracle SNR and θ)
attains the best performance. It reaches a cost almost zero by discarding 30% of the trials.
The experiment with observed z (Oracle SNR) does not reaches costs so low, but it is still
much better than the baseline. For the baseline, we obtained the best results with the
VTS based features. The new BN and the baseline performed similarly if we discard less
than 15% of the trials but, from there, the proposed approach performed much better. The
baseline did not provide costs lower than 0.38 while the new approach reached much lower
costs. For the rest of experiments, z was hidden in test and it had to be estimated from
the quality measures. Fortunately, we obtained almost the same curves as with z observed.
Only the BN with SNR is worse. Thus, we can reduce the actual cost from 2.96 to values
like 0.71, 0.25 and 0.07 if the application allows us to discard 25, 50 or 75% of the trials.
Other measures like UBM-LLk, Entropy or jitter did not attained good results.
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Figure 6.6: % Discarded trials vs. actual DCF for NIST SRE10 + noise using BN trained
with ŝ observed and z hidden.

6.7.1.2 BN trained with s observed and z hidden

If we did not know the sources of degradation of the training dataset or we just wanted the
algorithm to decide the quality states unsupervisedly, we would train the BN with z hidden.
Here, we still would assume that the clean scores s were observed to train the BN. For that,
we used the EM algorithm in Section 6.6.2.

Figure 6.6 and Table 6.2 compare actual cost against percentage of discarded trials for
the best quality measures evaluated. Subfigure 6.6a corresponds to networks using only one
measure and Subfigure 6.6b to networks that combine multiple measures. The column K in

Table 6.2: % Discarded trials vs. actual DCF for NIST SRE10 + noise with the BN trained
with ŝ observed and z hidden.

Q K
% Discarded Trials
25 50 75

SNR 32 0.75 0.66 0.31
MI 32 0.72 0.42 0.18
VTS N0 32 0.71 0.30 0.09
FCov VTS N0−1 32 0.71 0.29 0.11
FCov VTS NR0 32 0.70 0.29 0.10

FCov SNR MI H UBM-LLk 32 0.72 0.31 0.11
FCov All 32 0.72 0.31 0.12
FCov N0−1 32 0.71 0.29 0.10
NR0−1 32 0.72 0.28 0.08
FCov NR0−1 32 0.71 0.26 0.09

FCov VTS NR0 Train z obs. 36 0.71 0.25 0.07

Baseline FCov VTS NR0 – 0.76 0.46 0.48
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Figure 6.7: % Discarded trials vs. actual DCF for NIST SRE10 + noise using BN trained
with ŝ and z hidden.

the table indicates the optimum number of quality states that was 32 for all the measures.
Compared with the BN trained with z observed, all measures, except signal-to-noise ration
and modulation index, reached the same performance. Compared with the baseline, only
the SNR produced a curve worse than the baseline.

6.7.1.3 BN trained with s and z hidden

The most general case that we could consider consists in training the BN with hidden s and
z. We would need this to train the BN on a database where each noisy trial does not have
a corresponding clean trial that can provide the clean score. That is the case of databases
captured in noisy environments instead of being artificially degraded by adding noise. Then,
to train the network we need to apply the EM algorithm in Section 6.6.3.

Figure 6.7 and Table 6.3 shows actual costs against percentage of discarded trials.
Subfigure 6.6a plots results with only one measure and Subfigure 6.6b combines multiple
measures. As there are two hidden variables, training the network is more challenging
and we expected an important performance lost. On the contrary, we achieved very good
performance even outperforming the network trained with s observed. While discarding less
than 70% of trials, the cost obtained by training with s hidden are lower than those obtained
with s observed. We speculate that it is due to the fact that the original SRE trials, that
we assumed clean, are not completely clean actually. In this case, the original trials were
treated in the same manner as the noisy trials, i.e., having observed and hidden scores.
Then, the algorithm could, in theory, find a better estimation for the clean scores s. The
best performance was obtained with the measure NR0, closely followed by the vector of all
the features, NR0−1, VTS NR0−1, VTS N0 and modulation index. The worse performance
is given by the SNR and the combination of SNR MI H UBM-LLk, however, they still
outperformed the baseline.

In conclusion, we evaluated three methods of training our BN and proved that, in all
cases, it was able to outperform the baseline. According to the curves, the best measures
to determine the reliability for a dataset with additive noise are modulation index and
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Table 6.3: % Discarded trials vs. actual DCF for NIST SRE10 + noise with the BN trained
with ŝ and z hidden.

Q K
% Discarded Trials
25 50 75

SNR 32 0.76 0.32 0.18
MI 32 0.73 0.21 0.12
VTS N0 16 0.74 0.22 0.15
FCov VTS N0−1 16 0.74 0.18 0.15
FCov VTS NR0−1 16 0.72 0.19 0.11

FCov SNR MI H UBM-LLk 4 0.78 0.40 0.22
FCov All 16 0.74 0.21 0.15
FCov N0−1 32 0.73 0.20 0.27
FCov NR0 16 0.73 0.19 0.13
FCov NR0−1 32 0.73 0.18 0.16

FCov VTS NR0 train s obs. 32 0.70 0.29 0.10

Baseline FCov VTS NR0 – 0.76 0.46 0.48

the features derived from the VTS parameters. The combination of all the features with
or without LDA dimensionality reduction also yielded good results but not provided a
significant gain compared to employing only one measure.

6.7.1.4 Analysis of score distributions

For the case where all the variables were observed we can easily compute the distributions
of ∆s given each pair of SNR and the label θ, P (∆s|θ, SNRenroll, SNRtst). We have 2× 36
different ∆s distributions some which appear in Figure 6.8. Each subplot represents the
distributions for a pair of SNR values. The distributions given the target and non-target
hypothesis are plotted in blue and red respectively.

When one of the segments is clean and the other is noisy (row 1), if the trial is target the
mean of ∆s decreases rapidly as the noise increases. If the trial is non-target, the mean of
∆s grows slowly with the noise. With a small amount of noise in both segments (row 2), if
the trial is target the mean of ∆s is near zero, but, if the trial is non-target the mean of ∆s
becomes quite large. Finally, with a large noise level in both sides (row 3), the mean score
of the targets decreases a little and the mean score of the non-targets increases significantly.
Besides, in all cases, the variance of ∆s grows fast with the noise. These graphs prove that
∆s is very dependent on both noise and trial labeling so the dependencies that we included
in our graphical model were correct.

We can also compare the distributions obtained by applying the different flavors of the
EM algorithm. We center on the networks that utilized the measure NR0−1. Figure 6.9
compares the clean score distributions P (s|θ) obtained by training with s observed and
hidden. The distributions estimated with s hidden have approximately the same means as
the ones obtained with s observed. However, the variances are smaller. When training with
s observed we force s = ŝ and ∆s = 0. That makes the variance of ∆s for the clean state
to be small. On the contrary, by training with s hidden, the trials without noise added are
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Figure 6.8: P (∆s|θ, SNRenroll, SNRtst) for several values of (SNRenroll, SNRtst).

treated in the same manner as the rest. This allows the algorithm to try to obtain a better
estimate of their clean score. That implies |∆s| > 0 and therefore larger variance of ∆s.
Earlier, we proved that

Λ′−1
ŝkθ

= Λ−1
sθ

+Λ−1
∆skθ

, (6.60)

so if Λ−1
∆skθ

becomes larger Λ−1
sθ

has to reduce. Interestingly, the score distributions obtained
in this manner are almost symmetric and not overlapped. Thus, if we could see this hidden
score and put the SV threshold at zero, the error rate would be zero.

Now, we direct our attention to the ∆s distributions in Figure 6.10. These distributions
were computed with the trials assigned to a quality state that, approximately, corresponded
to the SNR pair (15dB, 10dB). It compares the distributions obtained with the three training
types. For both, targets and non-targets, the three Gaussians have similar means. In
variance terms, the variances of the two distributions trained with s observed are also close.
However, the variance of the Gaussians trained with s hidden is evidently smaller. This
behavior was not only detected in the quality state depicted in the figure but also in the
rest. Intuitively, we could think that if, as seen in Figure 6.9, Λ−1

sθ
trained with s hidden is

smaller, Λ−1
∆skθ

should be larger to maintain the value of Λ′−1
ŝkθ

. On the contrary, we found
that the three variances are smaller. This can be explained from the fact that leaving s
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Figure 6.9: P (s|θ) with θ ∈ {T ,N}, comparison between training with s observed vs.
hidden.

hidden (or ∆s hidden) implies a very different assignation of the trials to each quality state
(Compare (6.41) and (6.27)). By training with s hidden we obtained quality states whose
observed score distributions are more concentrated. We think that this helps to a better
partitioning of the trials into quality states.

6.7.1.5 Quality dependent likelihood ratio

As we showed in Section 6.5 we can use the BN to obtain a refined version of the SV
likelihood ratio. Then, instead of discarding unreliable trials, we maintain all the trials but
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Figure 6.10: P (∆s|θ, zk = 1) for quality state k approximately corresponding to trials with
SNRenroll = 15 dB and SNRtst = 10dB, comparison of different flavors of the BN training
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Table 6.4: EER(%)/DCF of quality dependent LLR on NIST SRE10+noise.

Q K EER(%) minDCF actDCF

Baseline – 22.88 0.99 2.96

Train with s observed
SNR 32 19.98 0.83 0.88
MI 32 18.35 0.78 0.81
FCov VTS N0−1 32 18.01 0.76 0.81
FCov VTS NR0 32 17.60 0.75 0.81
FCov All 32 18.14 0.78 0.80
FCov N0−1 32 17.95 0.77 0.81
FCov NR0−1 32 17.93 0.77 0.80

Train with s hidden
SNR 32 20.08 0.83 0.97
MI 32 18.55 0.79 0.99
FCov VTS N0−1 16 18.21 0.77 0.98
FCov VTS NR0−1 16 18.09 0.76 0.91
FCov All 16 18.34 0.78 0.95
FCov N0−1 32 17.87 0.78 0.95
FCov NR0−1 32 17.71 0.78 0.95
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Figure 6.11: DET curves obtained from the quality dependent LLR with measure NR0−1
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Figure 6.12: % Discarded trials vs. actual DCF for NIST SRE10 + reverb. using BN trained
with ŝ and z hidden.

we substitute the standard SV score ŝ by the ratio in (6.25).
In Table 6.4, we present results in terms of EER and DCF for BNs trained with hidden

quality estates and s observed or hidden. All the measures performed quite similarly. We
observe a moderate improvement in terms of EER and minimum DCF; and a large one in
terms of actual DCF. This proves the utility of this model for score calibration in noisy
datasets. The networks trained with s observed reached better calibration, for the measure
NR0−1 actual cost was 15% better. Compared with the baseline we improved by around
22% in terms of EER, around 23% in terms of minimum DCF and between 68 and 72 % in
terms of actual DCF.

Figure 6.11 compares DET curves for the standard and quality dependent likelihood
ratios. All the curves used the measure NR0−1. Both the BN trained with s observed and
hidden obtained almost identical curves. We observe that there is an important improvement
in all the operating points of the curve. The distance between curves increases in the low
false alarm region, which is beneficial to reduce our DCF.

6.7.2 Experiments on NIST SRE with reverberation added

Here, we present experiment on NIST SRE with reverberation added as described in
Section 3.4.2.2. Trials created from NIST SRE08 were used to train the network and trials
from NIST SRE10 were used for evaluation. By pooling the NIST SRE10 trials with all
possible degradations, our SV system provided minimum DCF=0.99 and actual DCF=4.5.
We trained the Bayesian networks assuming hidden z and s.

6.7.2.1 Reliability detection

Figure 6.12 and Table 6.5 displays actual costs against percentage of discarded trials.
Subfigure 6.12a plots results with only one measure and Subfigure 6.12b combines multiple
measures. Curves are very similar while we discard the first 40% of the trials, i.e., the
trials corresponding to the conditions with longer reverberation times. After that, we find
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Table 6.5: % Discarded trials vs. actual DCF for NIST SRE10 + reverb. with the BN
trained with ŝ and z hidden.

Q K
% Discarded Trials
25 50 75

MI 4 2.66 0.78 0.58
UBM-LLk 8 2.66 0.84 0.66
Entropy 16 2.70 0.83 0.63
VTS N0 4 2.68 0.82 0.54
VTS NR0−1 32 2.67 0.74 0.58
FCov VTS NR0−1 16 2.67 0.75 0.62

FCov SNR MI H UBM-LLk 32 2.63 0.73 0.75
FCov All 32 2.64 0.69 0.60
FCov R0−2 16 2.65 0.58 0.31
FCov NR0−1 32 2.64 0.66 0.49

Baseline UBM-LLk 1 2.67 0.74 0.43
Baseline FCov NR0−1 4 2.68 0.70 0.34

notable differences. Contrary to what happened for the dataset with noise, the baselines are
better than the new BN for most of the measures. Only the measure R0−2 performs clearly
better than the baseline if we discard less than 80% of trials. If we discard less than 60% of
the trials the measures NR0−1, VTS NR0−1 and modulation index perform similar to the
baseline.

6.7.2.2 Quality dependent likelihood ratio

If instead of rejecting unreliable trials we classify all the trials with the quality dependent
likelihood ratio given by the BN we obtain the results shown in Table 6.6. As for the dataset
with additive noise, we note very small different between quality measures. Using the new
ratio, EER improves by 18–28%, minimum DCF by 5–9% and actual DCF by 77–80%.
These percentages are even larger than those obtained for the data with additive noise. The

Table 6.6: EER(%)/DCF of quality dependent LLR on NIST SRE10+reverberation with
BN trained with s and z hidden.

Q K EER(%) minDCF actDCF

Baseline – 33.52 0.99 4.50

MI 4 27.33 0.93 0.93
UBM-LLk 8 26.62 0.92 0.92
FCov VTS NR0−1 16 28.43 0.94 1.00
FCov SNR MI H UBM-LLk 32 23.96 0.90 0.90
FCov All 32 24.78 0.91 0.91
FCov R0−2 16 25.36 0.91 0.91
FCov NR0−1 32 25.63 0.91 0.92
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Figure 6.13: % Discarded trials vs. actual DCF for NIST SRE10 + noise and reverb. using
BN trained with ŝ and z hidden.

huge improvement of the actual cost deserves special mention given that it makes the SV
system usable in that operating point. Remember that a cost larger than one means that
classifying all the trials as non-target is more optimal than using the SV system. Again, the
BN proves its utility for score calibration in adverse environments.

6.7.3 Experiments on NIST SRE with noise and reverberation
added

We also pooled the noisy and reverberant NIST SRE trial lists. We trained the BN with
pooled NIST SRE08 and tested on NIST SRE10. With this experiment, we intended to find
out if the network can cope with several types of degradations at the same time.

6.7.3.1 Reliability detection

Figure 6.13 and Table 6.7 shows actual costs against percentage of discarded trials.
Subfigure 6.13a plots results with only one measure and Subfigure 6.13b combines multiple
measures. Again, only the best measures are shown to facilitate the results visualization.
The baselines for this condition were very good so improvement was difficult. Curves are
very similar for the first 35% of discarded trials, those corresponding to trials with higher
noises and reverberation times. From there, we find important differences dependent of
the quality measures used. The networks using All the measures and their LDA projection
NR0−1 outperform the baseline if we discard less than 70% of the trials. Other measures
that also yielded quite good results were N0−2, R0−1, VTS NR0−1 and VTS R0−1.

We want to make note that if we consider the networks that use only one quality measure,
the new BN clearly outperforms the baseline. For that reason and despite that there are
small differences between both BN when using the measures NR0−1, we trust in the superior
modeling capacity of the new model.

An additional problem that we face when working with a reliability detector consists in
choosing its operating point. One option could be to select the threshold that minimizes
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Table 6.7: % Discarded trials vs. actual DCF for NIST SRE10 + noise and reverb. with
the BN trained with ŝ and z hidden.

Q K
% Discarded Trials
25 50 75

MI 32 2.09 0.62 0.60
UBM-LLk 32 2.10 0.65 0.39
VTS N0 16 2.15 0.65 0.55
FCov VTS N0−1 16 2.13 0.68 0.71
FCov VTS R0−1 8 2.15 0.63 0.39
FCov VTS NR0−1 32 2.12 0.63 0.40

FCov SNR MI H UBM-LLk 8 2.09 0.63 0.48
FCov All 32 2.10 0.52 0.31
FCov N0−2 32 2.09 0.55 0.34
FCov R0−1 16 2.08 0.60 0.38
FCov NR0−1 16 2.09 0.51 0.27

Baseline FCov VTS NR0−1 – 2.15 0.85 0.63
Baseline FCov NR0−1 – 2.14 0.60 0.26

the actual cost but then, we would reject all the trials as can seen in Figure 6.13. Another
option would be to reject a fixed percentage of trials. However, as happens for the MI
curve in Figure 6.13a, rejecting more trials does not mean a lower cost so it is difficult to
select the best percentage. Instead, we propose to apply the extended cost function CQ

defined in Section 3.3.4. This function is based on the standard DCF where we added two
new terms to take into account the cost of rejecting reliable trials. There is a cost for
rejecting well classified targets CFUT and another for non-targets CFUN . For CQ to make
sense, the cost of rejecting well classified trials must be lower than the cost of accepting bad
classified trials–these are miss and false acceptance costs of the standard DCF. Otherwise,
the optimum CQ would always correspond to not rejecting trials. For this experiment, we
chose CFUT = CMiss/2 = 5 and CFUN = CFA/2 = 0.5. Figure 6.14 depicts the extended cost
against the reliability detector decision threshold ξR and against the % of rejected trials.
For this example, we used the measures NR0−1. The curves have a clear minimum marked
by the dashed vertical line. By choosing the threshold corresponding to minimum CQ

(ξR = 1.33), we accepted 60% of trials, which provide EER=22.34% and actual DCF=0.66.
That improved by 26% in terms of EER and by 83% in terms of DCF. In Figure 6.15, we
compare the DET curve of the accepted trials with the one of all the trials. We note that
the improvement is larger in the zone of the curve around the DCF operating point. This
happens because, when computing the clean score posterior we need to make use of the
target prior (see (6.14)).

6.7.3.2 Quality dependent likelihood ratio

Once again, we show results evaluating the quality dependent likelihood ratio given by
the BN instead of rejecting unreliable trials. EER and cost are displayed in Table 6.8.
We improved by 12–22% in terms of EER, 3–9% in terms of minimum DCF and 75–77%
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Figure 6.14: CQ for NIST SRE10 + noise and reverb.

in terms of actual DCF. They are similar values to those obtained for the two previous
datasets. Again, there were small differences between measures what seems to indicate
that, for these datasets, the choice of measure is not critical.
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Figure 6.15: DET curve for NIST SRE10 + noise and reverb. in operating point given by
minimum CQ.
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Table 6.8: EER(%)/DCF of quality dependent LLR on NIST SRE10+noise and
reverberation.

Q K EER(%) minDCF actDCF

Baseline – 30.25 0.99 4.06

MI 32 26.20 0.92 0.93
UBM-LLk 32 25.62 0.96 1.01
FCov VTS NR0−1 32 26.02 0.96 1.01
FCov SNR MI H UBM-LLk 8 25.30 0.93 0.96
FCov All 32 23.41 0.89 0.94
FCov NR0−1 16 24.22 0.90 0.94

6.7.4 Experiments on databases with real distortions

As we did in the previous chapter with the baseline BN, we want to know if our new BN
trained on artificial data can be used to detect unreliable trials on real databases. Again, we
trained the BN on NIST SRE08 with noise and reverberation and evaluated it on Agnitio
Benchmark and Ahumada. These datasets are described in Sections 3.4.2.4 and 3.4.2.5.

6.7.4.1 Reliability detection

Figure 6.16a and Table 6.9a plots actual cost against percentage of discarded trials
for Agnitio Benchmark. Figure 6.16b and Table 6.9b shows costs for Ahumada. In
previous experiments, we only showed results with the quality measures that reached better
performance on the dataset under test. For this experiment, we supposed that is not possible
to use the dataset under test to choose the best quality measure. This is a more realistic
situation given that in most real cases we will not have the labels of the database under test.
Instead, we present results with the quality measures that performed best on NIST SRE10
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Figure 6.16: % Discarded trials vs. actual DCF for Agnitio Benchmark and Ahumada
datasets.
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Table 6.9: % Discarded trials vs. actual DCF for Agnitio Benchmark and Ahumada.

(a) Agnitio Benchmark.

Q
% Discarded Trials
25 50 75

UBM-LLk 0.01 0.00 0.00
FCov VTS R0−1 0.01 0.00 0.00
FCov VTS NR0−1 0.01 0.00 0.00
FCov All 0.29 0.13 0.07
FCov N0−2 0.01 0.00 0.00
FCov R0−1 0.01 0.00 0.00
FCov NR0−1 0.10 0.02 0.00

Baseline FCov VTS NR0−1 0.13 0.09 0.00

(b) Ahumada.

Q
% Discarded Trials
25 50 75

UBM-LLk 0.63 0.01 0.00
FCov VTS R0−1 0.64 0.01 0.00
FCov VTS NR0−1 0.64 0.01 0.00
FCov All 1.93 1.33 0.96
FCov N0−2 0.64 0.08 0.01
FCov R0−1 0.65 0.03 0.00
FCov NR0−1 1.29 0.53 0.21

Baseline FCov VTS NR0−1 0.72 0.17 0.24

with noise and reverberation. We did the same in Section 5.3.4 with the baseline BN. Back
then, we saw that most of the measures that performed well on NIST SRE10 performed
badly on Agnitio Benchmark and Ahumada. Only the measure VTS NR0−1 provided good
results. On the contrary, for the new BN, all the measures were usable. The worst measures,
especially on Ahumada, were NR0−1 and the fusion of All measures. The rest of measures
provided curves whose costs were always under the baseline. These results prove that the
proposed network generalizes better than the baseline and it is better to be used in different
datasets.

As operating point of the reliability detector, we chose to keep the same threshold that
we used for NIST SRE10 with noise and reverberation. Even though, it is not the best
measure for these two datasets, we show results with the measure NR0−1. Thus, for Agnitio
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Figure 6.17: DET curves for Agnitio Benchmark and Ahumada datasets with reliability
detection system working in operating point with minimum CQ in NIST SRE10.
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Table 6.10: EER(%)/DCF of quality dependent LLR on Agnitio benchmark and Ahumada.

(a) Agnitio Benchmark.

Q EER(%) minDCF actDCF

Baseline 5.46 0.26 1.49

UBM-LLk 5.85 0.31 0.33
FCov VTS NR0−1 8.32 0.42 0.63
FCov All 10.13 0.56 0.73
FCov NR0−1 8.31 0.61 0.65

(b) Ahumada.

Q EER(%) minDCF actDCF

Baseline 2.85 0.14 2.96

UBM-LLk 3.17 0.16 0.44
FCov VTS NR0−1 7.67 0.42 0.43
FCov All 7.61 0.39 1.46
FCov NR0−1 10.08 0.44 1.11

Benchmark we attained EER=1.95%, actual DCF=0.15 and rejected 20% of the trials.
Compared with keeping all the trials, this meant an improvement of 64% in terms of EER
and 90% in terms of DCF. For Ahumada, we obtained EER=1.84%, actual DCF=0.81 and
pruned 39% of trials. That improved by 35% in terms of EER and by 72% in terms of
actual cost. Figure 6.17 plots the corresponding DET curves for both datasets. For Agnitio
benchmark we witness a large improvement along all the curve. For Ahumada, the distance
between curves is smaller though the actual cost improved importantly.

6.7.4.2 Quality dependent likelihood ratio

Finally, we applied the BN trained on NIST SRE10 with noise and reverberation to compute
quality dependent likelihood ratios. EER and DCF evaluated in the full trial lists are shown
in Table 6.10. Contrary to what we obtained for NIST SRE10, EER and minimum DCF
worsened, for some measures badly. On the other hand, actual DCF always decreased so, in
practice, we obtained a better system for our operating point. The best performing measure
for both databases was the UBM log-likelihood. Actual cost improved by 77% in Agnitio
benchmark and by 85% in Ahumada. The worse measures were the combination of All
measures and NR0−1. They were also the worse in the reliability detection experiments.
That is coherent because the posterior of the clean score needed to compute the reliability
is a GMM whose weights depend on the posterior of θ (see (6.21)). Thus, a bad estimation
of the target posterior, or equivalently of LLRQ, implies bad score and reliability posteriors.

6.8 Summary

In this chapter, we presented a novel Bayesian network whose purpose was to model how
SV score distributions diverge from the ideal ones when the segments involved in the SV
trials are affected by some distortion like noise or reverberation. Our BN introduced the
existence of two scores: one observed and another hidden. The observed score or noisy
score is the one given by our SV system while the hidden score or clean score is an ideal
score that we would obtain if the trial segments were high quality speech. The network
has another hidden variable, the quality state that means the type of trial distortion. Each
value of the quality estate is associated with a distribution of quality measures and with a
distribution for the difference ∆s between the clean and noisy scores. The network allows us
to compute the posterior distributions for the hidden variables given the observed variables.
We proved that we can do it even with three hidden variables involved, e.g. trial label,
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quality states and clean score. We also explained how to estimate the parameters of the
network by expectation maximization iterations.

Our network can be employed for two purposes. First, to compute a posterior probability
for the reliability of the trial decision. That is done by computing the probability that the
clean score is over or under the threshold, what is obtained by integrating the posterior
distribution of the clean score. Trials with low reliability are rejected and, in that way, we
can assure that the rest of trials have a low error rate. Secondly, we can compute an improved
SV likelihood ratio given the observed score and the quality measures. Thus, we can also
apply this network to improve performance in applications where we require classifying all
the trials. Actual DCF considerably improved by using the improved likelihood ratio.

We experimented on NIST SRE augmented with noise and reverberation, Agnitio
benchmark and Ahumada datasets. The network was trained on NIST SRE08 and tested on
the rest of databases. We used the quality measures in Chapter 4 as input to the network.
We took the best results achieved in Chapter 5 as baseline for the experiments consisting in
rejecting unreliable trials. For most of the measures the newly proposed BN outperformed
the baseline BN with the same measure. If we compare the best results achieved by both
networks, we determine that, for NIST SRE10 + noise the new network clearly outperformed
the baseline; for NIST SRE10 + reverberation both were alike; and for NIST with noise and
reverberation the new one was slightly better. In general, the best measures for the three
datasets were VTS NR0−1 and NR0−1. Besides, the modulation index and N0−1 worked well
for noise; R0−2 for reverberation; and the UBM log-likelihood for noise and reverberation.
The experiments on Agnitio and Ahumada datasets demonstrated that the new network
generalizes better than the baseline.

We explained a procedure to select the operating point of the reliability detection system
based on minimizing the extended cost CQ. CQ assigns different costs for accepting badly
classified trials and for rejecting well classified trials. By applying this method on NIST
with noise and reverberation, we rejected 40% of trials, EER improved by 22% and actual
DCF by 83%.

Regarding the experiments with the quality dependent likelihood ratio, all the quality
measures yielded similar performance. For NIST datasets, we improved as much EER as
minimum and actual DCF. The most appealing result was that we were able to reduce
actual cost to values lower than one from initial cost as high as 4.5 without having to
discard trials. Thus, we can take decisions better than chance. On Agnitio and Ahumada,
it did not improve EER and minimum cost but it calibrated the scores and improved actual
cost by 77–85%.



Chapter 7

Bayesian Adaptation of Reliability
Models

7.1 Introduction

In the two previous chapters, we presented methods based on Bayesian networks to estimate
the reliability of speaker verification decisions. We experimented training the parameters
of the networks on artificial datasets where we added noise and/or reverberation to signals
assumed clean. The networks trained in this manner were evaluated on artificial and real
datasets achieving good performance. However, speech signals can be degraded due to
many factors. If the causes that degrade the dataset under test are very different from the
distortions present in the dataset used to train the BN the performance of the reliability
detector may fall severely. To overcome this issue, we need to be able to adapt the reliability
model to a new domain given a small amount of development data.

In this chapter, we continue working on the Bayesian network presented in Chapter 6.
We will explain how to adapt this kind of BN, trained on an outer domain dataset, to the
target domain by applying Bayesian methods. The Bayesian framework allows us to include
prior information in the training process. In our case, that prior will be the BN trained on
outer domain data. Bayesian methods are useful when the amount of adaptation data is
limited in which case the maximum likelihood solution would provide inaccurate estimates.

The chapter is organized as follows. Section 7.2 explains the theory to adapt the network
introduced in the previous chapter from one domain to another with scarce training data by
MAP estimation. The equations that arise are very similar to those of the MAP adaptation
of a GMM [Gauvain and Lee, 1994]. Section 7.3 presents experiments on the MOBIO
dataset. We compared results obtained with different measures and adapting different
parameters of the network. The obtained good results by re-calibrating scores for MOBIO
and, then, adapting the distributions that describe the quality measures and the variability
of the SV score. The VTS parameters were among the best measures. Finally, in Section 7.4
we summarize the chapter.
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7.2 Bayesian Adaptation of the Bayesian Network that

Models Score Variability

In the previous chapter, we introduced a Bayesian network that allowed us to model how
the score of a SV trial varies from the ideal score when the enrollment or test segments
are degraded. This BN defined a hypothetical clean score s as the SV score that we would
obtain from our SV system if the speech segments involved in the trial had optimum quality.
In general, the clean score is hidden. On the other hand, there was an observed score ŝ
that was the one given by the SV system. We also defined another hidden variable z, called
quality states, that represents the distortion types and/or levels that we could find. For
each value of z we are going to observe a different distribution of the quality measures and
a different amount of variation of ŝ with respect to s. The BN is defined by the following
conditional distributions:

P (s|θ) =N
(

s|µsθ ,Λ
−1
sθ

)

(7.1)

P (ŝ|s, zk = 1, θ) =N
(

ŝ|s+ µ∆skθ ,Λ
−1
∆skθ

)

(7.2)

P (Q|zik = 1) =
P
∏

p=1

N
(

Qp|µQpk
,Λ−1

Qpk

)

(7.3)

P (z) =
K
∏

k=1

πzk
zk
. (7.4)

The parameters of these distributions can be estimated by maximum likelihood by applying
the different versions of the EM algorithm explained in Section 6.6. If the amount of
available data to train the model is scarce, the maximum likelihood solution may provide
bad estimates. In this scenario, we can use Bayesian adaptation. The difference between
ML and the Bayesian approach is that, in the former, the parameters of the modelM are
simply point estimates, while in the latter they are random variables with prior distributions.
Priors are usually computed from a dataset with enough data to provide a good estimate
but that dataset does not exactly represent the target domain data. Given some data from
the target domain X, we compute the posterior distribution of the model given X and the
prior Π as

P (M|X,Π) = P (X|M)P (M|Π)
∫

P (X|M′)P (M′|Π) dM′
. (7.5)

The fully Bayesian approach employs the full posterior to integrate out the parameters of
the model when computing the probabilities of the test data given the different hypothesis.
In this way, it takes into account the uncertainty about the values of the parameters and
provides more accurate predictions. However, in most cases, we cannot apply this technique
because integrals involved are computationally non-tractable. Instead, the common practice
is to make a point estimate of the model parameters by taking the mode of their posterior
distribution:

MMAP = argmax
M

P (M|X,Π) . (7.6)

This is called maximum a posteriori (MAP) estimation.
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The first step of the Bayesian approach consists in choosing the form of the prior
distributions. The usual choice is selecting conjugate priors because it simplifies the
mathematics involved. A prior is conjugate for a likelihood function P (X|M) if the resulting
posterior has the same functional form as the prior. For the means and precisions of
the Gaussians P (s|θ), P (ŝ|s, z) and P (Q|z), we assigned Gaussian-Wishart priors (see
Appendix A):

P (µsθ ,Λsθ) =N
(

µsθ |µsθ0
, (β0Λsθ)

−1
)

W
(

Λsθ |Λsθ0
/ν0, ν0

)

(7.7)

P (µ∆skθ ,Λ∆skθ) =N
(

µ∆skθ |µ∆skθ0
, (β0Λ∆skθ)

−1
)

W
(

Λ∆skθ |Λ∆skθ0
/ν0, ν0

)

(7.8)

P
(

µQpk
,ΛQpk

)

=N
(

µQpk
|µQpk0

, (β0ΛQpk
)−1
)

W
(

ΛQpk
|ΛQpk0

/ν0, ν0

)

. (7.9)

Besides, we put a Dirichlet prior on the weights of the quality states:

P (πz) = Dir (πz|α0πz0) = C(α0)
K
∏

k=1

π
α0πzk0

−1

k (7.10)

where C(α0) is the normalization constant. The hyper-parameters µsθ0
, µ∆skθ0

, µQpk0
, Λsθ0

,
Λ∆skθ0

, ΛQpk0
and πz0 are the means, variances and weights respectively of the BN trained

by ML on the outer domain dataset. The parameters α0, β0 and ν0 are the relevance factors
for the weights, means and covariances respectively. They represent the effective number of
samples used to train each parameter of the prior. In practice, they are chosen manually by
the operator.

The EM procedure used for ML estimation can be modified to obtain the modes of the
posterior densities [Gauvain and Lee, 1994] by adding the log prior to the objective function:

QMAP(M) = QML(M) + lnP (M|Π) . (7.11)

The new EM algorithm has an E-step that is the same as for ML while the updating
equations of the M-step result similar to the MAP equations for a GMM. For the weights,
we obtain:

αk =α0πzk0 +Nk (7.12)

πzk =
αk − 1

∑K
k=1 αk −K

(7.13)

where Nk is the count of trials in the inner domain dataset assigned to the quality state k
during the E-step.

For the means and precisions of the clean score, the MAP updates are

βθ =Nθ + β0 (7.14)

νθ =Nθ + ν0 (7.15)

µsθ =
1

βθ

(

β0µsθ0
+NθµsθML

)

(7.16)

Λ−1
sθ

=
1

νθ − ds − 1

(

ν0Λ
−1
sθ0

+NθΛ
−1
sθML

+
β0Nθ

βθ

(

µsθML
− µsθ0

)(

µsθML
− µsθ0

)T
)

(7.17)
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for θ ∈ {T ,N}; ds is the dimension of the score vector that in our experiments is always 1;
Nθ is the number of adaptation trials for the target and non-target hypothesis and; µsθML

and ΛsθML
are the ML means and precisions obtained with the updating equations listed in

Section 6.6.
Similarly, the equations for the means and precisions of the ∆s distributions are

βkθ =Nkθ + β0 (7.18)

νkθ =Nkθ + ν0 (7.19)

µ∆skθ =
1

βkθ

(

β0µ∆skθ0
+Nkθµ∆skθML

)

(7.20)

Λ−1
∆skθ

=
1

νkθ − ds − 1

(

ν0Λ
−1
∆skθ0

+NkθΛ
−1
∆skθML

+
β0Nkθ

βkθ

(

µ∆skθML
− µ∆skθ0

)(

µ∆skθML
− µ∆skθ0

)T
)

(7.21)

for θ ∈ {T ,N} and k = 1, . . . , K. Nkθ is the number of adaptation trials for the target and
non-target hypothesis assigned to the state k and; µ∆skθML

and Λ∆skθML
are the ML point

estimates.
Finally, the means and precisions of the quality measures distributions are

βk =Nk + β0 (7.22)

νk =Nk + ν0 (7.23)

µQpk
=

1

βk

(

β0µQpk0
+NkµQpkML

)

(7.24)

Λ−1
Qpk

=
1

νk − dQp − 1

(

ν0Λ
−1
Qpk0

+NkΛ
−1
QpkML

+
β0Nk

βk

(

µQpkML
− µQpk0

)(

µQpkML
− µQpk0

)T
)

(7.25)

for p = 1, . . . , P and k = 1, . . . , K; dQp is the dimension of the measure vector Qp and;
µQpkML

and ΛQpkML
are the ML point estimates.

Note, that all the updating equations do, approximately, a weighted sum of the ML
and the prior parameters. As the number of adapting trials increases, the parameters value
approaches asymptotically to the ML solution.

7.3 Experiments

We experimented on the MOBIO database described in Section 3.4.2.6. The MOBIO dataset
counts with a development trial list to do things like calibration and an evaluation list. Our
prior BN was trained on NIST SRE08 with noise and reverberation with the version of the
EM algorithm that takes the clean score s and the quality states z hidden. We used the
MOBIO development for MAP adaptation of the BN and re-calibration and; the evaluation
to validate our approach.

7.3.1 Reliability detection

Figure 7.1 plots actual costs against the percentage of discarded trials for the prior BN.
This is the baseline of our experiments. We show results for the quality measures that
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Figure 7.1: % Discarded trials vs. actual DCF for MOBIO for a BN trained on NIST SRE08
+ noise and reverberation.

performed better on NIST SRE10. We remind the notation used for the quality measures.
Signal-to-noise ratio is denoted by SNR, modulation index by MI, entropy by H and UBM
log-likelihood by UBM-LLk. The term VTS N refers to the VTS coefficients with LDA
trained to discriminate between different levels of SNR and, VTS R is the same but with
LDA trained to discriminate between reverberation times. The numbers behind N or R
indicate the output dimension of the LDA projection, for example N0−1 means that we keep
the first two coefficients. When we write VTS NR, we mean that we concatenate the both
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Figure 7.2: % Discarded trials vs. actual DCF for MOBIO, comparison of adaptation
methods.
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Figure 7.3: % Discarded trials vs. actual DCF for MOBIO, comparison between adapting
the BN conditional distributions for Q, ∆s+Q or s+∆s+Q.

LDA projections, the one for noise and the one for reverberation. When we say that we use
All the measures we mean: SNR, MI, H, UBM-LLk, VTS NR0, jitter and shimmer. In the
same way as for the VTS parameters, the terms N , R and NR refer to LDA projections
of All the quality measures to discriminate noise or/and reverberation times. We denote
by FCov the networks where the distribution of the quality measures conditioned to each
quality state P (Q|zk = 1) for k = 1, . . . , K is a full-covariance Gaussian. Otherwise, it is a
product of full-covariance bi-dimensional Gaussians (equivalent to block diagonal Gaussian).
We had one of these bi-dimensional Gaussians for each quality measure employed by the
network. The first dimension of the Gaussian corresponded to the measure of the enrollment
segment, and the second one corresponded to the measure of the test segment.

The actual cost starts being 8.71 and it decreases slowly as we discard the trials with
lower estimated reliability. Once we discard 70% of the trials, the cost starts decreasing
faster. We need to remove 87% to achieve a cost lower than one–with the measures MI,
UBM-LLk, N0−2, R0−2 and NR0−1. If continue rejecting until 89%, we reach a cost under 0.1
with the measures MI, UBM-LLk and N0−2. Despite that we need to discard 90% of trials
to achieve good costs, the model performed well in the sense that the cost always decreased
as we discard trials. If we compare these curves with the ones obtained in Section 6.7.4
for Agnitio benchmark and Ahumada, we observe that, in those datasets, we obtained a
faster cost reduction (close to zero by just rejecting 30% of the trials). This could mean two
things. On the one hand, we could think that our model works properly and that most of
the trials of MOBIO are distorted. On the other hand, we could assume that the properties
of MOBIO are different than the properties of NIST SRE and that we need to adapt of
BN to this dataset. Following, we prove that we can achieve much better performance by
adapting the BN.

We considered three adaptation possibilities. First, we re-calibrated the scores by
logistic regression on the development set and evaluated the reliability with the BN without
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Figure 7.4: % Discarded trials vs. actual DCF for MOBIO, comparison between adapting
mean, mean+variances or mean+variances+weights in the BN distributions.

adaptation. Second, we adapted the BN to MOBIO without score re-calibration. Finally, we
re-calibrated the development and evaluation scores on the development set and adapted the
BN. We adapted all the parameters of the BN with αk = βk = νk = 25. These three options
are compared in Figure 7.2 using the measure NR0−1. By re-calibrating we improved the
actual cost from 8.71 to 0.61; however the BN without adaptation did not work well on the
re-calibrated scores making the cost to grow until one if we reject trials. If we only adapt
the BN, the curve is almost the same as without adaptation. The adapted curve is slightly
under the baseline from the rejection rate of 70%. To reduce the cost while rejecting a small
percentage of trials we needed to re-calibrate and adapt the BN at the same time. The
lowest cost achieved in this manner was 0.31 by discarding 15% of the trials. The fact that
re-calibration were needed to obtain a fast cost reduction seems to indicate that the clean
score distributions for NIST SRE and MOBIO are very different. The rest of experiments
that follow use both re-calibration and adaptation.

In Figure 7.3, we consider the possibility of adapting only some of the conditional
distributions of the BN. First, we only adapted the parameters of the distribution of quality
measures P (Q|z) (denoted by Q); second, the distributions of quality measures and the
distributions of the observed score given the clean score and the quality states P (ŝ|s, z)
(denoted by ∆s, Q); and third, all the distributions (denoted by s, ∆s, Q). The best results
were obtained by adapting everything but the clean score distribution. That means that
the estimation of s that we obtained during training is not good enough to be employed
to adapt the network. However, the curve corresponding to the second case is very good
showing a monotonous reduction of the cost. In the following experiments, we only adapt
the Q and ∆s distributions.

We also compared the possibility of adapting different parameters of the distributions:
only means; means and variances; and mean, variances and the weights of the quality
states πz. The results are shown in Figure 7.4. By adapting the means, we obtained a
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Figure 7.5: % Discarded trials vs. actual DCF for MOBIO with a BN MAP adapted and
several quality measures.

good improvement compared to non-adapting but we need to adapt mean and variances to
achieve the best performance. There was not a significant difference between also adapting
the weights and not doing it.

Finally, Figure 7.5 and Table 7.5 compare different quality measures on a BN with
score re-calibration and MAP adaption of the Q and ∆s distributions. Figure 7.5a displays
costs for BNs that use only one quality measure and Figure 7.5b for BNs that combine
multiple measures. The best performing measures were VTS NR0−1, the combination of All
measures, N0−2 and NR0−1. These results prove that our reliability models can be easily
adapted to new databases with different characteristics.

Table 7.1: % Discarded trials vs. actual DCF for MOBIO with a BN MAP adapted and
several quality measures.

Q
% Discarded Trials
25 50 75

MI 0.37 0.23 0.15
UBM-LLk 0.38 0.25 0.23
VTS N0 0.20 0.11 0.09
FCov VTS N0−1 0.33 0.34 0.19
FCov VTS R0−1 0.19 0.07 0.05
FCov VTS NR0−1 0.19 0.07 0.03

FCov SNR MI H UBM-LLK 0.28 0.15 0.10
FCov ALL 0.21 0.09 0.05
FCov N0−2 0.19 0.06 0.03
FCov R0−1 0.25 0.15 0.07
FCov NR0−1 0.18 0.06 0.02

No Adapt. 8.32 7.50 4.97
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Figure 7.6: CQ for the MOBIO development dataset.
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Table 7.2: EER(%)/DCF of quality dependent LLR on MOBIO with different adaptation
methods.

Q EER(%) minDCF actDCF

Standard LLR
Baseline 12.37 0.57 8.72
Baseline Re-cal 12.37 0.57 0.66

LLR(Q)
No adapt. 19.21 0.92 1.11
Re-cal 13.95 0.63 0.97
MAP 13.27 0.59 0.62
Re-cal+MAP 12.94 0.59 0.59

As we did in the previous chapter, we can use the extended cost function CQ to select the
operating point of the reliability detector. We applied the reliability detector with measure
NR0−1 to the development trials of MOBIO and plotted the CQ curves in Figure 7.6. We
chose the threshold that minimized CQ (ξR = 0.5). By applying that threshold on the
evaluation set, we kept 95% of the trials, which performed with EER=11.58% and actual
DCF=0.5. Compared to keeping all the trails without re-calibration, EER improves by 4.2%
and actual cost by 94.2%. Compared to using re-calibrated scores the actual cost improves
by 18%. Figure 7.7 shows the DET curve that we obtain with the accepted trials. We see
a larger improvement in the low false alarm region, the same as we saw for NIST SRE10.

7.3.2 Quality dependent likelihood ratio

In this section, instead of using the BN to reject unreliable trials, we use it to compute
the quality dependent SV likelihood ratio explained in Section 6.5. Afterwards, error rates
are computed on the new ratio. We tried different adaptation options whose performance
appears in Table 7.2. The first block corresponds to the case of using the likelihood ratio from
the standard verification system without using the BN. The Baseline correspond to the SV
ratio calibrated on NIST SRE08 clean data and the second line (Re-cal) corresponds to the
ratio calibrated on the development part of MOBIO. We observe that just re-calibrating we
were able to reduce most of the gap between minimum and actual costs. On the other hand,
the second block was obtained by using the quality dependent ratio. We used the measure
NR0−1, which obtained the best result in the reliability detection experiments. The first two
lines of the block use the BN without adaptation, the first one on scores calibrated on NIST
and the second one on the scores re-calibrated on MOBIO. Both reduced the actual cost
with regard to the baseline but they were worse than just re-calibrating. Besides, the EER
and minimum cost were worse than the baseline. The third line (MAP) used the network
adapted to MOBIO without re-calibrating the scores. We adapted all the parameters of the
network. In this case, the EER and minimum cost were slightly worse than the baseline but
the actual cost improved and it was a little bit better than for the re-calibrated standard
score. Finally, the fourth line (Re-cal+MAP) uses a BN adapted to MOBIO where the
scores were previously re-calibrated. In this last case, we adapted all the parameters of the
network but the means and variances of the prior clean score distributions P (s|θ). This
option provides the lowest actual cost being, for all the fields, slightly better than adapting
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the BN without re-calibrating. The actual DCF improves by 93% compared to the baseline
and by 10% compared to the baseline with re-calibration. With these results, we can say
that, for this database, just re-calibrating scores is enough and that the extra gain that
provides the BN may not be worthy compared to the complexity of the approach.

7.4 Summary

This chapter addressed the problem of adapting a reliability detection Bayesian network from
one domain with a large amount of development data to another with scarce development
data. We considered this problem because the degradations to which the signals are
subjected can be different in each dataset. We decided to apply a Bayesian approach.
The BN trained on the large dataset, e.g., NIST SRE with noise and reverberation, was
the model a priori. Then, we computed the posterior distribution of the model given the
adaptation data and the prior. The mode of the posterior was the adapted BN.

We experimented on the MOBIO dataset, which has two distinct trials lists: one
for adaptation and/or calibration; and another for evaluation. Regarding the reliability
detection experiments, to reduce the cost while rejecting a low number of trials, we needed
to re-calibrate the scores before adapting the network. We compared the cost curves
obtained by adapting different parameters of the networks. The Best results were achieved
by adapting the means and variances of the quality and ∆s conditional distributions while
leaving the clean score s distributions fixed. As in the previous chapter, the measures VTS
NR0−1 and NR0−1 were among the best performers.

Regarding the experiments with the quality dependent likelihood ratio, we attained a
small improvement of actual DCF (10 %) compared to just re-calibrating the scores by
logistic regression.





Part III

PLDA for Non-Colaborative
Environments





Chapter 8

Handling Recordings Acquired in
Multiple Environments with PLDA

8.1 Introduction

As we explained in Chapter 2, recent advancements, such as JFA and i-vectors, have allowed
speaker verification systems to attain great performance. Error rates are especially low in
conditions where recordings are acquired in clean environments and using always the same
types of microphones and transmission channels. This is the scenario presented in NIST
evaluations until SRE 2010. However, we evidenced in the Part II of this thesis that i-vectors
are still quite vulnerable to noise and reverberation. The problem aggravates when we have
trials that involve i-vectors recorded in very different channel conditions. For example, we
can find situations like enrollment on clean speech and test on low signal-to-noise ratio
speech; enrollment on telephone speech and test on a far-field microphone recording; mixed
enrollment on several segments, each one of them captured from a different source; etc. In
this chapter, we address the problem of how to model the i-vector distribution in this kind
of scenarios.

The problem of multi-channel speaker recognition has been addressed before. The works
in [Senoussaoui et al., 2010, Dehak et al., 2011a, Senoussaoui et al., 2011b,McLaren and
Leeuwen, 2011a,McLaren and Leeuwen, 2011b,McLaren and Leeuwen, 2012], present similar
approaches. Some kind of linear discriminant analysis (LDA) is applied to telephone and
far-field microphone i-vectors to project them into a common space. Then, i-vectors are
classified with cosine distance or probabilistic linear discriminant analysis (PLDA). The
main difference between approaches is the method used to estimate the LDA projection
matrix. In [Senoussaoui et al., 2010], two strategies were compared: weighting and pooling.
Weighting is based on computing separate between and within class covariance matrices for
telephone and microphone data. The weighted averages of the microphone and telephone
matrices are used to compute the LDA projection. Pooling consists in training the LDA
matrices on all the microphone and telephone data together. Weighting yielded the best
results. In [Dehak et al., 2011a], authors project i-vectors by computing the speaker factors
vector of a PLDA where the covariance of the residual term is only trained on telephone data
and the eigen-channel matrix is trained on microphone data in such way that it captures
the variability of the microphone data that is not already included in the telephone data.
In [Senoussaoui et al., 2011b], i-vectors were projected with a heavy tail PLDA trained on
pooled telephone and microphone. In [McLaren and Leeuwen, 2011a,McLaren and Leeuwen,
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2011b,McLaren and Leeuwen, 2012], several ways of estimating and averaging the between
and within class covariance matrices were studied.

A different approach was adopted in [Lei et al., 2012] where standard PLDA is trained
using pooled clean and noisy data. In [Simonchik et al., 2012], authors trained three
conditioned PLDA models (telephone, microphone and telephone+microphone). In the
classification phase, the models are treated as components of a mixture of PLDA and
Bayesian fusion of scores is implemented. In [Garcia-Romero et al., 2012], several PLDA
variants are explored (condition dependent, pooled PLDA, tied PLDA) and the scores fused.

The standard PLDA model describes the inter-session variability between the i-vectors of
a given speaker by a unique within-class covariance matrix. Intuition tells us that, as session
variability is very dependent on the channel conditions, we should use different within-class
matrices for each channel. Intending to approach the problem in a principled way, we tried
a variant of Prince’s tied PLDA [Prince and Elder, 2007] where i-vectors are modeled with
a common between-class covariance but with a different within-class covariance depending
on their channel type. This model can also be seen as a mixture of PLDA models where the
speaker term is tied to be the same across the components. This framework allows pooling
all the data available to estimate the PLDA parameters in such a way that the speaker space
is estimated with all the data and the channel spaces are estimated only with the data of
their corresponding channel.

This chapter is organized as follows: Section 8.2 describes the standard PLDA model,
including the way of computing the latent variable posteriors and the multiple flavors of
trial evaluation. Section 8.3 describes the proposed multi-channel PLDA framework. This
covers computing the latent factors posteriors, EM algorithm form model training, multi-
channel version of centering and whitening as previous step to length normalization, and
trial evaluation variants. Section 8.4 describes our experimental setup including datasets,
performance evaluation and system configuration. We experimented on NIST SRE12–
dataset that includes different types of noise. The PLDA models were trained on NIST
SRE04-10 augmented with additive noise. Section 8.5 shows results comparing different
classifiers, different types of enrollment lists and trial evaluation methods. It also compares
results with different noise types and levels. Finally, Section 8.6 summarizes the chapter.

8.2 Simplified PLDA

8.2.1 Model description

Probabilistic linear discriminant analysis (PLDA) [Prince and Elder, 2007] is a generative
model that decomposes i-vectors into a speaker dependent term and channel dependent
term. Thus, an i-vector φij corresponding to the jth recording of a speaker i can be written
as

φij = µ+Vyi +Uxij + ǫij (8.1)

where µ is a speaker independent term, V is a low-rank matrix of eigen-voices, yi is the
speaker factors vector, U is a low-rank eigen-channels matrix, xij is the channel factors
vector and ǫij is another channel offset accounting for the residual variability not included
in U. It is understood that the term channel is a synecdoche, representing the causes that
make a speaker’s recordings vary from one occasion to the next, rather than just physical
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transmission and recording channels. Variables yi, xij and ǫij are hidden with priors:

yi ∼ N (yi|0, I) (8.2)

xij ∼ N (xij|0, I) (8.3)

ǫij ∼ N
(

ǫij|0,D−1
)

(8.4)

where N denotes the Gaussian distribution; and D is a diagonal precision matrix.
The simplified version of PLDA (SPLDA) disregards the eigen-channel term by simply

writing the i-vector as:

φij = µ+Vyi + ǫij (8.5)

where the prior for ǫij is Gaussian

ǫij ∼ N
(

ǫij|0,W−1
)

(8.6)

with full-precision matrix W. If U is full-rank, simplified PLDA is equivalent to the full
PLDA model where W−1 = UUT +D−1.

The parameters µ, V and W are trained on a development database by maximizing
the data likelihood with expectation maximization (EM) iterations. Derivations for the
EM equations can be found in Appendix C. We denote by M the set of all the model
parameters.

8.2.2 Posterior of the hidden variables

The posterior of the hidden variables given the observed data is an useful distribution to
train the model as well as to evaluate the trials. For this model, the posterior of the speaker
variables yi given the i-vectors Φi of speaker i is a Gaussian distribution given by

P (yi|Φi,M) = N
(

yi|L−1
i γi,L

−1
i

)

(8.7)

where

Li =I+NiV
TWV (8.8)

γi =VTWFi ; (8.9)

Ni are the number of segments of speaker i; and Fi are the first order statistics of speaker
i centered in µ:

Fi =

Ni
∑

j=1

φij − µ . (8.10)

8.2.3 Trial evaluation

Given a set of enrollment i-vectors Φenroll = {φ1, . . . , φN} from a known speaker and a test
i-vector φtst from an unknown speaker, trial evaluation consists in computing a likelihood
ratio between the hypothesis that Φenroll and φtst were uttered by the same speaker–target
hypothesis T –, and the hypothesis that they were uttered by different speakers–non-target
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hypothesis N . In the PLDA context, the target hypothesis implies that all the i-vectors in
Φenroll and φtst share the same value of the speaker factor y while the non-target hypothesis
implies that they do not. Thus, the likelihood ratio is computed as:

R (Φenroll, φtst) =
P (Φenroll, φtst|T )
P (Φenroll, φtst|N )

=

∫

P (Φenroll, φtst|y)P (y) dy
∫

P (Φenroll|y1)P (y1) dy1

∫

P (φtst|y2)P (y2) dy2

.

(8.11)

We can avoid solving the integrals by manipulating the ratio as shown in [Brummer and
De Villiers, 2010] where it is written as a function of the y posteriors:

R (Φenroll, φtst) =
P (y|Φenroll,M)P (y|φtst,M)

P (y|Φenroll, φtst,M)P (y)

∣

∣

∣

∣

y=y0

. (8.12)

Note that the left hand side of the equation does not depend on y so neither does the right
hand side, even though y appears explicitly. That means that, eventually, y will simplify
so we can evaluate the ratio for whatever value y0 that we find convenient, for example,
y0 = 0.

The above equations are the more accurate from the point of view of the probability
theory. This form of evaluation is popularly known among the community as by the book
evaluation. However, results evidence that, when there are more than one enrollment
segment, it does not provide the lowest error rates. It has been observed that trials with
different number of enrollment segments exhibit different ranges of target and non-target
scores. This miss-alignment causes a performance loss. Another issue is that, when we have
many enrollment segments, we may be underestimating the covariance of the y posterior.
That is, we are too over-confident about the value of the speaker factor. Equation (8.8) shows
that the covariance of the posterior is smaller as the number of speaker samples increases.
However, we obtain this result because the model assumes that the channel offsets of a given
speaker are independent and identically distributed (i.i.d.), which is not true in practice.
The inter-session variability term can depend on the speaker in many ways. For example, it
depends on the telephone handsets that he owns. This fact implies that, each new i-vector
from a given speaker adds less new information than the previous ones so it should not be
counted as one new unit of information but less. Thus, the value of Ni in (8.8) should be
lower than the actual number of i-vectors or speaker i and, thus, the covariance would be
larger.

The method of i-vector averaging proposes to replace the enrollment i-vectors with an
unique i-vector computed as the average of them:

Riv−avg (Φenroll, φtst) =
P
(

1
N

∑N
i=1 φi, φtst|T

)

P
(

1
N

∑N
i=1 φi, φtst|N

) . (8.13)

This method does not suffer from the problems above described. Besides, i-vector averaging
provided the lowest error rates in our experiments as we will show in Section 8.5.

Another method that attains a performance close to i-vector averaging is scoring
averaging. The method consists in computing the log-likelihood ratios between each
enrollment i-vector and the test i-vector and, afterward, the log-ratios are averaged:

lnRs−avg (Φenroll, φtst) =
1

N

N
∑

i=1

ln
P (φi, φtst|T )
P (φi, φtst|N )

. (8.14)
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Figure 8.1: BN for multichannel SPLDA model.

This method has higher computational cost than i-vector averaging because it involves the
calculus of many more likelihood ratios. However, in our experiments, it did not provide
better performance.

8.3 Multi-Channel SPLDA

8.3.1 Model description

SPLDA deals with all types of inter-session variability with an unique within-class
covariance. Intuition suggests that i-vector variability will be very different as a function
of the type of channel (telephone, far-field microphone) or the noise type and level. In this
section, we modify SPLDA to take into account the fact that each i-vector can be generated
in different channel conditions. The new model, which we called multi-channel SPLDA
(MCSPLDA), decompose the i-vector φij, in the same manner than standard SPLDA:

φij = Vyi + ǫij , (8.15)

but, this time, the distribution of the channel offset depends on the type of channel k where
the i-vector is generated:

ǫij|zijk = 1 ∼ N
(

ǫij|µk,W
−1
k

)

(8.16)

where µk is a channel dependent bias, and Wk is the channel dependent within-class
precision matrix. We also define the sets µ = {µk}Kk=1 and W = {Wk}Kk=1. The variable
zij indicates the type of channel of φij . If there are K channel types, zij is a 1-of-K binary
vector with elements zijk for k = 1, . . . , K, where zijk = 1 if φij has been generated in
channel k and zijk = 0 otherwise. For simplicity, we assumed that we have some kind of
channel detector that provides the value of zij , or at least a probability P (zijk = 1) for it.
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Figure 8.1 depicts the Bayesian network that describes this model. There areM speakers
with Ni i-vectors per speaker. φij are observed variables while yi and zij are hidden; θij are
the speaker labels assumed known in the training phase; and µ, W and V are deterministic
parameters derived by maximum likelihood. Additionally, we denote by Φi the set of i-
vectors of speaker i; and by zi = {zi1, . . . , ziNi

} the channel assignments for i. The set of
all the model parameters is again denoted byM.

Note that MCSPLDA is equivalent to a mixture of PLDA models where V and y are
tied across the components of the mixture. This model maintains the speaker space V
independent of the channel; since speakers are human beings their voices should be the
same in every recording environment. Furthermore, the model forces the speaker variable
yi to be unique regardless of the channel.

8.3.2 Posterior of the hidden variables

We need the posterior of the latent factors given the i-vectors to train the model by
EM iterations and for efficient evaluation of the trial log-likelihood ratios. First, we find
convenient to define the channel dependent sufficient statistics. The zeroth and first order
sufficient statistics for speaker i and channel k are defined as:

Nik =

Ni
∑

j=1

P (zijk = 1) (8.17)

Fik =

Ni
∑

j=1

P (zijk = 1)φij (8.18)

where Ni is the number of i-vectors of speaker i and P (zijk = 1) is the probability for φij

to be generated by channel k. Besides, we define the channel centered statistics as:

Fik =Fik −Nikµk . (8.19)

It can be shown that, the posterior of yi given Φi and zi is Gaussian distributed as:

P (yi|Φi, zi,M) = N
(

yi|L−1
i γi,L

−1
i

)

(8.20)

where

Li =I+
K
∑

k=1

NikV
TWkV (8.21)

γi =
K
∑

k=1

VTWkFik . (8.22)

The derivation of this result can be found in Appendix D.
Note that (8.20) does not average the channel covariances to estimate the expectation of

yi as in other works like [McLaren and Leeuwen, 2012]. Instead, the channel dependent first
order statistics Fik are multiplied by the precision matrix of their corresponding channel
Wk and, then, summed. In theory, this model should robustly estimate the speaker identity
variable when we have many i-vectors produced in a wide variety of channels.
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8.3.3 Model training

The model is trained by expectation maximization maximum likelihood and minimum
divergence iterations. Proofs for the equations in these sections can be found in Appendix D.

8.3.3.1 Maximum likelihood step

The likelihood of the training data is maximized by maximizing the EM auxiliary function
Q(M) with respect to the model parameters:

Q(M) =
M
∑

i=1

EY [lnP (Φi|yi, zi,M)] + EY [lnP (yi)] . (8.23)

If we derive Q with respect to µk and V, we obtain that the optimum for µk is

µk =
1

Nk

(Fk −VAk) . (8.24)

with k = 1, . . . , K; and the optimum for V is computed by solving the linear equation
system:

K
∑

k=1

(

BT
k ⊗Wk

)

vec(V) = vec(D) (8.25)

where ⊗ is the Kronecker product; vec() is the vectorization operator that converts the
matrix into a column vector by stacking its columns; and we conveniently defined the
following identities:

Ryk =
M
∑

i=1

NikEY

[

yiy
T
i

]

(8.26)

Ak =
M
∑

i=1

NikEY [yi] (8.27)

Bk =Ryk −
1

Nk

AkA
T
k (8.28)

Ck =
M
∑

i=1

FikEY [yi]
T (8.29)

D =
K
∑

k=1

Wk

(

Ck −
1

Nk

FkA
T
k

)

. (8.30)

We also need the expectations of the latent factors that are given by

EY [yi] =γiL
−1
i (8.31)

EY

[

yiy
T
i

]

=L−1
i + EY [yi] EY [yi]

T . (8.32)

By deriving Q with respect to W−1
k , we obtain the optimum for the within-class

covariances:

W−1
k =

1

Nk

(

Sk − Fkµ
T
k − µkF

T
k +Nkµkµ

T
k

−CkV
T −VCT

k + µkA
T
kV

T +VAkµ
T
k +VRykV

T
)

(8.33)
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where we need to plug-in the channel dependent global sufficient statistics:

Nk =
M
∑

i=1

Ni
∑

j=1

P (zijk = 1) (8.34)

Fk =
M
∑

i=1

Ni
∑

j=1

P (zijk = 1)φij (8.35)

Sk =
M
∑

i=1

Ni
∑

j=1

P (zijk = 1)φijφ
T
ij . (8.36)

Note that the means µk depend on the value of V; V depend on Wk; and the
precisions Wk depend on both V and µk. These dependencies make necessary to update
the parameters iteratively until convergence.

8.3.3.2 Minimum divergence step

A thorough discussion of minimum divergence (MD) estimation can be found in [Brummer,
2009]. To carry out the MD step, first, we need to assume a general prior for y, instead of
a standard normal prior (N (y|0, I)):

P (y) = N
(

y|µy,Λ
−1
y

)

. (8.37)

Thus, our model M = (µ,V,W, µy,Λy) has two new parameters. The resulting model
is an over-parametrized model, that is, the parametrization is redundant because we could
find another set of parametersM′ = (µ′,V′,W′) that meets the equivalence:

(µ,V,W, µy,Λy) ≡ (µ′,V′,W′,0, I) . (8.38)

If the maximum likelihood step converges without being trapped into a local maximum
of the objective function, eventually, the prior of y will be standard normal. Meanwhile,
the distribution of y is the above generic Gaussian. The MD step consists in estimating µy

and Λy, and, thereafter, obtaining the equivalent model that makes µy = 0 and Λy = I.
This step is called minimum divergence because, in practice, when we transform the model
we are minimizing the divergence between the standard and the generic prior. If has been
observed that applying the minimum divergence step between maximum likelihood steps
helps to escape saddle point and speeds up the convergence of the EM algorithm.

To obtain the optimum values for µy and Λy, we maximize the term of the EM auxiliary
that corresponds to the prior of y:

Q(µy,Λy) =
M
∑

i=1

EY

[

lnN
(

yi|µy,Λ
−1
y

)]

. (8.39)

We obtain that

µy =
1

M

M
∑

i=1

EY [yi] (8.40)

Σy =Λ−1
y =

1

M

M
∑

i=1

EY

[

yiy
T
i

]

− µyµ
T
y . (8.41)
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(a) Without centering and whitening.
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(b) With centering and whitening.

Figure 8.2: Multi-channel length normalization. Samples with borders in red belong to
channel 1 and samples with borders in blue belong to channel 2. Length normalized samples
have borders in black. The fill colors indicate different speakers.

Now, we need a transform y = ψ(y′) such as y′ has a standard prior. That is

y =µy + (Σ1/2
y )Ty′ . (8.42)

Finally, this transform is used to make µk and V to absorb the effect of the non-standard
prior:

µ′
k =µk +Vµy (8.43)

V′ =V(Σ1/2
y )T , (8.44)

where Σ
1/2
y is the upper triangular Cholesky decomposition of Σy.

8.3.4 Multichannel i-vector length normalization

The technique popularly known as length normalization consist in dividing the i-vector by
their magnitude so its norm become one:

φ̂ =
φ

‖φ‖ . (8.45)

The results shown in Chapter 2, evidence that by length normalizing the i-vector
before classification, performance greatly improves. For high dimensional data, length
normalization transforms the i-vector distribution, which is naturally heavy tailed, into
something closer to a Gaussian [Garcia-Romero and Espy-Wilson, 2011]. Thus, we can
apply the simple and computationally efficient Gaussian models to describe the i-vector
distributions while attaining good performance.

In order to perform length normalization successfully, previously, we need to center and
whiten the i-vector distribution. Centering places the i-vector distribution in the origin of
coordinates. Meanwhile, whitening rotates and scales the distribution to decorrelate the
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Figure 8.3: Trial evaluation with length normalization and MCSPLDA.

i-vector dimensions and equalize the variances in all directions. There are several ways of
centering and whitening a distribution. One of them consists in computing the expectation of
the speaker variable y of the SPLDA model i-vector by i-vector. As the prior of y is standard
normal, the vectors obtained in this manner are, by definition, centered and whitened. If
the matrix V of the SPLDA is full-rank we just center and whiten the i-vector but if it is
not, we also reduce its dimension discriminatively. If we have i-vectors from different types
of channels, we can perform channel dependent centering and whitening by computing the
expectation of the speaker variable with a MCSPLDA model. That expectation is given by

φc =

(

I+
K
∑

k=1

P (zk = 1)VTWkV

)−1 K
∑

k=1

P (zk = 1)VTWk (φ− µk) (8.46)

where φ and φc are i-vector before and after centering and whitening; and P (zk = 1) are
the probabilities for the i-vector to belong to each one of the channels. Note that we used
soft values for P (zk = 1).

Figure 8.2 depicts the process of multi-channel length normalization. There are two
channels types, samples with borders in red correspond to channel 1 and samples with
borders in blue correspond to channel 2. Length normalized i-vectors from both channels
have their borders in black. There are three speakers denoted by different fill colors (red,
green and blue). Subfigure 8.2a plots the case where we length normalize the i-vectors
without doing centering and whitening. We can see that samples from different speakers
are projected very close together making i-vectors less discriminative. Meanwhile, there
are samples from the same speaker that are projected to different sides of the unit hyper-
sphere. Subfigure 8.2b plots the case where i-vectors are centered and whitened. In this
case, normalized i-vectors are evenly distributed around the hyper-sphere. Besides, i-vectors
from the same speaker are projected to the same region of the hyper-sphere.

Figure 8.3 shows the block diagram of a system that uses multi-channel length
normalization. Note, that the system uses two different MCSPLDA models. The first model
(MCSPLDA 1) is trained on non-normalized i-vectors. We use MCSPLDA 1 to compute the
centered i-vectors φc. Then, we length normalize the i-vectors to obtain φ̂. Finally, trials
are scored by a second MCSPLDA model. MCSPLDA 2 is trained on length normalized
i-vectors.

8.3.5 Trial evaluation

As with SPLDA, we can adopt different approximations to evaluate likelihood ratios with
MCSPLDA. The expression for the theoretically correct way of evaluation is equivalent to
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the one of SPLDA:

R (Φenroll, φtst, zenroll, ztst) =
P (Φenroll, φtst|zenroll, ztst, T )
P (Φenroll, φtst|zenroll, ztst,N )

(8.47)

=
P (y|Φenroll, zenroll,M)P (y|φtst, ztst,M)

P (y|Φenroll, φtst, zenroll, ztst,M)P (y)

∣

∣

∣

∣

y=0

, (8.48)

where the posterior distributions also depend on the channel assignments (zenroll and ztst)
of the enrollment and test i-vectors, as shown in (8.20).

Having enrollment i-vectors from different channels, it may be the case that there are
more i-vectors from one of the channels than from the others. If we attained perfect channel
compensation, this would not be an issue. However, in practice, channel compensation is
never ideal so the dominant channel has a larger weight on the y posterior. To prevent this,
we proposed to scale the i-vector sufficient statistics (Nik, Fik) so that all channel types

have the same number of effective i-vectors Neff . The scaled statistics N ′
ik and F

′

ik are

N ′
ik = Neff , F

′

ik =
Neff

Nik

Fik, k = 1, . . . , K . (8.49)

Then, we just plugged-in the scaled statistics into (8.20) to compute the y posterior. Thus,
we maintain the average i-vector per channel constant while we make the i-vectors to count
as if there were Neff of them. Besides, the value of Neff controls the variance of the posterior.
Selecting a low Neff the posterior becomes wider and avoids being over-confident about the
value of y, which may happen due to the i.i.d. assumption, as we explained before.

Another option is to do something similar to i-vector averaging. We make the enrollment
i-vectors to count like only one i-vector by scaling the sufficient statistics as:

N ′
ik =

Nik
∑K

k=1NiK

, F
′

ik =
1

∑K
k=1NiK

Fik, k = 1, . . . , K . (8.50)

Thus, we can compare the i-vector averaging scores for SPLDA and MCSPLDA. Finally, we
also can do scoring averaging:

lnRs−avg (Φenroll, φtst, zenroll, ztst) =
1

N

N
∑

i=1

ln
P (φi, φtst|zi, ztst, T )
P (φi, φtst|zi, ztst,N )

. (8.51)

where we score each enrollment i-vector against the test i-vector and, then, the scores are
averaged.

8.3.6 Channel detection

When the channel where the i-vector was recorded is unknown, we estimate the probabilities
P (zk) based on a set of quality measures Q. Our measures were signal-to-noise ratio,
modulation index, spectral entropy and UBM log-likelihood. These measures were computed
as described in Chapter 4. For each channel type, we trained a mixture of Gaussians P (Q|z).
Then, the posterior probability for each channel was computed as:

P (zk = 1|Q) =
wkP (Q|zk = 1)

∑K
k=1wkP (Q|zk = 1)

(8.52)

where wk were the channel priors. In our experiments, we defined 6 channel types (telephone
and far-field microphones × 3 noise levels: clean, 15 dB and 6 dB) and trained a GMM of
8 Gaussians for each one of them.
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8.4 Experimental Setup

8.4.1 Evaluation database

We evaluated the multiples PLDA flavors on the NIST SRE 2012 dataset [NIST Speech
Group, 2012]. In previous evaluations, the enrollment data was released, together with the
test data, at evaluation time. The core condition just consisted in comparing one enrollment
segment with one test segment. In NIST SRE12, most of the target speakers were taken
from evaluations NIST SRE06 to SRE10. To enroll each speaker, organizers allowed us to
use all the available segments. Thus, the core condition, instead of posing a 1 side against 1
side scenario, represented a N sides versus 1 side scenario. Another difference with previous
evaluations was that we could use the enrollment speakers during the development phase of
the system (training of the UBM, i-vector extractor, calibration, score normalization, etc.).
Furthermore, NIST SRE12 proposed new challenges like speech with artificially added noise,
speech collected in noisy environments and segments of different duration.

NIST SRE12 had 1918 target speakers in total (763 male + 1155 female), of which 1818
speakers were from previous evaluations and 100 speakers were new speakers–released at
evaluation time. The evaluation proposed a core and an extended core condition with more
trials that allowed us to compute the error rates more accurately. We present results on
the extended condition. Because of the multiple types of test conditions and the disparity
in the numbers of trials of different types, it is not appropriate to simply pool all trials as
a primary indicator of overall performance. Rather, the core conditions trials were divided
into five common conditions–subsets of trials that satisfy additional constraints–to better
foster system comparison:

• Det1: All trials involving multiple segment enrollment and interview speech in test
without added noise in test. It consisted of 23681 test segments and 22338663 trials.

• Det2: All trials involving multiple segment enrollment and phone call speech in test
without added noise in test. It consisted of 24977 test segments and 12408306 trials.

• Det3: All trials involving multiple segment enrollment and interview speech with
added noise in test. It consisted of 18449 test segments and 17254299 trials.

• Det4: All trials involving multiple segment enrollment and phone call speech with
added noise in test. It consisted of 22058 test segments and 9603225 trials.

• Det5: All trials involving multiple segment enrollment and phone call speech
intentionally collected in a noisy environment in test. It consisted of 5483 test segments
and 5200758 trials.

As all common conditions involved enrollment with multiple segments and new speakers
had only one enrollment segment, new speakers were not scored in the common conditions.

Noises added to the test segments were of different types: babble, HVAC (heating,
ventilation, and air conditioning), and single speaker. The power of the noise was selected
to produce signal-to-noise ratios of 15 and 6dB. Babble noises were created by adding a
large number of conversations.



8.4 Experimental Setup 153

8.4.2 Development database

We created a development dataset that took into account the new scenario presented by
NIST SRE12. The data from previous evaluations was divided into two parts:

• Training: This part included all the signals from SRE04–06 and 70% of the signals
from SRE08 and SRE10. We used it to train UBM, JFA and PLDA; and to enroll the
target speakers.

• Evaluation: We reserved a 30% of the speech in SRE08 and SRE10 to create a test set
for training calibration and evaluating our system. It included short telephone calls,
short and long interviews and 10 seconds calls.

Speech segments extracted from the same phonecall or interview (same ldc-id) were placed
either in the training part or in the evaluation part but not in both.

Both parts of the dataset were augmented by adding babble and HVAC1 noises with
signal-to-noise ratios of 15 and 6 dB, following NIST SRE12 guidelines. Babble noises were
created by averaging 1000 conversations from previous evaluations. Different noise samples
were added to the training and evaluation sets. The power of the noise and speech signals
was estimated with a psophometric filter and a VAD. Based on them, the power of the noise
was modified to obtain the desired SNR. The noise added to telephone segments was filtered
by a simulated telephone channel.

Adding noisy versions, our training set included 66457 male and 87826 female segments
from 982 male and 1372 female speakers. The evaluation set included 15585 male and 21902
female segments. We scored all the NIST SRE12 target speakers from previous years against
all the test segments. Thus, we produced 11267955 male and 23982690 female trials.

The enrollment lists were composed of segments from the training subset without added
noise. We compare results with three different enrollment lists:

• AllLDCId: all the telephone and interview segments. Each interview was recorded
simultaneously by 13 different channels. This list included all the channels.

• 1LDCId: all the telephone segments and only one channel by interview.

• PHN: all the telephone segments without any interviews.

8.4.3 Performance measure

We report results in terms of the new primary cost function defined in [NIST Speech Group,
2012]. This was the average of two detection cost functions (DCF) computed in two different
operating points: PT = 0.01 and 0.001 (NIST SRE10 operating point). This was intended
to improve the stability of the cost measure and to increase the importance of good score
calibration over a wider range of log-likelihoods. Another novelty was that NIST SRE12
computed separate false acceptance rates for known non-targets–impostors that are in the
set of target speakers–and unknown non-targets–impostors that are not enrolled into the
system. We do a weighted sum of both rates using the prior probability of known non-target
Pknown:

PFA = PknownPFA|known + (1− Pknown)PFA|unk (8.53)

1We downloaded HVAC noises from Freesound.org
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where Pknown = 0.5. Then, the DCF is computed normally as:

C(PT ) = CMissPT PMiss + CFA(1− PT )PFA , (8.54)

where the miss and false acceptance costs were CMiss = CFA = 1. To improve the intuitive
meaning of the cost, it was normalized by dividing it by the best cost that could be obtained
without knowledge of the input data:

CNorm(PT ) =
C(PT )

CMissPT
. (8.55)

Actual detection costs were computed by applying the Bayes decision threshold −logit(PT )
to the calibrated scores.

The primary performance measure of the evaluation was the average:

CPrimary =
CNorm(0.01) + CNorm(0.001)

2
. (8.56)

8.4.4 SV system configuration

8.4.4.1 i-Vector Extraction

The acoustic features of the system consisted of 20 MFCC (C0−C19) with deltas and double
deltas. Short-time Gaussianization [Pelecanos and Sridharan, 2001] was applied after silence
removing.

Voice Activity Detection (VAD) was based on the long-term spectral divergence (LTSD)
of the signal [Ramirez et al., 2004]. For phonecalls, where two channels are available,
namely target channel and reference channel, the reference channel was used for cross-talk
removal by comparing the energy in both channels. For interviews and microphone recorded
phonecalls the channel energies were unbalanced so we could not remove the interviewer
based on them. We followed the following steps:

1. We ran the VAD in both channels. We used a restrictive energy threshold on the
reference channel to try to eliminate the target speaker. Then, we subtracted the
VAD from the reference channel from the target channel.

2. If we eliminate more than 50% of the frames, we conjectured that we might be
eliminating too much speech from the target speaker.

3. In that event, we ran a diarization system based on Bayesian information criterion and
agglomerative hierarchical clustering (BIC + AHC) [Vaquero, 2011] on the reference
channel. The cluster with more energy was assumed to correspond to the reference
speaker. Then, we subtracted the reference speaker from the VAD of the target
channel.

4. Finally, when we pruned more than 75% of the frames, we assumed that there was
few speech from the interviewer and we kept all the frames of the target channel.

We trained full covariance, gender dependent UBMs with 2048 Gaussian components.
We used a 600 dimension i-vector extractor. All UBM and i-vector extractors were trained
on telephone data from the training part of our development dataset without added noise
by ML+MD iterations.
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We reduced the i-vector dimensionality to 400 by using SPLDA or MCSPLDA. That has
the side effect of centering and whitening the i-vectors, as explained in Section 8.3.4. Then,
we applied i-vector length normalization.

8.4.4.2 PLDA

SPLDA and MCSPLDA were trained on the pool of clean and added noise data from
the training part the development dataset. Each system had two PLDA models, one for
whitening the i-vectors–trained on plain i-vectors–and another for scoring the trials–trained
on length normalized i-vectors. The types of both PLDA were matched, that is, we used
either SPLDA in both steps or MCSPLDA in both steps.

The model parameters were estimated by ML+MD iterations. For MCSPLDA, we
considered 6 channels: telephone and microphone times 3 noise levels (clean, 6dB and
15 dB). We tried two estimation procedures:

• Simple: V, µk, and Wk for k = 1, . . . , 6 were estimated all together from scratch on
pooled clean and noisy data.

• Progressive: We trained V, µphn and Wphn on clean telephone data. Then, µmic and
Wmic were initialized with the values of µphn and Wphn, and re-estimated on clean
microphone data. Finally, we added four µk andWk for the channels with noise added,
we initialized them with the parameters of the clean channels, and we re-estimate them
on pooled clean and noisy data.

In the test phase, where the noise level was not given, we estimated the channel type
with (8.52) where we chose wclean = w15dB = w6dB = 1/3. We trained channel detection
models on data from NIST SRE04–08 with noise added. The accuracy of this classifier for
the training dataset was around 99%.

8.4.4.3 Calibration

We calibrated the scores by linear logistic regression with the Bosaris toolkit [Brummer and
De Villiers, 2011] where we plugged-in a target prior PT = 0.0055, which is the average of
the two operating points of the evaluation. Calibration was gender dependent.

We computed the compound likelihood ratio for the calibrated likelihood ratios as
explained in [Brummer, 2012]. The idea of computing a compound likelihood ratio comes
from the fact that NIST SRE12 rules allowed using the data from other target speakers to
evaluate the trial. Thus, we can compute the posterior for the target hypothesis as:

P (T |D) = PT P (D|S1)

(1− PT )(1− Pknown)P (D|unk) + PT P (D|S1) + (1− PT )
Pknown

M−1

∑M
i=2 P (D|Si)

(8.57)

where, without loss of generality, S1 is the speaker under test and S2, . . . , SM are the rest of
speaker enrolled in the system; D are the enrollment i-vectors from all the speakers plus the
test i-vector; and Pknown = 0.5. We can write that posterior as a function of the likelihood
ratios:

P (T |D) = PTR1

(1− PT )(1− Pknown) + PTR1 + (1− PT )
Pknown

M−1

∑M
i=2Ri

. (8.58)
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If the likelihood ratios Ri are well-calibrated, this posterior allows to make cost-effective
speaker recognition decisions. The posterior depends on the prior PT . In contrast, the
likelihood ratios Ri provide prior independent information. We can obtain a likelihood ratio
independent of PT , which we call compound likelihood ratio R′, as:

R′ =
P (T |D)

1− P (T |D)
1− PT

PT
(8.59)

=
R1

1− Pknown +
Pknown

M−1

∑M
i=2Ri

. (8.60)

By applying the threshold −logitPT to R′ we can easily evaluate the actual DCF of the
system for multiple values of PT .

8.5 Experiments Results

8.5.1 Classifier Type and enrollment lists analysis

In Table 8.1, we compare our three classifiers (SPLDA, MCSPLDA with simple training
mode and MCSPLDA with progressive training mode) evaluated with different scoring
strategies (standard, i-vector statistics scaling, i-vector averaging and score averaging) and
using our three different enrollment lists (AllLDCId, 1LDCId, PHN). The table shows
minimum and actual values of CPrimary.

Clearly, the best scoring rule was i-vector averaging. It was the best for all classifiers and
enrollment lists. The second best was score averaging, followed by statics scaling. The worst
by far was the by the book scoring, which confirms the fact that it over-fits the estimation of
the speaker variable y. For example, for SPLDA with the list 1LDCId, i-vector averaging
improved actual DCF by 44–52% with respect to the standard scoring.

Regarding the classifier type, MCSPLDA with progressive training performed the worst
regardless of the enrollment list and the scoring type. SPLDA and MCSPLDA with simple
training performed very closely, especially when using i-vector averaging. SPLDA performed
around 14% better, in terms of actual cost, in the conditions without added noise (det1,
det2 and det5) while MCSPLDA simple was around 5% better in conditions with artificial
noise added (det3 and det4). We consider that a 5% of improvement is not really significant
so the extra computational cost required by MCSPLDA would not be worthy.

Comparing enrollment lists, we found that the list that includes interviews recorded
simultaneously by different microphones (AllLDCId) performed better in conditions with
interviews in test (det1, det3). It was around 8–10% better than 1LDCId and around 14%
better than PHN. On the other hand, the enrollment list with only telephone data (PHN)
was the best for telephone tests. It was around 4-5% better than 1LDCId and around 22-
33% better than AllLDCDId. As we did not achieved perfect telephone–microphone channel
compensation, the number of enrollment segments of each type matters. We consider that,
in general, 1LDCId is the best enrollment list since it offered the best equilibrium between
telephone and interview performance.

8.5.2 Condition detection analysis

According to NIST SRE12 evaluation rules, the noise type and level of the test signals is
suppose to be unknown. However, that information was available in the keys released a
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Table 8.1: MinDCF/Actual DCF for several classifiers, scoring strategies and enrollment
lists.

System

Enroll. Classif. Scoring det1 det2 det3 det4 det5

A
ll
L
D
C
Id

SPLDA
std. 0.39/0.42 0.53/0.56 0.30/0.32 0.61/0.67 0.57/0.62
iv-avg 0.23/0.23 0.21/0.27 0.18/0.18 0.26/0.35 0.24/0.33
s-avg 0.25/0.26 0.30/0.34 0.20/0.20 0.35/0.43 0.34/0.40

MCSPLDA
simple

std. 0.47/0.50 0.55/0.59 0.31/0.33 0.53/0.60 0.59/0.65
iv-scal 0.35/0.39 0.44/0.51 0.22/0.24 0.43/0.51 0.48/0.57
iv-avg 0.23/0.26 0.23/0.33 0.17/0.17 0.24/0.34 0.25/0.38
s-avg 0.26/0.31 0.29/0.40 0.19/0.20 0.30/0.40 0.34/0.44

MCSPLDA
prog.

std. 0.43/0.48 0.50/0.67 0.28/0.30 0.47/0.54 0.54/0.72
iv-scal 0.35/0.40 0.40/0.66 0.23/0.24 0.45/0.51 0.43/0.71
iv-avg 0.28/0.31 0.23/0.57 0.20/0.20 0.35/0.44 0.24/0.62
s-avg 0.32/0.37 0.28/0.60 0.23/0.24 0.41/0.47 0.30/0.64

1L
D
C
ID

SPLDA
std. 0.45/0.46 0.38/0.40 0.35/0.36 0.46/0.51 0.42/0.46
iv-avg 0.24/0.25 0.17/0.19 0.19/0.20 0.22/0.26 0.18/0.23
s-avg 0.26/0.27 0.22/0.25 0.21/0.21 0.28/0.33 0.25/0.29

MCSPLDA
simple

std. 0.55/0.57 0.40/0.44 0.37/0.39 0.41/0.47 0.43/0.50
iv-scal 0.34/0.39 0.31/0.38 0.22/0.23 0.31/0.39 0.33/0.43
iv-avg 0.25/0.29 0.18/0.23 0.18/0.19 0.20/0.26 0.19/0.27
s-avg 0.28/0.33 0.24/0.30 0.20/0.21 0.25/0.31 0.26/0.34

MCSPLDA
prog.

std. 0.65/0.68 0.43/0.55 0.53/0.55 0.48/0.56 0.48/0.61
iv-scal 0.38/0.43 0.31/0.51 0.27/0.28 0.39/0.43 0.33/0.56
iv-avg 0.34/0.36 0.20/0.35 0.26/0.26 0.29/0.33 0.21/0.41
s-avg 0.38/0.42 0.23/0.40 0.31/0.31 0.34/0.38 0.25/0.45

P
H
N

SPLDA
std. 0.48/0.50 0.38/0.40 0.39/0.40 0.45/0.50 0.41/0.45
iv-avg 0.25/0.27 0.17/0.18 0.20/0.21 0.23/0.27 0.19/0.22
s-avg 0.27/0.28 0.22/0.23 0.22/0.22 0.29/0.32 0.25/0.27

MCSPLDA
simple

std. 0.60/0.63 0.41/0.45 0.43/0.45 0.43/0.49 0.45/0.51
iv-scal 0.30/0.35 0.20/0.24 0.20/0.21 0.21/0.26 0.20/0.27
iv-avg 0.27/0.30 0.18/0.22 0.20/0.20 0.20/0.25 0.19/0.26
s-avg 0.29/0.33 0.24/0.29 0.21/0.22 0.26/0.31 0.27/0.33

MCSPLDA
prog.

std. 0.74/0.77 0.48/0.58 0.64/0.67 0.55/0.63 0.52/0.64
iv-scal 0.43/0.48 0.24/0.38 0.34/0.35 0.34/0.37 0.25/0.44
iv-avg 0.38/0.40 0.21/0.35 0.30/0.30 0.31/0.35 0.22/0.41
s-avg 0.39/0.43 0.25/0.39 0.32/0.32 0.36/0.39 0.26/0.44
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Table 8.2: Min/Actual DCF for MCSPLDA oracle vs. automatic noise detection.

System det1 det2 det3 det4 det5

iv-scal
Oracle 0.35/0.41 0.37/0.44 0.22/0.22 0.33/0.40 0.39/0.54
Automatic 0.34/0.39 0.31/0.38 0.22/0.23 0.31/0.39 0.33/0.43

iv-avg
Oracle 0.26/0.30 0.21/0.28 0.19/0.19 0.21/0.28 0.21/0.35
Automatic 0.25/0.29 0.18/0.23 0.18/0.19 0.20/0.26 0.19/0.27

posteriori. In this section, we compare the results obtained using oracle noise level labels
against automatic noise detection. The detection accuracy in our development dataset was
97% for telephone and 74% for interviews. In the evaluation set, the detection rates decayed
to 62% for telephone and 47% for microphone.

Table 8.2 presents results for the MCSPLDA classifier with simple training where we
used the 1LDCId enrollment list. Despite the strong degradation of the condition detection
accuracy we observe very small differences between both. In general, automatic detection
provided better results.

8.5.3 Noise effect analysis

In this section, we analyze the impact of the noise type and level. Table 8.3 compares
results for four classifiers: SPLDA trained only on clean telephone data, SPLDA trained
on pooled clean interview and telephone data, SPLDA trained on pooled clean and noisy
telephone and interview data and MCSPLDA trained also on clean and noisy data from
scratch (MCSPLDA simple). We used the enrollment list 1LDCId and the i-vector averaging
scoring mode. In NIST SRE12, noise was only added to 300 seconds segments so, to provide
a fair comparison, we computed the costs for the clean and noisy environment conditions
in the table only accounting trials with 300 seconds tests. Babble and HVAC noises were
added to interviews and; babble and single speaker noises to phonecalls.

By Training SPLDA with pooled clean telephone and interview data, we improved actual
costs by 35–60% in interviews and by 0–40% with respect to training only with telephone.
Contrary to intuition, adding interview data to the PLDA training did not damage the
telephone conditions.

Table 8.3: Min/Actual DCF for different noise types and levels.

Noise Type Noise Level

Test
ch.

System Clean Babble
HVAC(int)/
Spkr(phn)

Noisy
Env.

15 dB 6 dB

Int.

SPLDA phn clean 0.25/0.26 0.40/0.40 0.32/0.32 0.29/0.29 0.43/0.44
SPLDA phn+int clean 0.11/0.11 0.25/0.26 0.17/0.18 0.15/0.15 0.28/0.29
SPLDA clean+noise 0.12/0.12 0.20/0.22 0.17/0.17 0.16/0.16 0.22/0.24
MCSPLDA clean+noise 0.11/0.12 0.20/0.21 0.16/0.17 0.15/0.15 0.21/0.22

Phn.

SPLDA phn clean 0.04/0.05 0.31/0.37 0.28/0.33 0.07/0.08 0.14/0.18 0.37/0.45
SPLDA phn+int clean 0.03/0.03 0.25/0.31 0.27/0.33 0.05/0.06 0.10/0.13 0.33/0.40
SPLDA clean+noise 0.04/0.04 0.17/0.22 0.31/0.35 0.08/0.09 0.09/0.12 0.28/0.34
MCSPLDA clean+noise 0.04/0.04 0.15/0.20 0.29/0.38 0.05/0.08 0.07/0.12 0.26/0.33
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Figure 8.4: DET curves for NIST SRE12 babble noise tests.

For the SPLDA trained with clean interview and telephone data, in interviews, HVAC
noise worsened actual cost by 63%. Adding noise to the training did not help much;
minimum cost did not improve and actual cost improved only by 5%. Babble noise was more
harmful. It worsened the cost by 136% and 933% in interviews and phonecalls respectively.
In this case, adding noise to the training was more effective, actual cost improved by 15%
in interviews and by 29% in telephone with respect to clean training. The worst noise
consisted in adding speech of a single speaker to the segment, which degraded performance
by 1000% in telephone tests. The noisy training did not help because we did not include
that type of noise in our development. The same happened with the tests acquired in noisy
environments. Real noise worsened actual cost by 100% and no gain was achieved by noisy
training of the PLDA. These results prove that the approach of adding artificial noise to the
development only helps if the noises of development and test are similar. Since we cannot
add all possible noises to the development, other techniques should be explored.

Regarding the noise levels, for tests with 15 dB of signal-noise-ratio, we obtained small
gain or not at all from noisy training; it was -6% in interviews and 8% in phonecalls. For
tests of 6 dB, we obtained a noticeable gain of around 15-17%. Improvement in phonecalls
was not larger because of the single speaker noise not included in training.

The results of the MCSPLDA classifier were very similar to the ones of SPLDA.
Difference between both was always lower than 11%. For example, MCSPLDA was 9%
better than SPLDA for telephone babble noise and 8% worse in single speaker noise.

Figure 8.4 displays DET curves for the trials with babble noise in test. This was the type
of noise where we obtained larger gains from training with added noise. We can see that,
for interviews, there is an improvement in all the low false alarm region. For telephone, the
improvement was more or less constant along all the operating points in the curve.
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8.6 Summary

In this chapter, we dealt with the problem of having i-vectors recorded in different conditions
like different channel types, noise types or noise levels. Intending to approach the problem
in a principled way, we introduced a PLDA variant, that we called multi-channel SPLDA
(MCSPLDA), where the speaker space distribution is common to all types of channels and
the channel space distribution is channel dependent. This model can be seen as a mixture
of PLDA where the eigen-voices matrix V and the speaker factors y are shared across the
components of the mixture. We compared this model with a standard SPLDA just trained
on pooled clean and noisy telephone and interview data.

We experimented on the NIST SRE12 dataset that included test with artificially
added noises (HVAC, babble and single speaker) as well as segments recorded in noisy
environments. We proved that, if we train the PLDA on segments with the same type of
noise than the test, we can obtain a significant performance improvement. However, no
gain was observed for noises not included in training (single speaker noise and real noisy
environment), which makes this method useless for some practical use cases.

Results of MCSPLDA did not differ much from those of SPLDA. It seems that training
an unique within-class covariances with all the available data can be more robust than
training one covariance per channel type.



Chapter 9

Fully Bayesian Evaluation of PLDA

9.1 Introduction

Bayesian inference is a statistical method that applies Bayes rule to compute the posterior
probability for a hypothesis H given a set of observed data points X = {x1, . . . , xN}:

P (H|X) =
P (X|H)P (H)

P (X)
. (9.1)

H can be a certain discrete event, a continuous variable, the parameters of a model, etc.
This method requires choosing a hypothesis prior P (H) that encodes the beliefs about H
before any data is observed. P (X|H) is called the likelihood function and represents the
probability of observing X for a fixed value of H. Finally, P (X) is the marginal likelihood
of the observed data. As P (X) is the same for all possible hypothesis, in many applications,
it is disregarded. In contrast with the Bayesian approach, maximum likelihood inference
limits itself to computing the value of H that maximizes the likelihood function P (X|H)
for the observed data. Thus, maximum likelihood only makes a point estimate for the best
value for H while Bayesian inference provides a distribution that gives a different degree of
confidence for all the possible values of the hypothesis.

To evaluate whether a new data point x̂ has been generated by the same distribution as
X, following the Bayesian approach, we marginalize over H using its posterior distribution:

P (x̂|X) =

∫

P (x̂|H)P (H|X) dH . (9.2)

In Bayesian theory, the distribution P (x̂|X) is referred as the posterior predictive
distribution and when we use it we are doing predictive inference. In the non-Bayesian
framework, the probability of a new data point is just approximated by the likelihood given
the maximum likelihood estimate of H, P (x̂|HML). The advantage of the Bayesian method
over maximum likelihood is that the former takes into account the uncertainty about the
value of H while the latter does not. If the posterior P (H|X) is sharply peaked, i.e. if the
probability for HML is much larger than for the rest of values of H, the Bayesian and non
Bayesian methods will produce similar outcome, that is:

P (x̂|X) ≈ P (x̂|HML) . (9.3)

On the other hand, if the posterior assigns high probabilities for several values of H,
the Bayesian solution should provide better predictions than the maximum likelihood
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approximation. As we will see, one of the factors that affect the width of the posterior
is the number of samples in X. If we observe many samples we will be very confident about
the value of H and we will obtain a very concentrated posterior. On the contrary, if we
observe few samples the value of H will be uncertain and the posterior will be flatter.

Through the years, speaker recognition approaches have evolved from the pure maximum
likelihood method to frameworks where we introduce more and more elements of the
Bayesian philosophy. We can observe this by reviewing some landmark publications. The
first approaches based on GMMmodeled individual speakers by making maximum likelihood
point estimates of the speaker models [Reynolds and Rose, 1995]. The work in [Reynolds
et al., 2000] introduces the Bayesian approach by using a Universal GMM (UBM) as prior
for the speaker models and the maximum of the posterior is taken as point estimate of the
model parameters. That is called maximum a posteriori (MAP) or Bayesian adaptation.
Then, the likelihood of the test data given the speaker models is still computed in a non-
Bayesian way. In Chapter 7, we presented an example of MAP adaptation when we adapted
our Bayesian network for reliability estimation of SV decisions from one domain to another.

Joint factor analysis (JFA) puts standard normal priors over speaker and channel factors.
However, many works using JFA make MAP point estimates of the latent factors [Burget
et al., 2007]. For trial evaluation, they compute the likelihood of the test segment given the
point estimate of the speaker factor made on the enrollment segments and an estimate of
the channel factor of the test file is used to remove inter-session variability. In [Kenny et al.,
2007a], point estimates are made for speaker factors but channel factors are integrated out.
With the advent of i-vectors [Dehak et al., 2009,Dehak et al., 2011b], of smaller dimension
than JFA supervectors, it became computationally feasible to marginalize over both speaker
and channel factors, as a principled way of computing speaker detection likelihood ratios in
PLDA models [Kenny, 2010,Brummer and De Villiers, 2010].

Despite the progress made, neither of the above approaches takes into account the
uncertainty about the parameters of the probabilistic models, i.e. the factor loading matrices
of the JFA, i-vector extractor or the PLDA models. PLDA models are usually trained with
the EM algorithm, which maximizes a lower bound of the likelihood function over a large
development database (see Appendix C). In this chapter, we intend to go a step further
by adopting a fully Bayesian approach. In a fully Bayesian treatment we assume that the
model parameters are hidden variables with their corresponding priors, the same as the
speaker and channel factors. Then, we can compute posterior distributions for them. To
make predictions we marginalize with respect to all the latent variables. In particular, we
will focus on the simplest case of PLDA model known as two covariance model or full-rank
PLDA.

This chapter is organized as follows. In Section 9.2, we introduce the Bayesian version
the two covariance model. In this model, the speaker’s mean and the between-class
covariance are hidden variables, with prior and posterior distributions, instead of point
estimates. Section 9.3 explains how two evaluate the likelihood ratio in a fully Bayesian
way and shows an alternative formulation that avoids to solve the involved integrals.
As the model posteriors cannot be expressed in close form we used variational Bayes
to compute approximate posteriors. Section 9.4 presents the VB procedure to obtain
the posteriors assuming non-informative priors for the model parameters and Section 9.4
assuming informative priors. In Section 9.6, we explain our experimental setup including
some optimizations made to speed-up the VB algorithm. Section 9.7 presents results
on NIST SRE10 that prove that Bayesian evaluation dramatically improves the system
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Figure 9.1: BN for fully Bayesian evaluation of two-covariance model.

performance. We compared results using non-informative priors to compute the LLR
against informative priors; score normalization against non-normalized scores; and length
normalization against the Bayesian approach. We found Bayesian evaluation and length
normalization make score normalization useless. In certain conditions, both methods were
complementary. Finally, Section 9.8 summarizes the chapter.

9.2 Bayesian Two-covariance Model

The two-covariance model is a generative model that is used to describe the i-vector between
and within speaker distributions [Brummer and De Villiers, 2010]. We already introduced
this model in Chapter 2. As a reminder, the model assumes that an observed i-vector φij

of speaker i can be written as the sum of two hidden variables:

φij = yi + ǫij (9.4)

where yi is called the speaker identity variable and ǫij is the channel offset. The identity
variable remains constant between different observations of the speaker, but the channel
offset changes. This latent variables have Gaussian priors:

yi ∼ N
(

yi|µ,B−1
)

(9.5)

ǫij ∼ N
(

ǫij|0,W−1
)

(9.6)

where µ is a speaker independent mean; B−1 is the between-speaker covariance matrix and
W−1 is the within-speaker covariance matrix. This is a simplified version of the standard
PLDA model where both between and within speaker covariances are of full rank. Because
of that, it is also known as full-rank PLDA.

Figure 9.1 shows the graphical model describing an almost fully Bayesian version of the
two-covariance model. We say that it is almost fully Bayesian because we put priors over
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the parameters of the speaker space–mean µ and between-class precision B–but we left the
within-class precision W as a hyperparameter that we optimize by maximum likelihood.
The motivation to subject only µ and B to Bayesian treatment came from the fact that the
uncertainty about the speaker space depends on the number of speakers in the development
set while the uncertainty of the channel space depends on the number of segments. We will
show that in the following sections. In most datasets, for example NIST SRE, the number of
development speakers is not very large compared to the i-vector dimension, so the posterior
ofMy may be quite flat. In contrast, the total number of speech segments (and therefore
channels) in the development data is an order of magnitude larger, which should give a more
peaked posterior for W.

Note that the figure divides the data into two plates. The lower plate corresponds to
the development data and the upper plate corresponds to the data of one trial, i.e. the
enrollment and test segments. The whole database of development i-vectors is denoted by
Φd, while the trial i-vectors are denoted by Φt. We shall also use Φ to refer in general to
any of both datasets. We assume that the speakers in the trial are not among the speakers
in the development set. Let Yd and Yt respectively denote the hidden speaker identity
variables of the development and test sets. Y can be used to refer to any of them.

The labels θd partition the development dataset into Md speakers. θt ∈ {T ,N} is the
hidden label of the trial where T is the hypothesis that the trial i-vectors belong to the
same speaker and N to different speakers. For example, if we have one enrollment i-vector
and one test i-vector and the trial is target Mt = 1 and Nt1 = 2. If the trial is non-target
Mt = 2 and Nt1 = Nt2 = 1. The hyperparameter π denotes the target prior.

Finally, we define M = (µ,B,W) and My = (µ,B). We have also the prior Π over
My. We will discuss the selection of informative and non-informative priors in the following
sections.

Looking at the graphical model and following the rules that we gave in Section 1.5.2,
it is easy to determine whether some pair of variables are conditionally independent given
some other set of variables. It is important to note that when M is given (observed), all
variables (hidden and observed) of different speakers, in both development and trial sets, are
independent. However, when the model is hidden the variables of all the speakers depend
on each other.

9.3 Fully Bayesian Likelihood Ratios

In a non-fully Bayesian framework, the likelihood ratio between the target and non-target
hypothesis for a speaker detection trial is computed as:

Rp (Φt,M) =
P (Φt|T ,M)

P (Φt|N ,M)
(9.7)

where Φt are the feature vectors corresponding to the enrollment and test segments, andM
is a point estimate of the PLDA model. The numerator is the likelihood that both speech
segments come from the same speaker and the denominator is the likelihood that they come
from different speakers. The subscript p is a mnemonic for plug-in, becauseM is plugged
into this formula.

As we pointed out before, the problem is that when the point-estimate is plugged
into (9.7), all uncertainty about the values of the model parameters is ignored. The fully
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Bayesian solution to this problem [Bishop, 2006] consists in marginalizingM, to form the
likelihood ratio:

RB (Φt,Φd, θd,Π) =
P (Φt|T ,Φd, θd,Π)

P (Φt|N ,Φd, θd,Π)
=

∫

P (Φt|T ,M)P (M|Φd, θd,Π) dM
∫

P (Φt|N ,M)P (M|Φd, θd,Π) dM (9.8)

where P (M|Φd, θd,Π) is the posterior of the development parameters given the development
data. If there is little uncertainty aboutM, i.e. when P (M|Φd, θd,Π) is sharply peaked,
then the much simpler plug-in recipe Rp would suffice for most purposes. But if there is
too much model uncertainty, then RB can provide better accuracy. This method has the
side-effect that it also helps against dataset shift between development and test databases,
because the predictive distributions that result, if you have a small amount of training data,
are heavy-tailed. This side-effect disappears if you have a lot of training data, because then
the predictive distributions become more Gaussian.

For the case of PLDA models, solving the integrals in (9.8) is intractable. Our approach
to approximating RB revolves around the model posterior. Specifically, by using Bayes’ rule
and the conditional independence assumptions encoded in the graphical model of Figure 9.1,
we can express the integrals of (9.8) in terms of the model posterior. First, we use Bayes
rule to decompose the joint distribution P (Φt,M|θt,Φd, θd,Π) as:

P (Φt,M|θt,Φd, θd,Π) =P (Φt|θt,M,Φd, θd,Π)P (M|θt,Φd, θd,Π)

=P (M|Φt,Φd, θt, θd,Π)P (Φt|θt,Φd, θd,Π) . (9.9)

We can use the conditional independences arising from the graphical model to simplify (9.9):

P (Φt|θt,M)P (M|Φd, θd,Π) = P (M|Φt,Φd, θt, θd,Π)P (Φt|θt,Φd, θd,Π) . (9.10)

Now, we can isolate P (Φt|θt,Φd, θd,Π) from (9.10) and substitute it into (9.8) to obtain:

RB (Φt,Φd, θd,Π) =
P (Φt|T ,M)

P (Φt|N ,M)

P (M|Φt,Φd,N , θd,Π)
P (M|Φt,Φd, T , θd,Π)

(9.11)

=Rp (Φt,M)
P (M|Φt,Φd,N , θd,Π)
P (M|Φt,Φd, T , θd,Π)

. (9.12)

If we analyze (9.12), we note that the left hand side (LHS) do not depend onM while
the right hand side (RHS) does. That does not suppose a problem. It just means that the
RHS is in fact independent ofM because it simplifies. Thus, we can plug-in whatever value
ofM that we find convenient as long as we do not divide by zero.

Equation (9.12) gives an insightful interpretation of the Bayesian likelihood ratio as the
plug-in ratio multiplied by a correction factor. We can plug bad estimate of the model M̂
into the formula and the correction factor will compensate for it. But the correction will be
noticeable only if the posterior model densities at M̂ are considerably different for the two
alternate conditionings. We interpret the correction factor in the following manner. When
we plug in a model that excessively favors the target hypotheses of the trial, the denominator
of the correction factor becomes larger than the numerator. Thus, it compensates for the
over-confidence of the target hypothesis by reducing the total likelihood ratio. On the
contrary, if the model favors the non-target hypotheses the numerator will be larger than
the denominator. Finally, a fair model should be independent of the trial label, which
implies a correction factor equal to one.
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For the particular case of the model in Figure 9.1, where we do not marginalize over the
within-class precision W, the Bayesian likelihood ratio is written as:

RB (Φt,Φd, θd,W,Π) =Rp (Φt,My,W)
P (My|Φt,Φd,N , θd,W,Π)

P (My|Φt,Φd, T , θd,W,Π)
. (9.13)

We have now transformed the problem of calculating integrals over model parameter
into one of calculating model posteriors. Unfortunately, even for the simple two-covariance
model, these posteriors cannot be expressed in closed form. We proposed to use a variational
Bayes (VB) procedure to calculate approximate posteriors. In the next sections, we present
the VB solutions for the two-covariance model assuming two different types of model priors:
non-informative and informative.

9.4 Variational Inference with Non-Informative Priors

9.4.1 Non-informative priors

As first approximation, we assumed a non-informative prior (Jeffreys prior) for the
parameters µ and B of the speaker space distribution (see Appendix A). A non-informative
prior encodes the absence of information about µ and B other than the training data. With
this prior no Gaussian should be preferred over others and it should be invariant to any
translation or scaling of the measurement space. These conditions are satisfied by this
distribution:

P (µ,B|Π) = P (µ|B,Π)P (B|Π) (9.14)

= lim
k→0
N
(

µ|µ0, (kB)−1)W (B|W0/k, k) (9.15)

= α

∣

∣

∣

∣

B

2π

∣

∣

∣

∣

1/2

|B|−(d+1)/2 (9.16)

where W denotes a Wishart distribution and d the i-vector dimension. Since this density
does not integrate to 1, it is improper and the symbol α is used to denote a normalizing
constant which approaches zero. Note that the fact that the prior is improper does not
mean that the posterior will be improper.

9.4.2 Variational Bayes likelihood ratio

Our VB solution approximates the joint posterior distribution for the hidden identity
variables and model parameters by a factorized distribution of the form:

P (My,Yt,Yd|Φt,Φd, θt, θd,W,Π) ≈ q (My,Yt,Yd) = q (My) q (Yt,Yd) (9.17)

which ignores any posterior dependencies between the speaker variables Y and the model
My. Note that we are not making further factorizing assumptions or restricting the
functional form of the individual factors.

We complete our recipe by using the approximation P (My|Φt,Φd, θt, θd,Π) ≈ q (My)
in (9.13), so that the VB approximation of the likelihood ratio becomes

RVB (Φt,Φd, θd,W,Π) = Rp (Φt,My,W)
qN (My)

qT (My)
(9.18)
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Figure 9.2: Distributions of the log-likelihood ratios involved in the calculus of the
approximated fully Bayesian log-likelihood ratio.

where qT (My) and qN (My) are the variational posteriors conditioned respectively on
θt = T and θt = N .

As this is just an approximation, the property that the likelihood ratio does not depend
on the plug-in model M̂y because it simplifies is no longer true. In our experiments we
observed that plugging-in the maximum likelihood point estimate provided good results.

Figure 9.2 displays an example of the distributions of the likelihood ratios involved in
the calculus of RVB. The log-correction factor

log

(

qN (My)

qT (My)

)

≈ log

(

P (My|Φt,Φd,N , θd,W,Π)

P (My|Φt,Φd, T , θd,W,Π)

)

(9.19)

exhibits a counterintuitive behavior. We could think that, to improve the plug-in ratio, the
distribution of the correction factor of the targets trials should be to the right of the one
of the non-target trials. However, we observe the opposite. We interpret this by assuming
that our plug-in model, in general, favored the target decision. That makes the correction
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factor to reduce the ratios of the target trials and to increase the ratios of the non-targets.
Thus, in the example, the separability of the target and non-target distributions improved.
The Fisher ratio between both distributions increased from 4.45 for Rp to 5.13 for RVB.

9.4.3 Variational distributions

According to variational Bayes theory [Bishop, 2006], given a set of visible variables X and
a set of hidden variables Z, if we approximate the posterior of Z by a factorized distribution

q (Z) =
K
∏

k=1

qj (Zj) , (9.20)

the optimum value for the qj (Zj) is given by the following equation:

ln q∗j (Zj) = Ei 6=j [lnP (X,Z)] + const . (9.21)

This equation means that the log of the optimum solution for factor qj is estimated by taking
the expectation of the log joint distribution over all hidden and visible variables with respect
to the rest of factors qi 6=j. The additive constant is needed to normalize the distribution to
integrate to one.

VB is an iterative procedure. We first initialize the factors and then cycle through the
factors qj (Zj) for j = 1, . . . , K re-estimating each one with (9.21) until convergence.

To keep the notation uncluttered and without loss of generality, during the rest of the
section we will abbreviate Φ = (Φt,Φd), Y = (Yt,Yd) and θ = (θt, θd).

In our Bayesian two-covariance model the joint distribution of all variables is given by

P (Φ,My,Y|θ,W,Π) = P (Φ|Y, θ,W)P (Y|My)P (My|Π) (9.22)

Now, applying (9.21), it is straightforward to obtain our variational distributions. In
Appendix E, we show derivations for the equations in this section.

The optimum for the factor q (Y) is given by a product of Gaussian distributions:

q∗ (Y) =
M
∏

i=1

q∗ (yi) =
M
∏

i=1

N
(

yi|L−1
i γi,L

−1
i

)

(9.23)

Li = EMy
[B] +NiW (9.24)

γi = EMy
[Bµ] +WFi (9.25)

where Ni is the number of samples of speaker i and Fi =
∑Ni

j=1 φij are the first order
sufficient statistics. The speaker identity variables yi result independent a posteriori one
from the other. Note that we have not forced that in any way but it originates naturally
from the original factorization that we chose.

The optimum for the factor q (My) is a Gaussian-Wishart distribution.

q∗ (My) = N
(

µ|µ, (MB)−1)W (B|Ψ,M) if M > d (9.26)

where we defined

µ =
1

M

M
∑

i=1

EY [yi] (9.27)

Ψ−1 =
M
∑

i=1

EY

[

yiy
T
i

]

−MµµT . (9.28)
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We have to remark that for this distribution to be proper we need the number of speakers
M to be larger than the i-vectors dimensionality. Equation (9.26) evidences thatM controls
the width of the model posterior. The variance of µ reduces as M increases. Besides, it
is also known that the degrees of freedom of the Wishart distribution control its width.
Thus, as we mention previously, less speakers means a larger uncertainty about the model
parameters.

In order to obtain the parameters of q (Y), we need yet to evaluate EMy
[B] and

EMy
[Bµ]. Using the properties of the Wishart distribution [Bishop, 2006] we have

EMy
[B] =MΨ EMy

[Bµ] =MΨµ . (9.29)

9.5 Variational Inference with Informative Priors

9.5.1 Approximation with informative priors

The approach taken in the previous section, in which we use all the development data to
compute the likelihood ratio of each trial, has a large computational cost. For each trial,
we need to evaluate several VB iterations and in each one of them we have to re-estimate
the q (yi) distributions for all the development speakers. In this section, we make a further
approximation, by effectively fixing these q (yi). This is achieved by first computing the
VB posterior forMy, conditioned only on the development data (Φd,θd). In other words,
the test data is not involved. Then we use this posterior to act as the prior, denoted by
P (My|Πd), for further processing of the test data. Now for every trial, only the test i-
vectors Φt are involved in the calculation of the likelihood ratio. This idea relies on the
assumption that adding the trial data should not modify the posteriors of the development
speaker identity variables significantly. Most development speakers have a large number of
segments, so that the speaker identity posteriors are less affected by changes in the value
of My. In contrast, test speakers, in many applications, have at most two segments. In
summary, our Bayesian likelihood ratio is approximated as:

RB (Φt,Φd, θd,W,Π) ≈ RB (Φt,W,Πd) = Rp (Φt,My,W)
P (My|Φt,N ,W,Πd)

P (My|Φt, T ,W,Πd)
.

(9.30)

The model prior is now the variational posterior of the model given only the development
data, which approximates the model posterior given the development data:

P (My|Πd) = qd (My) ≈ P (My|Φd, θd,W,Π) . (9.31)

Thus, the VB factor qd (My) is Gaussian-Wishart distributed, which is a conjugate prior
for the Gaussian distribution. As shown in (9.26), it is given by

qd (My) = N
(

µ|µd, (βdB)−1)W (B|Ψd, νd) (9.32)

where

µd =
1

Md

Md
∑

i=1

EY [yi] (9.33)

Ψ−1
d =

Md
∑

i=1

EY

[

yiy
T
i

]

−Mdµdµ
T
d (9.34)
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and βd = νd =Md > d. Summations are now over the development speakers Md only.
From this prior, now we proceed as in the non-informative case. We factorize the joint

posterior of the latent variables as:

P (My,Yt|Φt, θt,W,Πd) ≈ q (My,Yt) = q (My) q (Yt) . (9.35)

Then, we approximate P (My|Φt, θt,W,Πd) ≈ q (My) and compute the likelihood ratio
as:

RVB (Φt,W,Πd) = R (Φt,My,W)
qN (My)

qT (My)
(9.36)

where qT (My) and qN (My) are the variational posteriors conditioned respectively on
θt = T and θt = N .

9.5.2 Variational distributions

The variational distributions are calculated in a similar way to section 9.4.3. In fact, the
optimum for the factor q (Y) is the same as in the non-informative case. The optimum for
the factor q (My) is again Gaussian-Wishart:

q∗ (My) = N
(

µ|µ, (βB)−1)W (B|Ψ, ν) (9.37)

where

y =
1

Mt

Mt
∑

i=1

EY [yi] (9.38)

Sy =
Mt
∑

i=1

EY

[

yiy
T
i

]

−Mtyy
T (9.39)

β =βd +Mt (9.40)

ν =νd +Mt (9.41)

µ =
1

β
(βdµd +Mty) (9.42)

Ψ−1 =Ψ−1
d + Sy +

βdMt

β
(y − µd) (y − µd)

T . (9.43)

In this case, summations are only over the trial speakers that can be one or two depending
on whether we assume the target or the non-target hypothesis. A detailed derivation of
these equations can be found in Appendix E.

9.6 Experimental Setup

9.6.1 SV system configuration

We performed experiments on all the conditions of NIST SRE 2010 except the summed
channel ones. We present results in terms of EER and minimum DCF. The DCF was
calculated for the NIST SRE10 operating point (CMiss = 1, CFA = 1, PT = 0.001) for
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the core, coreext and 8conv-coreext conditions; and at the NIST SRE08 operating point
(CMiss = 10, CFA = 1, PT = 0.01) for the rest of them.

We used 400 dimensional i-vectors as features for our PLDA. They were extracted using
20 short-time Gaussianized MFCC plus deltas and double deltas and a 2048 component
diagonal covariance UBM. The UBM, the i-vector extractor and the two-covariance model
were gender dependent and they were trained on telephone data from NIST SRE04–06.

We conducted experiments with the Bayesian and the plug-in likelihood ratio with
different preprocessing of the i-vectors. We present results with the plain i-vectors;
length normalized i-vectors; and length normalized i-vectors followed by LDA to reduce
dimensionality to 90. The LDA transform and the centering and whitening parameters
were trained on the same development data as the two-covariance model.

9.6.2 i-Vector length normalization

i-Vector length normalization [Garcia-Romero and Espy-Wilson, 2011], presented in
Section 2.4.4, prevents dataset shift by normalizing each i-vector by its magnitude. It
makes the development and trial i-vector distributions closer and more Gaussian shaped.
The Bayesian method has the side-effect that it also helps against dataset shift between
training and test databases, because the predictive distributions that result, if you have a
small amount of training data, are heavy-tailed. This side-effect disappears if you have a
lot of training data, because then the distributions become more Gaussian.

We wanted to know if both approaches can be complementary: fully Bayesian combats
over-fitting, while length norm combats bad modeling assumptions and dataset shift.
However, if we make the training and test distributions closer, the problem of model
over-fitting should not be so harmful. We compared the performances of both the length
normalization and the Bayesian solution.

9.6.3 Speeding-up matrix inversions

The main disadvantage of the Bayesian approach is the large computational cost of the VB
procedure needed to approximate the likelihood ratio. However, for the case with informative
priors, we can speed up the algorithm by using the Woodbury matrix identity [Woodbury,
1950]–also known as matrix inversion lemma–:

(D+UV)−1 = D−1 −D−1U(I+VD−1U)−1VD−1 (9.44)

to calculate the matrix inversions involved. If D is diagonal computing its inverse is
straightforward and if U and V are low-rank computing the inverse of I + VD−1U is
much faster than computing the inverse of D +UV. For example, let us suppose that we
have U of size d× 2 and V of size 2× d, where d is the i-vector dimension. If we invert the
matrix in the standard way, we need to invert a d× d matrix while by applying the identity
we just invert I+VD−1U of size 2× 2.

If we apply a preprocessing to the i-vectors consisting of linear discriminant analysis
(LDA) plus within class covariance normalization (WCCN), the B and W matrices that we
estimate on the pre-processed i-vectors become diagonal and identity respectively. Thus,
we obtain that, in the first VB update of q (Y), all Li (see (9.24)) are also diagonal. Then,
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Sy in (9.39) becomes

Sy =
M
∑

i=1

L−1
i + E [yi] E [yi]

T −MyyT =

[

M
∑

i=1

L−1
i

]

+
[

E [y1] . . . E [yM ] −My
]











E [y1]
...

E [yM ]
y











,

(9.45)

that is a diagonal matrix plus a product of matrices of rank M + 1. For the informative
case M ∈ {1, 2} << d, so we can speed-up matrix inversion by applying the lemma. For
the non-informative case M > d and we do not obtain any gain by applying the lemma.
Following with the informative case, we substitute (9.45) into (9.43) to obtain:

Ψ−1 =

[

Ψ−1
d +

M
∑

i=1

L−1
i

]

+
[

E [y1] . . . E [yM ] −My βdMt

β
(y − µd)

]















E [y1]
...

E [yM ]
y

y − µd















.

(9.46)

The matrix Ψd = B0/M , where B0 is the expected value of B given the development set.
As we said above, after the i-vector preprocessing B0 is diagonal, so Ψ−1

d is diagonal and
Ψ−1 is also the sum of a diagonal term and the product of two matrices of low rank (M+2).

In the second iteration, we need to invert Ψ−1 to compute E [B] = νΨ and with it, we
update the distributions q (Y). We invert Ψ−1 by applying the lemma. We can realize that
the inverse given by the lemma is also a diagonal matrix (D−1) plus a product of two low-
rank matrices (D−1U and −(I +VD−1U)−1VD−1). Thus, if we continue adding low-rank
products and diagonal matrices to it, we can also invert the resulting matrices by the same
lemma. As all the matrices that we need to invert (Li and Ψ−1) meet this condition, we
can use the lemma to speed up the matrix inversions in all the VB iterations. For i-vectors
of dimension 400, this method reduced the processing time by a factor of 6.

9.7 Experiment Results

9.7.1 Informative against non-informative priors

Table 9.1 compares the non Bayesian and Bayesian approaches on the NIST SRE10 core
det5 condition (telephone vs. telephone, English, normal vocal effort). We did not use
the extended condition because of the high computational cost of the Bayesian approach
based on non-informative priors, where we need all the development data to compute the
likelihood ratio of each trial. In this experiment, we did not apply any score normalization.
The Bayesian approach dramatically improved EER, by around 50%. Improvement in the
DCF operating point was not so evident, we observed some improvement for males–15% for
non-inf. priors and 9% for inf.–but not for females–it worsened by 31% and 9% for non-inf.
and inf. priors respectively.

The relative difference between using informative and non-informative priors was as
small as 7% except for the female DCF where non-informative priors where 19% worse than
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Table 9.1: EER(%)/MinDCF Bayesian two-covariance model with informative and non-
informative priors on NIST SRE10 core det5.

System
male female

EER DCF EER DCF

2cov 5.42 0.46 4.35 0.42
Bay2cov non-inf. prior 2.68 0.39 2.13 0.55
Bay2cov inf. prior 2.52 0.42 2.30 0.46

informative ones. As consequence, we focused on the case with informative priors in the
rest of experiments.

9.7.2 Score normalization analysis

Table 9.2 compares results with and without score normalization on the NIST SRE10 core
det5 condition. We used S-Norm [Senoussaoui et al., 2010] with cohort utterances from
SRE04 to SRE06 (1599 male, 2530 female). Again, we did not experiment on the extended
condition because of the high cost of computing the score matrices of the enrollment and test
i-vectors against all the cohort speakers, which S-Norm requires. For non length normalized
i-vectors, score normalization improved the EER of the plug-in ratio. In the rest of cases,
score normalization was harmful. For the Bayesian ratio without length normalization, score
normalization worsened EER by around 30% and DCF by around 60%. For systems with

Table 9.2: EER(%)/MinDCF Bayesian two-covariance model with and without S-Norm on
NIST SRE10 core det5.

System
male female

EER DCF EER DCF

Without S-Norm
2cov 5.42 0.46 4.35 0.42
Bay2cov 2.52 0.42 2.30 0.46

LNorm+2cov 1.56 0.45 2.48 0.48
LNorm+Bay2cov 1.53 0.44 2.10 0.43

LNorm+LDA90+2cov 1.84 0.49 2.11 0.54
LNorm+LDA90+Bay2cov 1.97 0.50 2.13 0.57

With S-Norm
2cov 3.14 0.59 2.83 0.72
Bay2cov 2.59 0.66 3.02 0.75

LNorm+2cov 2.12 0.51 2.60 0.49
LNorm+Bay2cov 2.34 0.53 2.63 0.52

LNorm+LDA90+2cov 2.78 0.55 2.46 0.61
LNorm+LDA90+Bay2cov 3.05 0.58 2.57 0.65
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length normalization male EER worsened by 35–55%, female EER by 16–25% and DCF by
12–20%. The fact that score normalization damages the performance of length normalized
i-vectors was already noted in Section 2.8.2.2.

If we compare length normalization against the Bayesian approach, we observe that
length normalization obtained better EER for males and the Bayesian approach for females.
In terms of DCF the difference between the Bayesian ratio and length normalization was
not very significant (4–6%). We obtained the best result by combining both.

We did not benefit from dimensionality reduction, contrary to the findings in [Matejka
et al., 2011]. Just for the system LNorm+LDA90+2cov, the female EER was better than
the one of the corresponding system without LDA. We think that, since Bayesian approach
reduces the risk of over-fitting, it allows us to better extract information from the 400
dimensional i-vectors. Therefore, the reduction of dimensionality should not be necessary.

9.7.3 Results core extended condition

Table 9.3 displays results for the NIST SRE10 core extended condition. The extended
condition had more than 10 times the number of trials of the non-extended. As the operating
point of SRE10 favored working in the low false alarm region of the DET curve, NIST
introduced the extended condition to accurately measure very low false alarm rates. This
decision was based on Doddington’s ”rule of 30” [Doddington, 2000], that states that we
need at least 30 errors to be confident about the error rate.

As we explained in Chapter 2, the core condition included multiple types of enrollment
and test segments so measuring performance by pooling all the trials together was not
appropriate. Thus, NIST defined several common conditions grouping different types of
trials. We experimented on the common conditions with normal vocal effort: interview
against interview speech from the same microphone (det1), interview against interview
speech from different microphones (det2), interview against telephone speech (det3),
interview against telephone speech recorded over a room microphone (det4) and telephone
against telephone speech (det5).

We first focus on the conditions with far-field microphones for both enrollment and
test (det1, det2 and det4). The Bayesian likelihood ratio improved the baseline by an
average 29% in terms of EER and by 2.5% in terms of minimum DCF. Comparing length
normalization against the Bayesian approach, we found that the Bayesian method yielded
better EER and DCF for all cases. The Bayesian ratio outperformed length normalization by
an average 23% in terms of EER and by 5% in terms of DCF. Since the two-covariance models
and the i-vector extractor were trained on telephone speech only, there was an important
mismatch between the development and the trial data. It seems that the Bayesian approach
coped with it better than the length normalization. Combining both approaches did not
produce large performance differences with respect to employing the Bayesian approach
only, in some cases it was better and in others it was worse. In average, adding length
normalization to the Bayesian ratio worsened EER by 3.7% and improved DCF by 8%.
Contrary to what happened in det5, dimensionality reduction improved performance for
the Bayesian and non-Bayesian systems. In most cases the best performance was achieved
for the system that combined length normalization, dimensionality reduction and Bayesian
scoring. For example, in det4, EER improved by 22% in the version with dimensionality
reduction with respect to the one without it.

For the telephone condition (det5) the results of the extended condition were similar
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Table 9.3: EER(%)/MinDCF Bayesian two-covariance model on NIST SRE10 core extended
common conditions 1-5.

CC System
male female

EER DCF EER DCF

1

2cov 1.89 0.30 3.73 0.53
Bay2cov 1.43 0.34 2.81 0.50

LNorm+2cov 1.80 0.30 3.70 0.56
LNorm+Bay2cov 1.31 0.26 3.34 0.47

LNorm+LDA90+2cov 1.47 0.25 2.82 0.47
LNorm+LDA90+Bay2cov 1.15 0.30 3.01 0.51

2

2cov 4.16 0.64 8.87 0.87
Bay2cov 2.72 0.56 6.89 0.83

LNorm+2cov 3.55 0.63 8.43 0.88
LNorm+Bay2cov 2.73 0.53 7.39 0.83

LNorm+LDA90+2cov 2.97 0.54 6.76 0.84
LNorm+LDA90+Bay2cov 2.59 0.56 6.63 0.84

3

2cov 6.41 0.69 6.30 0.80
Bay2cov 3.50 0.64 4.12 0.66

LNorm+2cov 3.02 0.67 4.34 0.75
LNorm+Bay2cov 2.64 0.64 3.97 0.71

LNorm+LDA90+2cov 3.38 0.72 5.08 0.77
LNorm+LDA90+Bay2cov 2.79 0.69 4.57 0.76

4

2cov 3.59 0.50 6.19 0.68
Bay2cov 2.48 0.50 3.94 0.63

LNorm+2cov 3.23 0.54 5.61 0.71
LNorm+Bay2cov 2.63 0.43 4.60 0.63

LNorm+LDA90+2cov 2.28 0.37 3.66 0.60
LNorm+LDA90+Bay2cov 2.01 0.39 3.62 0.65

5

2cov 4.97 0.52 5.57 0.55
Bay2cov 2.66 0.38 3.16 0.56

LNorm+2cov 2.04 0.38 3.20 0.57
LNorm+Bay2cov 1.82 0.37 2.95 0.54

LNorm+LDA90+2cov 2.20 0.42 3.02 0.54
LNorm+LDA90+Bay2cov 2.11 0.41 2.88 0.56
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Figure 9.3: DET curves for the Bayesian two-covariance model on NIST SRE10 core
extended male common conditions 3 and 5.

to the ones of the non-extended, reported in the previous section. Again, the best system
was the one combining length normalization and Bayesian likelihood ratio without i-vector
dimensionality reduction.

The cross-channel condition (det3) behaved similarly to det5. The best EER was for
the combination of length normalization and the Bayesian scoring without dimensionality
reduction. EER improved by 11% with respect to the system with only length normalization.
The improvement in terms of DCF was smaller, by around 5%. Dimensionality reduction
did not help.

Figure 9.3 shows DET curves for conditions det3 and det5 for male speakers. Both
curves evidence that length normalization and the fully Bayesian likelihood ratio improve
performance along most of the operating points of the curve. Improvement was larger in
the low miss region of the curves. The fully Bayesian system with length normalization (red
dashed curve) obtained a curve equal or better than the rest of systems for most operating
points. The bold dots indicate the minimum DCF operating point. In that point, the
difference between approaches was small, especially for condition det3.

In general, we concluded that the Bayesian approach helped more than length
normalization in the conditions with a strong mismatch between development and trial
datasets. In essence, it improved conditions det1, det2 and det4, which are microphone data
while we trained our models only on telephone conversations. Nevertheless, for conditions
with less mismatch (det3 and det5), results improved by evaluating the Bayesian likelihood
ratio on length normalized i-vectors.

9.7.4 Results 8conv-core extended condition

Table 9.4 shows results 8conv-core extended condition. The best performances were achieved
by the systems that included length normalization. Given the small differences in EER
and DCF–an average 5%–, it was not clear whether the Bayesian approach helped length
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Table 9.4: EER(%)/MinDCF Bayesian two-covariance model on NIST SRE10 8conv-core
extended

male female

EER DCF EER DCF

2cov 3.21 0.37 3.61 0.42
Bay2cov 1.75 0.24 2.07 0.33

LNorm+2cov 0.70 0.20 1.69 0.34
LNorm+Bay2cov 0.75 0.18 1.69 0.32

LNorm+LDA90+2cov 0.90 0.20 1.40 0.23
LNorm+LDA90+Bay2cov 0.87 0.19 1.32 0.24

normalization. Besides, dimensionality reduction improved females but worsened males.
We concluded that when having several enrollment utterances the Bayesian approach
contributes little.

9.7.5 Results 10sec conditions

Table 9.5 summarizes results for conditions with 10 second segments in test. For enrollment,
we could have one conversation of 5 minutes (core), eight conversations (8conv) or one
segment of 10 seconds (10sec). For males, the best system was the one with length
normalization and Bayesian scoring. For females, the best was the one with only Bayesian
scoring but it was not much better than the one that also included length normalization.
In average, the system with length normalization plus Bayesian ratio improved by 9% in
terms of EER and by 6% in terms of DCF with respect to the system with only length
normalization. Again, the dimensionality reduction did not help.

9.8 Summary

In this chapter, we intended to calculate the speaker verification likelihood ratio in a fully
Bayesian way by integrating-out the parameters of the PLDA model. In contrast, the
classical likelihood ratio, which we called plug-in ratio, is computed by plugging a point
estimate of the model M̂ into the involved likelihoods. The advantage of the Bayesian
approach over the classical one consists in that the former takes into account the uncertainty
about the value of the model parameters. The smaller the dataset used to train the model
compared with the number of parameters the larger the uncertainty–e.g., when the number
development speakers is not much larger than the i-vector dimension. Nonetheless, when we
increase the amount of training data, uncertainty reduces and the Bayesian and the plug-in
likelihood ratios should converge.

We presented a method to approximately estimate the Bayesian ratio for the particular
case of the two-covariance model, also known as full-rank PLDA. The method takes
advantage of the fact that the fully Bayesian likelihood ratio can be written as the plug-in
ratio –i.e., the classical likelihood ratio where we plug-in a point estimate of the model M̂–
multiplied by a correction factor. The correction factor is a ratio between model posteriors



178 Chapter 9. Fully Bayesian Evaluation of PLDA

Table 9.5: EER(%)/MinDCF Bayesian two-covariance model on NIST SRE10 conditions
with 10 seconds tests.

Enroll. System
male female

EER DCF EER DCF

core

2cov 10.19 0.51 10.99 0.54
Bay2cov 6.27 0.36 7.76 0.41

LNorm+2cov 7.10 0.36 8.84 0.45
LNorm+Bay2cov 6.59 0.34 7.97 0.42

LNorm+LDA90+2cov 8.88 0.43 9.22 0.51
LNorm+LDA90+Bay2cov 7.95 0.39 8.76 0.45

8conv

2cov 9.23 0.39 8.88 0.41
Bay2cov 5.84 0.26 6.10 0.31

LNorm+2cov 4.02 0.25 7.57 0.39
LNorm+Bay2cov 3.90 0.23 6.47 0.35

LNorm+LDA90+2cov 5.71 0.32 7.86 0.43
LNorm+LDA90+Bay2cov 5.29 0.30 7.36 0.40

10sec

2cov 17.96 0.71 16.31 0.80
Bay2cov 14.37 0.63 14.34 0.71

LNorm+2cov 14.78 0.62 16.80 0.78
LNorm+Bay2cov 13.43 0.62 15.43 0.72

LNorm+LDA90+2cov 16.30 0.73 18.17 0.79
LNorm+LDA90+Bay2cov 15.03 0.69 15.89 0.75

given the trial data where, to compute the posterior in the numerator we assume that the
trial is non-target; and, to compute the posterior in the denominator we assume that it is
target. If these two posteriors are considerably different when we evaluate them at M̂ the
correction factor can make a difference. As the model posteriors cannot be obtained in close
form, we adopted a variational Bayes procedure to compute approximate posteriors.

We consider two approximations for computing the Bayesian ratio. In the first one, we
assumed non-informative priors for the model parameters. Then, we computed the model
posteriors given the trial plus the development data. The fact of using all the development
data to compute the likelihood ratio of each trial implies a high computational cost. To
alleviate this, we introduced a second approximation based on informative priors. In this
second case, we started computing the model posterior given only the development data
and the non-informative prior. Then, we used this posterior as informative prior when
computing the model posteriors needed to evaluate each trial. Thus, the model posteriors
in the correction factor are computed given only the trial data and the informative prior.
In theory, the first approximation is more accurate because it takes into account that, when
the model is unknown, the trial and development data are not independent. That means
that the trial data affect the way in which the PLDA decompose the development i-vectors
into a speaker term and a channel term. On the other hand, the second approximation
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is equivalent to assuming that the trial i-vectors do not affect the decomposition of the
development ones. We thought that it is a reasonable approximation since the number of
trial i-vector is very small, typically two, compared the number of development i-vectors.
We obtained results that supported our hypothesis.

We presented results on several conditions of NIST SRE10. We compared the Bayesian
approach with length normalization, another recent technique that also boosts performance
in i-vectors systems. While length normalization intends to reduce the mismatch between
development and trial datasets, the Bayesian solution intends to account for model
uncertainty so we expected that both approaches could be complementary. Furthermore, if
model posteriors are wide enough the Bayesian method also can help with database shift.

We observed that, for conditions with little mismatch between the development and the
trial data (telephone data with segments of 5min. in both), length normalization usually
outperformed the Bayesian scoring. However in most of the conditions, we obtained the
best results by combining both techniques. For example in the core extended telephone-
telephone condition, the combination of both improved EER by 55% with respect to the
baseline, and by 9% with respect to only length normalization.

On the other hand, for conditions with a large mismatch between development (telephone
segments of 5min.) and trial data (far-field microphone segments or telephone segments of
10secs.) the Bayesian approach outperformed length normalization. For example in the
interview-interview with different microphones condition the Bayesian approach was 20%
better than length normalization in terms of EER and 8.5% better in terms of DCF. And
in the 10sec–10sec condition, EER and DCF of the Bayesian system was 9% and 5% better
respectively.

Another interesting point was that both length normalization and Bayesian scoring did
not need score normalization. However, they did not provide naturally well-calibrated
likelihood ratios so score calibration was still needed to take Bayes optimal decisions.

We also evaluated what happened if we reduce the i-vector dimensionality by LDA.
We observed that LDA was harmful except for the far-field microphone conditions. LDA
reduction helps to alleviate model over-fitting by reducing the number of parameters to
train. However, the Bayesian and length normalization methods seem to add robustness
against over-fitting and do not need LDA.





Chapter 10

Bayesian Adaptation of PLDA to
Domains with Scarce Development
Data

10.1 Introduction

Database mismatch is a major handicap to introducing speaker recognition in certain
applications. As we have seen, high performance methods like JFA and i-vectors are
data driven approaches. That implies that models trained on a specific type of data
may not generalize to other domains. For example, models trained on telephone English
conversations will not achieve optimal performance on far-field microphone trials or on
French conversations. In order to properly develop a speaker verification system, we need
databases including large number of speakers and sessions per speaker. Given that NIST
evaluations have driven speaker verification research in the last years and that NIST datasets
are big enough, the efforts to deal with this issue had been limited. Now that speaker
recognition is considered a mature technology there is a great interest to introduce it into
more and more commercial applications. For most of those applications, the amount of
available data is very scarce so researchers are starting to see the need for finding techniques
that allow models trained on one domain, e.g., NIST, to be used on other domains.

In the previous chapter, we saw that techniques like i-vector length normalization and
fully Bayesian evaluation of the likelihood ratio improve performance in conditions of
database mismatch. Length normalization prevents dataset shift by making the development
and trial i-vectors distributions closer and more Gaussian shaped [Garcia-Romero and
Espy-Wilson, 2011]. The Bayesian approach primarily intends to combat model over-fitting
by taking into account the uncertainty about the values of the model parameters. However,
it also helps against database shift because, unless that we train models on a huge amount
of data, the predictive distributions that result are heavy-tailed. We exposed that the
Bayesian approach provided the largest benefits in conditions with more mismatch between
development and test–development with 5 minutes telephone conversations and test with
far-field microphones or 10 second segments.

The Bayesian approach has a high computational cost, which makes it difficult to apply
in many circumstances. For this reason, in this chapter, we address the problem of database
mismatch in a different manner. We assume that we have a model trained on a large
development database from a domain different from the domain of interest. We also assume
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Figure 10.1: BN for Bayesian adaptation of the two-covariance model.

that we own a small amount of labeled data from the target domain. We will use the terms
out-of-domain and in-domain to refer to the first and second dataset respectively. Then,
we intend to do Bayesian adaptation of the out-of-domain PLDA model to the in-domain
dataset. In chapter 7, we already employed this technique to adapt our Bayesian networks.

This chapter is organized as follows. Section 10.2 explains how to perform Bayesian
adaptation of the two-covariance model. Section 10.3 shows the variational Bayes solution
to approximate the model posteriors. Section 10.4 describes our experimental setup. We
adapted a model trained on NIST SRE to the EVALITA09 dataset [Aversano, 2009].
Section 10.5 presents the results. We analyzed issues like the weight that the prior should
have on the posterior; which model parameter is more important to adapt; importance of
score normalization. We also compared length normalization against Bayesian adaptation.
Bayesian adaptation performed better in conditions with shorter segments. Finally,
Section 10.6 summarizes the chapter.

10.2 Bayesian Adaptation of the Two-covariance

Model

In the previous chapter, we already introduced the fully Bayesian version of the two-
covariance model. This version differed from the standard one in that model parameters are
hidden variables with their corresponding probability distributions instead of fixed values.
The Bayesian network in Figure 10.1 depicts the Bayesian two-covariance model. Note that
there are some changes in the network with respect to Figure 9.1, in the preceding chapter.
First, for Bayesian evaluation of the likelihood ratio, we only subjected the speaker space
parameters (µ and B) to Bayesian treatment, while now we also consider the within-class
precision W as a hidden variable. Second, Figure 9.1 divides data into two plates: one
for the development data and another for the trial data. In Figure 10.1, we eliminated the
plate corresponding to the trial data because we did not intend to compute fully Bayesian
likelihood ratios. We used the Bayesian model only to compute posteriors for the model
parameters and, from them, to make maximum a posteriori point estimates.

We introduce some notation. We denote the database of out-of-domain i-vectors by Φ0

and the in-domain i-vectors by Φ. The labels θ0 partition the N0 out-of-domain i-vectors
into M0 speakers while the labels θ partition the N in-domain i-vectors into M speakers.



10.3 Variational Inference for MAP Adaptation of the Two-Cov. Model 183

The variables Y0 and Y are the speaker identity variables of the out-of-domain and in-
domain datasets respectively. For convenience, we also define the sets of model parameters
M = (µ,B,W) andMy = (µ,B). Finally, we define the model priors:

P (M|Π) = P (My|ΠMy
)P (W|ΠW) . (10.1)

In each step of adaptation process, we need different types of priors.

As explained in Chapter 7, (MAP) adaptation consists of three stages. First, we compute
the posterior distribution of the parameters of the model given the out-of-domain dataset
P (M|Φ0, θ0,Π). In this stage, we assumed no prior knowledge about the parameters of the
model. We do that by choosing a non-informative prior Π. Second, we compute the model
posterior given the in-domain data P (M|Φ, θ,Π0) where we select an informative prior Π0

that is just the posterior that we compute in the first stage:

P (M|Π0) = P (M|Φ0, θ0,Π) . (10.2)

That is, the model posterior given the out-of-domain data is used as prior to compute the
model posterior given the in-domain data. Finally, we make point estimates for µ, B and
W by selecting the values that maximize the model posterior:

MMAP = argmax
M

P (M|Φ0, θ0,Π) . (10.3)

The idea behind MAP adaptation is that, even when out-of-domain and in-domain
datasets are so different that a model trained on the former does not perform well on the
latter, both domains are close enough so that a small amount of in-domain data can bring
the out-of-domain model close to the ideal in-domain model. In practice, in most MAP
algorithms, the equations that we obtain consist in a weighted average of the prior and the
maximum likelihood estimate of the parameters given the in-domain data. As we showed in
the previous chapter, the model posteriors of the two-covariance model cannot be computed
in an exact manner so we used variational inference.

10.3 Variational Inference for MAP Adaptation of the

Two-Covariance Model

The variational Bayes procedure to obtain the model posteriors that we need to perform
MAP adaptation is almost identical to the one described in the previous chapter. The only
difference is that, in this chapter, we also consider W as a hidden variable. In this section
we briefly summarize the equations needed. Full Derivation of these equation can be found
in Appendix E.

10.3.1 Model posterior given the out-of-domain data

When computing the model posterior given the out-of-domain data, we assume a non-
informative prior for the parameters µ, B and W. Thus, the model posterior is only based
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on the training data. The prior is defined by these distributions:

P (M|Π) =P
(

µ,B|ΠMy

)

P (W|ΠW) (10.4)

P
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µ,B|ΠMy

)

= lim
k→0
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µ|µ0, (kB)−1)W (B|B0/k, k) = α
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B

2π

∣
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∣

1/2

|B|−(d+1)/2 (10.5)

P (W|ΠW) = lim
k→0
W (W|W0/k, k) = α |W|−(d+1)/2 (10.6)

where W denotes a Wishart distribution and d is the i-vector dimension. Since this density
does not integrate to 1, it is improper and the symbol α is used to denote a normalizing
constant which approaches zero.

Our VB solution approximates the joint posterior for all the latent variables by a
factorized distribution of the form:

P (M,Y0|Φ0, θ0,Π) ≈ q (M,Y) = q (M) q (Y0) (10.7)

which ignores any posterior dependencies between the speaker variables Y and the model
M.

We obtained that the optimum for the factor q (Y) is a product of Gaussians:

q∗ (Y0) =

M0
∏

i=1

q∗ (yi) =

M0
∏

i=1

N
(

yi|L−1
i γi,L

−1
i

)

(10.8)

Li =EM [B] +NiEM [W] (10.9)

γi =EM [Bµ] + EM [W]Fi (10.10)

where Ni is the number of samples and Fi =
∑Ni

j=1 φij are the first order sufficient statistics
of speaker i.

The optimum for the factor q (M) is also a product of factors:

q∗ (M) = q∗ (My) q
∗ (W) . (10.11)

The factor q∗ (My) is a Gaussian-Wishart distribution:

q∗ (My) = N
(

µ|µ0, (βy0B)−1)W (B|Ψy0 , νy0) (10.12)

where we defined:

βy0 =νy0 =M0 (10.13)

µ0 =
1

M0

M0
∑

i=1

EY [yi] (10.14)

Ψ−1
y0

=

M0
∑

i=1

EY

[

yiy
T
i

]

−M0µ0µ
T
0 . (10.15)

The factor q∗ (W) is Wishart distributed:

q∗ (W) =W (W|ΨW0 , νW0) (10.16)
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where we defined

νW0 =N0 =

M0
∑

i=1

Ni (10.17)

S =
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∑
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Ni
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φijφ
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ij (10.18)

Ψ−1
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=S+

M0
∑

i=1

(

NiEY

[

yiy
T
i

]

− EY [yi]F
T
i − FiEY [yi]

T
)

. (10.19)

Note that, even when we chose improper priors, the distributions q (µ,B) and q (W) are
proper as long as the number of speakers M be larger than the i-vector dimension. Also
note that we only forced the factorization between the variables Y andM; the additional
factorizations that appear were not forced in any way. These additional factorizations are
a consequence of the interaction between the assumed factorization and the conditional
independence properties of the true joint distribution described by the Bayesian network in
Figure 10.1.

We need to iterate by cycling between the calculus of q (Y) and q (M) until convergence.
We can evaluate the convergence by tracking the VB lower bound detailed in Appendix E.
Besides To compute the parameters of the variational factors, we need to evaluate some
expectations:

EM [B] = νy0Ψy0 EM [Bµ] = νy0Ψy0µ0 (10.20)

EM [W] = νW0ΨW0 (10.21)

EY [yi] = L−1
i γi EY

[

yiy
T
i

]

= L−1
i + EY [yi] EY [yi]

T . (10.22)

10.3.2 Model posterior given the in-domain data

Now, we adapt the model given the out-of-domain data to the target domain. For that, we
use the variational factor q (M) computed in the previous step as prior

P (M|Π0) = P (M|Φ0, θ0,Π) ≈ q (M|Φ0, θ0,Π) (10.23)

and compute the model posterior given the in-domain data.

We again factorized the posterior of all the latent variables using (10.7). We obtained
that the optimum for the factor q (Y) is the same as for the case with non-informative
priors. The optimum for q (M) also factorized into two Gaussian-Wishart factors: one for
the speaker space and another for the channel space. These are given by

q∗ (M) =q∗ (My) q
∗ (W) (10.24)

q∗ (My) =N
(

µ|µ, (βyB)−1)W (B|Ψy, νy) (10.25)

q∗ (W) =W (W|ΨW, νW) . (10.26)
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where
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βy =βy0 +M (10.30)

νy =νy0 +M (10.31)

νW =νW0 +N (10.32)

µ =
1

βy
(βy0µ0 +My) (10.33)

Ψ−1
y =Ψ−1

y0
+ Sy +

βy0M

βy
(y − µ0) (y − µ0)

T (10.34)

Ψ−1
W =Ψ−1

W0
+ SW . (10.35)

Finally, we make MAP point estimates of the model parameters:

µMAP =µ (10.36)

BMAP =(νy − d− 1)Ψy (10.37)

WMAP =(νW − d− 1)ΨW . (10.38)

We used these MAP estimates to evaluate the plug-in likelihood ratios of the trials in the
usual way.

10.3.3 Controlling the weight of the prior on the posterior

Equations (10.27) to (10.35) evidence that the parameters βy0 = νy0 = M0 and νW0 = N0

control the weight that the prior has on the posterior. The larger M0 and N0 are the more
in-domain data we need to take the model far from the prior. The values N0 and M0 also
correspond to the degrees of freedom of the Wishart priors as well as modulating the variance
of the µ Gaussian prior. The degrees of freedom of the Wishart are related to the width
of the distribution, the lower they are the flatter and less informative the distribution is.
The extreme case happens when we take the limit of the Wishart as the degrees of freedom
approach 0, which results in the non-informative prior in (10.6). In practice, the degrees
of freedom represent the number of samples that we have seen to train the model. If we
observe many samples, there will be few uncertainty about the model parameters, which we
will see reflected in a sharp distribution. In conclusion, the higher the values of M0 and N0

the sharper the prior. Also, a sharp prior means that the out-of-domain data weighs more
on the in-domain posterior.

If we train our prior on a very large out-of-domain dataset and we have a small amount
of adaptation data the MAP model will move very little from the prior model. Then, we
will not obtain any benefits from the adaptation procedure. In those cases, we may want to
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reduce the influence of the prior on the posterior. We can do it just by lowering the values
of βy0 , νy0 and νW0 . However, we must also modify Ψy0 and ΨW0 so that the expected
values of B and W do not change with respect to the original prior. Thus, we defined ηy a
ηW and updated the prior parameters as:

βy0 = νy0 ← ηyM0 Ψy0 ← η−1
y Ψy0 (10.39)

νW0 ← ηWN0 ΨW0 ← η−1
WΨW0 . (10.40)

When selecting ηy and ηW, we must take into account that the resulting νy0 and νW0 need
to be both larger than d so that the Wishart distributions of the prior be well defined:

ηy ≥ d/M0 ηW ≥ d/N0 . (10.41)

We refer to the modified values of νy0 and νW0 as the effective number of speakers and
segments used to train the prior. That is, we have a prior that provides the same
expectations forM as the original prior but that behaves as trained with a smaller number
of samples.

10.4 Experimental Setup

10.4.1 EVALITA09 Dataset

We experimented on the EVALITA09 dataset [Aversano, 2009]. EVALITA was an evaluation
of natural language processing and speech tools for Italian. Telephone conversations were
recorded over landline (PSTN) or mobile (GSM) channels. All recordings were in Italian
language. The EVALITA09 SV task had guidelines similar to those of NIST evaluations.
However, we found an important mismatch between EVALITA and NIST due to the
language of the speakers and to the telephone channels, which had different spectral patterns
to those that we find in NIST. For these reasons, we found it convenient for evaluating the
adaptation task.

The database was split into three sets:

• Development set: speech data recorded by 30 male and 30 female speakers, during
20 sessions (10 PSTN calls + 10 GSM calls). The total duration of speech was 1200
minutes (∼1 minute per call). Calls were provided cut into small segments, thus we
had 18000 short speech segments (9000 male + 9000 female). We can use this set to
train UBM, JFA and PLDA models as well as for the score normalization cohorts.

• Enrollment set: data for speaker enrollment. It had 50 male and 50 female speakers.
These speakers were different from those in the development set. Six training
conditions were defined:

– TC1: PSTN short (1 PSTN call, ∼1 minute per client).

– TC2: GSM short (1 GSM call, ∼1 minute per client).

– TC3: PSTN long (3 PSTN calls, ∼3 minutes per client).

– TC4: GSM long (3 GSM calls, ∼3 minutes per client).

– TC5: mixed short (1 PSTN + 1 GSM calls, ∼2 minutes per client).
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– TC6: mixed long (3 PSTN + 3 GSM calls, ∼6 minutes per client).

• Test set: Two test conditions were considered having 2071 trials each:

– TS1: short (1 sequence of digits; ∼10 seconds).

– TS2: long (1 sequence of digits, 4 short sentences, 2 isolated words; ∼30 seconds).

10.4.2 SV system configuration

The features for our PLDA were 400 dimension i-vectors. We extracted i-vectors from 20
MFCC with added deltas and double deltas with short-time Gaussianization. The UBM
and i-vector extractor were gender dependent and based on 2040 diagonal Gaussians.

We used NIST SRE04–06 as out-of-domain development data. It included 529 male and
729 female speakers with a total of 7410 male and 9920 female conversations. We used NIST
to train the UBM, i-vector extractor and our baseline two-covariance model as well as to
obtain the prior model for the MAP adaptation.

PLDA models were also gender dependent. We had two PLDA baselines: A two-
covariance model trained on NIST and a SPLDA model trained on the EVALITA
development set. To train the two covariance model, we need the speaker number to be larger
than the i-vector dimension (> 400). Since in EVALITA there were only 30 development
speakers we could not train a two-covariance model on them. For that reason, the EVALITA
baseline was based on the SPLDA model, which only requires the number of speakers to be
larger than the rank of the eigen-voice matrix V. We chose rank 25 for V. We compared
both baselines with several two-covariance models adapted from NIST to EVALITA.

In the experiments where we used length normalization, the centering and whitening
parameters (mean and rotation matrices) were estimated in a manner matched with the
classifier. That is, trained from NIST, from EVALITA or adapted from NIST to EVALITA.

Unless stated otherwise, we show results with S-Norm [Senoussaoui et al., 2010]. The
cohorts were utterances from the EVALITA development set (9000 male + 9000 female
segments).

10.5 Experiment Results

10.5.1 Analysis of the weight of the prior on the model posterior

Table 10.1 compares our two baselines with the systems with MAP adaptation in the
condition TC6–TS2 (6 minutes enrollment against 30 second test). Results are in
terms of EER and minimum DCF in the operating point defined in the EVALITA
guidelines [Aversano, 2009] (CMiss = 10, CFA = 1, PT = 0.5). In this experiment, we
did not length normalize i-vectors. We compared different adaptations where we tuned
the influence of the prior on the posterior as we explained in Section 10.3.3. In essence,
we adjusted the degrees of freedom in the prior Gaussian-Wishart distributions to obtain
distributions with the same expectations than the original prior but that look like trained
with less or more samples than the original. When we increase the effective number of
samples, the prior is sharper and its weight on the posterior is larger and vice versa.

The table evidences that training only with EVALITA09 largely degraded performance
with respect to NIST. The low number of in-domain speakers, which forced us to use a
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Table 10.1: EER(%)/MinDCF EVALITA09 TC6 TS2 vs. effective number of speakers (νy0)
and segments (nuwo) in the prior distribution.

male female

EER DCF EER DCF

NIST 2.99 0.098 1.37 0.089
EVITA09 6.08 0.279 7.02 0.232

Adapt ηy = ηW = 1 1.83 0.104 1.32 0.059

Adapt βy0 = νy0 = 401
νW0 = 401 2.12 0.160 1.56 0.107
νW0 = 500 2.12 0.158 1.55 0.107
νW0 = 750 2.03 0.151 1.45 0.102
νW0 = 1500 1.77 0.141 1.32 0.090
νW0 = 3000 1.79 0.119 1.39 0.071
νW0 = 6000 1.83 0.106 1.35 0.061
νW0 = 9000 1.74 0.101 1.26 0.059
νW0 = 12000 1.68 0.089 1.26 0.058
νW0 = 15000 1.80 0.086 1.17 0.048
νW0 = 18000 1.79 0.081 1.17 0.048

Adapt βy0 = νy0 = 500
νW0 = 401 2.17 0.160 1.56 0.112
νW0 = 500 2.16 0.160 1.56 0.112
νW0 = 750 2.12 0.154 1.50 0.107
νW0 = 1500 1.83 0.141 1.38 0.092
νW0 = 3000 1.79 0.121 1.39 0.071
νW0 = 6000 1.83 0.109 1.35 0.061
νW0 = 9000 1.80 0.104 1.31 0.059
νW0 = 12000 1.83 0.096 1.26 0.059
νW0 = 15000 1.80 0.089 1.18 0.051
νW0 = 18000 1.83 0.084 1.26 0.048
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Table 10.2: EER(%)/MinDCF EVALITA09 TC6 TS2 vs. adapted parameters.

male female

EER DCF EER DCF

NIST 2.99 0.098 1.37 0.089
EVITA09 6.08 0.279 7.02 0.232

Adapt µ 2.96 0.096 1.37 0.086
Adapt µB 2.86 0.073 1.39 0.087
Adapt µBW 1.80 0.086 1.17 0.048

very low-rank eigen-voice matrix, did not properly model the speaker space. However, by
adapting the NIST model with these few speakers we obtained a nice improvement. In the
case where we did not tune the degrees of freedom of the prior (ηy = ηW = 1), male EER
improved by 39%, female EER by 3.6%, female DCF by 33% and only male DCF worsened
by 6%.

We optimized performance by tuning βy0 , νy0 and νW0 . The values of βy0 and νy0 started
from 401 so that the prior be proper. The tuning of βy0 = νy0 did not affect too much results
because, in any case, all the values were much larger than the number of in-domain speakers
(βy0 = νy0 >> 30). However, we improved performance by increasing νW0 . We could think
that, having as much as 9000 development segments in EVALITA09, we should obtain good
results by training W only on them. If that were the case, we should obtain the best error
rates for low values of νW0 . On the contrary, we achieved the best results by selecting νW0

1.5−2 times larger than the in-domain segments. This is explained because the EVALITA09
segments came from a reduced number of speakers. Even when PLDA assumes that channel
offset is a priori independent of the speakers, in practice it is not. That means that those
9000 segments do not contribute as much information as, e.g., 9000 segments coming from
hundreds of speakers. Thus, we prevented over-fitting by giving more weight to the prior.

For example with βy0 = νy0 = 401 and νW0 = 15000, we improved male EER by
40%, female EER by 15%, male DCF by 12% and female DCF by 46% with respect to
NIST development. And with respect to the adapted model without tuning, they improved
by 1.6, 11, 18 and 17% respectively. The experiments in next sections are always with
βy0 = νy0 = 401 and νW0 = 15000.

10.5.2 Analysis different parameter adaptation

Besides of adapting all the model parameters, we studied the effect of adapting only µ or
only µ and B. Table 10.2 presents results for TC6–TS2. We did not length normalize the
i-vectors. Results did not significantly improve when we did not adapt W. Only the male
DCF experienced a noticeable improvement of 25% when adapting µ and B. The other
metrics improved by less than 5%. We obtained the largest benefits when we also adapted
the channel precision W. EER improved by an average 26% with respect to adapting only
µ and B. Female DCF improved by 45% but male worsened by 17%, however it was still
12% better than the baseline. This behavior evidenced that inter-session variability was
very different between NIST and EVALITA. Since we had very few in-domain speakers, we
cannot decide if the lack of improvement obtained from adapting µ and B happened because
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Figure 10.2: DET curves TC6–TS2 for male (left) and female (right).

we needed more speakers or because there was few difference between the speaker spaces
of both datasets. We are inclined to the first hypothesis because we think the difference
between English and Italian languages should be reflected in both spaces: speaker and
channel.

10.5.3 Analysis S-Norm and length normalization

Experiments on NIST databases revealed that length normalization makes score
normalization unnecessary [Garcia-Romero and Espy-Wilson, 2011, Senoussaoui et al.,
2011a]. The results that we presented in Table 2.2 of Chapter 2 and Table 9.2 of Chapter 9
verified those findings. It has been claimed that score normalization is not necessary
mainly because length normalization reduces mismatch between the development and test
databases. In this experiment, we wanted to investigate whether this fact was also true for
other datasets like EVALITA.

Table 10.3 presents results with length normalized i-vectors with and without

Table 10.3: EER(%)/MinDCF EVALITA09 TC6–TS2 with length normalization.

male female

EER DCF EER DCF

No S-Norm
NIST 3.28 0.146 1.61 0.113
EVITA09 5.60 0.245 6.43 0.247
Adapt µBW 1.15 0.091 1.35 0.106

S-Norm
NIST 2.23 0.100 1.25 0.055
EVITA09 4.92 0.193 6.20 0.236
Adapt µBW 0.93 0.068 1.18 0.077



192 Chapter 10. Bayesian Adaptation of PLDA

score normalization for condition TC6–TS2. Length normalization effectively improved
performance in EVALITA for male trials. For females, it improved the baselines a little but
worsened the adapted system. S-Norm was always beneficial.

Figure 10.2 compares DET curves with and without length normalization. All the curves
include S-Norm. We observe that, for males, length normalization improved over most of the
operating points. For females, the distance between curves with and without normalization
is small. Besides, the male curves manifest the significant relative improvement between the
baselines and the adapted system.

10.5.4 Results multiple conditions

Table 10.4 shows results on all the EVALITA09 conditions without and with length
normalization. Length normalization did not achieve the best results in all conditions.
For enrollment conditions TC1-3 and TC5 females, with length normalization, performance
of the adapted model degraded with respect to the NIST model. For those conditions, the
lowest error rates were for the adapted model without length normalization. In the rest of
conditions, we obtained good results by combining adaptation and length normalization.

The overall conclusion that we drew from the table was that conditions with longer
enrollment or test segments like TC6–TS2 benefited more from length normalization.
Otherwise, using only model adaptation was better.

10.6 Summary

In this chapter, we explained how to adapt a two-covariance model from a domain with a
large amount of development data to another one with scarce data. Adaptation was based
on MAP estimation. First, we compute the posterior of the model parameters given the
out-of-domain data and a non-informative prior. That posterior becomes an informative
prior for the next step where we compute the posterior given the in-domain data. Finally,
we make point estimates of the model parameters by maximizing this last posterior. Since
the model posterior cannot be computed in closed form, we approximated it by applying
variational Bayes.

We adapted models from NIST domain to EVALITA09. EVALITA09 presented an
evaluation framework similar to NIST. However there was a significant mismatch between
both dataset. EVALITA09 was recorded in Italian Language while NIST is dominated
by English language. There were also differences in the telephone channels used in each
one of them. As consequence, models trained on NIST did not performed optimally on
EVALITA09. Development data in EVALITA09 was scarce and models trained only on
it performed badly. With Bayesian adaptation, we improved EER by 15–40% and DCF
by 12–46% with respect to the baseline, trained on NIST. The main gain came from the
adaptation of the within-class precision W. When we adapted only µ and B we obtained
minor improvements.

We compared Bayesian adaptation with length normalization, which is supposed to
reduce dataset shift. In EVALITA09, conditions with longer enrollment or test segments
benefited from combining both techniques. In the rest of conditions, model adaptation
performed better than length normalization. Contrary to what we had observed on NIST,
length normalization needed score normalization to achieve optimal performance.
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Table 10.4: EER(%)/MinDCF EVALITA09 Multiple conditions.

Cond. System
Without Lnorm With Lnorm

male female male female

EER DCF EER DCF EER DCF EER DCF

TC1–TS1
NIST 10.50 0.566 9.09 0.465 10.48 0.537 8.05 0.417
EVITA09 17.05 0.667 12.75 0.594 14.47 0.607 12.38 0.635
Adapt µBW 9.15 0.441 7.89 0.458 12.16 0.680 11.72 0.622

TC1–TS2
NIST 6.02 0.352 4.28 0.146 5.27 0.287 3.86 0.159
EVITA09 10.42 0.628 10.62 0.426 9.52 0.560 11.38 0.543
Adapt µBW 4.88 0.326 3.87 0.193 8.01 0.467 6.38 0.313

TC2–TS1
NIST 17.51 0.666 13.10 0.563 15.65 0.565 11.96 0.637
EVITA09 18.59 0.740 18.37 0.785 17.28 0.674 15.47 0.785
Adapt µBW 13.67 0.612 9.97 0.527 14.94 0.700 14.22 0.663

TC2–TS2
NIST 11.79 0.417 5.64 0.318 10.68 0.492 5.92 0.295
EVITA09 13.66 0.621 14.06 0.586 11.07 0.494 12.18 0.494
Adapt µBW 9.92 0.383 5.02 0.254 10.32 0.496 7.27 0.378

TC3–TS1
NIST 9.54 0.482 8.08 0.458 9.02 0.441 7.21 0.422
EVITA09 13.94 0.637 12.51 0.562 11.98 0.554 11.87 0.548
Adapt µBW 7.44 0.400 6.60 0.407 9.67 0.536 8.90 0.494

TC3–TS2
NIST 4.38 0.243 3.60 0.137 3.96 0.247 3.07 0.136
EVITA09 9.54 0.521 8.54 0.321 8.31 0.399 8.39 0.384
Adapt µBW 3.69 0.231 2.90 0.159 5.08 0.318 3.38 0.272

TC4–TS1
NIST 17.35 0.659 13.30 0.565 14.66 0.545 11.90 0.518
EVITA09 16.30 0.749 16.21 0.719 15.10 0.678 13.75 0.637
Adapt µBW 12.45 0.618 8.63 0.403 11.95 0.622 10.37 0.478

TC4–TS2
NIST 10.84 0.443 4.44 0.272 9.98 0.401 4.15 0.253
EVITA09 12.46 0.561 10.73 0.522 10.42 0.439 9.56 0.407
Adapt µBW 8.41 0.392 3.89 0.246 7.94 0.402 3.77 0.272

TC5–TS1
NIST 9.54 0.399 6.57 0.383 8.50 0.325 6.61 0.318
EVITA09 14.03 0.545 12.84 0.588 10.94 0.468 10.73 0.579
Adapt µBW 6.41 0.308 4.36 0.234 5.88 0.328 8.04 0.362

TC5–TS2
NIST 3.81 0.189 1.58 0.089 3.30 0.156 1.22 0.058
EVITA09 8.32 0.294 9.32 0.354 5.79 0.248 8.19 0.355
Adapt µBW 2.60 0.154 1.53 0.076 2.79 0.146 2.14 0.129

TC6–TS1
NIST 8.11 0.376 7.11 0.314 7.28 0.285 6.29 0.280
EVITA09 12.59 0.499 12.03 0.512 9.63 0.409 10.58 0.477
Adapt µBW 5.12 0.297 3.81 0.192 3.81 0.224 5.85 0.273

TC6–TS2
NIST 2.99 0.098 1.37 0.089 2.23 0.100 1.25 0.055
EVITA09 6.08 0.279 7.02 0.232 4.92 0.193 6.20 0.236
Adapt µBW 1.80 0.086 1.17 0.048 0.93 0.068 1.18 0.077
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In the future, this work could be extended to do Bayesian adaptation of the UBM and
the i-vector extractor.



Part IV

Attacks to Speaker Recognition
Systems: Spoofing and Tampering





Chapter 11

Detecting Replay Spoofing Attacks
on Speaker Verification Systems

11.1 Introduction

As we have seen in previous chapters, state-of-the-art speaker verification systems have
achieved great performance in recent times. This has been possible thanks to the appearance
of advanced modeling techniques like JFA [Kenny et al., 2008] or PLDA [Kenny, 2010],
which compensate for channel mismatch and other inter-session variability effects. However,
performance is usually measured in an ideal scenario where impostors do not try to disguise
their voices to make then similar to the target speakers and where target speakers do not
try to conceal their identities. For example, that is the case of NIST evaluations [NIST
Speech Group, 2012]. In this chapter, we deal with spoofing attacks. Spoofing is the fact
of impersonating somebody by employing techniques like playing a recording of the victim
or voice transformation. Spoofing makes sense in SV applications related to access control:
access to computers, bank accounts, restricted areas, etc.

All biometric modalities are subjected to the risk of being spoofed. Great efforts
have been made to develop spoofing countermeasures for some of them. For example,
there are several public databases [Anjos and Marcel, 2011, Chingovska et al., 2012] and
competitions [Chakka et al., 2011] dedicated to spoofing in face recognition. On the contrary,
research resources for spoofing in speaker verification have been scarce. However, this topic
is currently drawing attention motivated by the desire of introducing this technology in new
applications like telephone banking. Speaker recognition is specially suited for telephone
applications where, since there is no human supervision, the exposure to attacks is elevated.
Besides, risk increases because there are many to obtain a speech signal that can fool the
recognition system. These techniques can be classified into four groups [Evans et al., 2013]:
impersonation, speech synthesis, voice conversion and replay attacks. In this chapter, we
focus on detecting replay attacks. We take into account attacks to text-independent systems
as much as to text-dependent. The former just consists in playing a recording of the victim.
Meanwhile, for the latter, the spoofer usually does not possess the exact utterance requested
by the system, so he needs to create it by concatenating several excerpts from recordings
of the target speaker. These low-technology spoofs are among the most dangerous because
they are difficult to detect and they are easily available to impostors without any advanced
technical knowledge.

This chapter is organized as follows. Section 11.2 reviews the state-of-the-art of different
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types of spoofing attacks (impersonation, speech conversion and synthesis, replay attacks).
In Section 11.3, we describe the spoofing detection tasks: naive replay attacks and cut
and paste attacks. We describe the assumptions that we need to make about how the
attack is carried out. Section 11.4 explains our approach to detect signals created by
concatenating words from several recordings. It was based on comparing MFCC and pitch
contours of enrollment and test segments by aligning them with dynamic time warping.
Section 11.5 is dedicated to detect recordings acquired by far-field microphones or replayed
by a loudspeaker. These type of signals are suspects of being replay attacks. In Section 11.6,
we present experiments on different databases with spoofing. The results revealed that
spoofing perilously increases the number of false alarms of current SV systems. We
performed spoofing detection experiments as well as fusing the spoofing detector with the
SV score. We pruved that the fusion can reduce the false alarms without damaging the
error rates of the normal trials. Finally, Section 11.7 summarizes de chapter.

11.2 Spoofing Types

11.2.1 Impersonation

Impersonation, imitation or mimicry refers to attacks where impostors alter their own voices
to sound like the target speaker. Imitators tend to copy prosodic patterns like intonation,
loudness and rhythm as well as lexical usage. However, there are physical differences
between speakers that cannot be copied, which complicates producing an exact replica
of the victim’s voice. There are several studies about the consequences of imitation on
speaker recognition; some of them disagree in their conclusions. The first ones date from
the seventies. For example, in [Endres, 1971], imitators succeeded in varying their formants
and pitch but they could not make them similar to those of the imitated persons. On the
contrary, in [Lummis and Rosenberg, 1972], 27% of the utterances produced by the best
mimics cheated the SV system while only 1.2% of the utterances of normal impostors were
accepted. In the last decade, new studies have evaluated the vulnerability of modern SV
approaches. In [Blomberg et al., 2004], a professional impersonator trains his voice to mimic
two target speakers. Training was performed by listening and using the SV score as feedback.
After training, test scores increased significantly. An acoustic analysis evidenced that the
impersonator adjusted his formant positions for the target speaker. Results revealed a strong
correlation between the second formant and the SV score. In [Lau et al., 2004, Lau et al.,
2005], the authors concluded that non-professional impersonators can adapt their voices to
overcome SV, but only when their natural voice is already similar to that of the target
speaker. In such a case, professional linguistic impersonators are not necessarily better
than non-professionals. For each impersonator, a spectral GMM system selected its closest,
intermediate and furthest speaker from YOHO database. No imitator was accepted as the
intermediate or further speaker. The authors hypothesized that speakers whose vowel space
is similar to that of the imitator tend to be easily imitated, likely due to similar articulatory
features. If the articulators are very different, it will be difficult or impossible to sufficiently
modify the voice towards the target. Experiments in [Mariethoz and Bengio, 2006] show
that professional imitators are better impostors than average people, yet their SV system
perfectly separated client and impostor accesses. In [Farrus et al., 2008,Farrús et al., 2010]
the authors tried to quantify how much a speaker is able to approximate others by employing
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a SV system based on a set of prosodic and voice source features. The parameters used in
the experiment included word duration, word segments, means and ranges of fundamental
frequency, as well as jitter and shimmer. Two professional impersonators imitating well-
known politicians largely increased the identification error rates. The first study of the
vulnerability of an i-vector based system [Gonzalez Hautamaki et al., 2013] consisted of a
professional Finnish imitator impersonating five Finnish public figures. The attack slightly
increased the false acceptance rate but not alarmingly.

None of the above works investigated countermeasures against impersonation. Regarding
that, the work in [Amin et al., 2013], presents a metric to distinguish natural from disguised
voices. It is based on exploring the amount of variation of certain glottal and vocal tract
features in impersonators. The authors found that the effect of voice identity on vowel
formants is highly dependent on vowel category so they developed a metric for voice disguise
that treats formant variability on a vowel-by-vowel basis. This metric was correlated
with the subjective ratings of a group of naive listeners. The general conclusion is that
impersonation is mainly based on prosodic and stylistic cues so the spectral envelope of
the speech remains more or less unchanged. Therefore, impersonators are more effective
deceiving human listeners than state-of-the-art SV systems [Evans et al., 2013].

11.2.2 Speech synthesis

Speech synthesis is the artificial production of human speech. The main approaches for
speech synthesis can be divided into two classes: those based on concatenating human speech
samples, also called unit selection approaches; and those based on statistical parametric
models like HMM. Having voice samples of the target speaker, it is relatively simple to set
up a speech synthesizer able to fool a SV system. While unit selection approaches require
a large amount of samples, a HMM speech synthesizer trained on other speakers can be
adapted to the target speaker with few data [Zen et al., 2009,Yamagishi et al., 2009]. There
are multiple works that prove the vulnerability of SV systems to synthetic speech. The first
ones date from more than a decade ago. In [Masuko et al., 1999], an HMM-based speech
synthesizer with models adapted to the target speakers [Masuko et al., 1996,Masuko et al.,
1997] spoofed a HMM text-prompted SV system increasing the false acceptance rate from
0% to 70%. In [Masuko et al., 2000], pitch information was added to the SV system but it
was not useful to reject synthetic speech. These early studies imposted a small number of
speakers. Recently, we find studies employing larger number of speakers and state-of-the-art
SV approaches. For example, the works in [De Leon et al., 2010a,De Leon et al., 2010b,De
Leon et al., 2011,De Leon et al., 2012a] report false acceptance rates of 91% in the Wall
Street Journal dataset when attacking GMM-UBM and GSV-SVM systems with a state-of-
the-art HMM synthesizer. In [Galou and Chollet, 2011], the forensic SV tool BATVOX is
attacked with synthetic speech obtaining similar outcome.

There have been several efforts to develop countermeasures to distinguish between
natural and synthetic speech, however it is yet an open problem. In [Satoh et al., 2001],
signals were classified as synthetic if the average inter-frame difference of the log-likelihood
was under a threshold. This method assumed that synthetic frames, for a given phonetic
unit, were much more similar than those of natural speech. The method was able to reduce
the false acceptance rate of synthetic speech without increasing the false rejection rate of
natural speech. Years later, two new measures were added to the inter-frame log-likelihood
difference [De Leon et al., 2010a,De Leon et al., 2010b]: distance between the MFCC of two



200 Chapter 11. Detecting Replay Spoofing Attacks on SV Systems

realizations of the same utterance aligned with dynamic time warping (DTW), and word-
error-rate and sentence-error-rate from an automatic speech recognizer trained on human
speech. However these works found those measures not to be robust enough to consistently
detect synthetic speech. Other works focus on the difference between the phase of synthetic
speech and the one of humans. As human auditory system is insensitive to phase, for
simplicity, synthesizers use a minimum phase vocal tract model [Wu et al., 2012]. In [De
Leon et al., 2011,De Leon et al., 2012a], relative phase shift detected synthetic speech with
100% accuracy. The disadvantage is that a discrimination model had to be trained for each
target speaker of the dataset and for each TTS system. Other countermeasures are based
on statistics over the pitch frequency of the signals [Ogihara et al., 2005, De Leon et al.,
2012b]. We can take advantage of that pitch contours of HMM synthesizers are usually
over-smoothed and that contours of synthesizers based on concatenating speech samples
present discontinuities. Finally, we find a countermeasure borrowed from face recognition.
Analysis of the sequence vectors with local binary patterns (LBP) was effective to detect
synthetic speech and other artificial signals in [Alegre et al., 2013b].

11.2.3 Voice conversion

Voice conversion refers to different techniques to make a speaker’s voice to sound like another
person. Development of this technology whose development started at the end on the
eighties [Abe et al., 1988,Valbret et al., 1992,Kain and Macon, 1998,Stylianou and Cappe,
1998,Stylianou et al., 1998] and it has reached maturity in the last decade [Stylianou, 2009].
Since SV technology became popular, it was clear that it could be vulnerable to voice
conversion [Pellom and Hansen, 1999]. The work in [Perrot et al., 2005] used a converter
based on voice coding to increase EER from 16% to 26% on the NIST SRE04 dataset.
In [Matrouf et al., 2006, Bonastre et al., 2007], the transfer function of the impostor was
transformed into the transfer function of the target speaker. For each frame, the target
transfer function is estimated with a GMM model of the target speaker. The system has
two tied sets of acoustic models. The first set models the features employed by the SV
system; it is used to estimate the component resposivities of the GMM. The second set
contains the parameters of the transfer functions. With this method EER increased from
8% to 60% on NIST SRE05 and from 6% to 28% on NIST SRE06. The work in [Kinnunen
et al., 2012] experimented with a converter based on joint density GMM [Kain and Macon,
1998]. This method requires a parallel training corpus for the source and the target speaker.
They tested two state-of-the art SV systems: SVM-GMM and JFA. The most robust was
JFA where false acceptance rate in the EER operating point increased from 3% to 17%
on a subset of NIST SRE06. In [Kons and Aronowitz, 2013], experiments on the West
Fargo corpus [Aronowitz et al., 2011] show that a simple voice transformation technique
can increase EER by 3–4 times. Authors evaluated three state-of-the-art SV systems with
a text-dependent setup: i-vectors, GMM-NAP and HMM-NAP. In [Wu et al., 2013], the
authors compare the vulnerability of text-dependent and text-independent SV systems to
voice conversion. They experimented with two voice converters: one based on unit selection
and another based on JD-GMM. Results on the RSR2015 dataset [Larcher et al., 2012]
showed that text-dependent systems are more robust to spoofing. Other work related to
voice conversion was presented in [Alegre et al., 2012b]. This work proves that selected short
intervals of converted voiced speech produce very high scores. Artificial signals created from
those intervals can cheat SV. Experiments on NIST SRE05 show that EER increases from
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8.5% to 77% for a GMM-UBM system; and from 4.8% to 65% for JFA.

We find some recent works regarding the development of countermeasures to detect
converted speech. Two measures to detect tone-like artificial signals were presented
in [Alegre et al., 2012a]: high level features (HLF) based on detecting frame repetition
and ITU-T P.563 quality assessment recommendation [ITU-T, 2004]. HLF yielded perfect
spoofing detection for the type of signals evaluated. The countermeasure in [Alegre et al.,
2013a] exploits the common shift applied to the spectral slope of consecutive speech frames
when mapping the impostor towards the model of the target speaker. It yielded a spoofing
detection EER of 2.7%. The same authors also applied local binary patterns (LBP) to voice
conversion detection [Alegre et al., 2013b] but they obtained worse performance (EER=8%).

11.2.4 Replay attacks

Replay attacks consist in feeding the SV system with a recording acquired from the victim. If
the SV system is text-dependent, it also includes the possibility of cutting and pasting short
segments to build the spoofing sentence [Lindberg and Blomberg, 1999]. This kind of spoof is
one of the most dangerous because high quality recordings are practically indistinguishable
from real speech so they will obtain the same SV scores as the true target. Besides, the
attacker does not need any advanced technical knowledge on the contrary of voice conversion
or synthesis. There are few works addressing the problem of detecting replay attacks. Due
to the difficulty of this task, some authors propose fusing speech and visual signals to
detect imposture. The work in [Bredin et al., 2006] describes an algorithm to detect the
lack of correspondence between speech and lip motion. However, there are already works
that present methods to generate animated synthetic faces that synchronize speech and lip
movement [Karam et al., 2009,Chollet et al., 2012].

11.3 Task Description

We worked on detecting two types of replay attack. In the first place, we considered the
simple attack consisting in just playing a recording of the victim without any alteration.
Text-independent SV systems are clearly vulnerable to this kind of attack as well as text-
dependent systems with fixed pass-phrase. Systems that request the user to utter a different
sentence for each access attempt (text-prompted system) are not vulnerable to this kind of
attack. However, text-prompted systems can be attacked by manufacturing the pass-phrase
by joining speech fragments (words, syllables) from different target speaker’s recordings. We
also worked on the detection of this attack, which we called cut and paste spoofing attack.

Detection of replay attacks is complicated unless we make some assumptions. First, we
assumed that our SV system was intended for a telephone application where the handset
is close to the speaker’s mouth (close-talk). That implies that non-spoof signals will have
high quality with low levels of noise and reverberation. Second, we expect that the victim
does not collaborate with the spoofer to perpetrate the attack. That means that, probably,
the criminal will have to record the victim from a certain distance and he will not obtain
a high quality sample. Third, we supposed that the attacker will play the recording in
front of the telephone handset by using a portable device (portable recorder, smartphone).
The small loudspeakers in those devices exhibit frequency responses far from the ones of
HI-FI equipment. Thus, our algorithm for replay attack detection combined two things:
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discriminating between far-field and close-talk recordings and detecting that the speech
signal has been generated by a loudspeaker.

Regarding the cut and paste attack, we used a SV system that is not text-dependent in
the strict sense. The system is text-dependent in the sense that the length of the enrollment
utterances is very sort what implies that target speakers only obtain a high verification score
if the sentence uttered in the test is the same or, at least, similar to the enrollment ones. In
our setup, the user was enrolled with three utterances of two different pass-phrases. In the
test phase, the speaker is asked to utter any of the enrollment pass-phrases. Then, the cut
and paste detection task was divided into two subtask:

• Pass-phrase detection: determining which one of the enrollment pass-phrases was
uttered in the test segment.

• Cut and paste detection: detecting whether the test utterance was made by
concatenating words. In this part we compared the test utterance with the enrollment
utterances corresponding to the pass-phrase selected in the previous step.

If the original sentences, from which we extracted the words to make the spoofing
sentence, were recorded by a far-field microphone, the fusion of both spoofing detectors
improved performance.

11.4 Cut and Paste Detection System

The cut and paste detection algorithm was based on the distance between the feature
contours of the test and reference segments. Contours were aligned by dynamic time warping
(DTW) [Huang et al., 2001]. We hypothesized that these contours should be very different
between a legitimate sentence and another one made of several recordings. The fact that
the words in the pass-phrase are not in the same position than in the source recordings can
make that intonation and energy patterns not to be the same as those in the enrollment
segments. For example, discontinuities may appear in the pitch and energy contours or
we may find a rising intonation pattern in the test sentence while we have a descending
pattern in the enrollment segments and vice versa. The mood of the utterances can also be
different. While in non-spoof enrollment and test sentence we find a more or less neutral
intonation pattern, the spoofing sentences could present interrogative, exclamative patterns,
etc. depending on the situation where they were recorded.

11.4.1 Features

The features employed by the system were:

• Log-pitch: the logarithm of the speech fundamental frequency fp was computed
with a pitch extractor based on the RAPT implementation [Talkin, 1995]. This
implementation includes pitch tracking by dynamic programming.

• MFCC: 12 Mel Filtered Cepstral Coefficients (MFCC C1-C12) were extracted. Mean
and variance normalization of the MFCC (CMVN) was used to mitigate channel
mismatch between enrollment and test segments. We used our VAD based on [Ramirez
et al., 2004] to prune leading and trailing silence segments. We did not remove the
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Figure 11.1: Cut and Paste matching algorithm.

silence segments in the middle of the sentence because it would damage the DTW
alignment.

11.4.2 Matching algorithm

Algorithm 2 summarizes our matching algorithm to compare enrollment and test segments.
First, our algorithm used the MFCC features to obtain the warping path that best aligns
both sentences. Then, we used that path to align both log-pitch and MFCC contours. We
observed that the warping obtained from MFCC was better than the one obtained based on
pitch due to the halving and doubling pitch errors. We computed the Mahalanobis distance
between enrollment and test aligned feature contours. We used the distance between MFCC
contours to decide which phrase was uttered in the test segment. Finally, we fused the MFCC
and log-pitch distances to decide if the test was spoof or non-spoof. Figure 11.1 shows a
block diagram of the system.

In the next sections we explain more in detail each of the steps.

11.4.2.1 MFCC distance measure

The MFCC of the test segment t were aligned with each one of the enrollment utterances
ri of the target speaker by DTW. Then, we calculated the Mahalanobis distance:

dMFCC(ri, t)
2 =

1
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(k)
)2
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(11.1)

where rwi
is the ith warped reference signal, tw is the warped test signal, j is the MFCC

component index and k is the temporal index. We used the Mahalanobis distance to account
for the different dynamic ranges of each of the MFCC components. The variances σ2

wi
were

computed on the warped reference segment rwi
.

11.4.2.2 Pitch Distance Measure

For the pitch distance, first, we warped the log-pitch contour of the reference and test signals
by applying the warping path that we obtained from the DTW alignment of the MFCC. We
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Algorithm 2 Cut and paste detection algorithm.

Given a test sentence t and a set of enrollment sentences ri.
for each pair of sentences (ri, t) do

Perform joint DTW alignment between the 12 MFCC of both sentences.
Use optimal warping path to warp MFCC and log-pitch contours.
Calculate Mahalanobis distance between the warped MFCC of both sentences:

• Compute the variances needed to evaluate the Mahalanobis distance on the warped
MFCC of the reference signal ri.

• Normalize the distance by the number of samples.

Calculate the Mahalanobis distance between the warped log-pitch of both sentences:

• Take into account only points where pitch was detected on both signals.

• Detect possible halving and doubling pitch errors (pitch in one signal almost double
than in the other).

• Compute the variances needed to evaluate the Mahalanobis distance on the warped
log-pitch of the reference signal ri.

• Normalize the distance by the number of samples with pitch in both segments.

Fuse MFCC and log-pitch distances with a weighted sum.
end for
Decide which pass-phrase was uttered by the speaker based on the minimum MFCC
distance.
The spoofing detection score is the minimum of the fused distances corresponding to the
pairs (ri, t) where ri contains the detected pass-phrase.
Threshold the score to take the final decision.

found that, in this manner, we obtained better alignments than doing DTW alignment based
on pitch contours. Pitch detection errors like missing pitch segments or halving/doubling
errors, in either the reference or the test signal, caused bad DTW alignments. The distances
obtained in those cases were too large, which was especially harmful for non-spoof tests.
Consequently, false acceptance rates (false spoof) increased dramatically.

Even with a good alignment of the pitch contours, there are frames whose pitch is missing
in either the reference or the test segments. We computed distances accounting only on the
frames that were marked as voiced in both segments.

To detect halving and doubling errors, for each frame, we checked if the doubled or halved
version of the test pitch was almost the same as the reference pitch. Then, we replaced
the test pitch value with the nearest one to the reference pitch. Written in mathematical
notation:

∃n ∈ Z ∋ rw(k)− tw(k)− n log(2) < ǫ ⇒tw(k)← tw(k) + n log(2) (11.2)

where rw(k) is the warped reference log-pitch and tw(k) is the warped test log-pitch.
We can see the effect of pitch detection errors in Figure 11.2. The figure shows the

curves of miss probability and false acceptance probability against decision threshold for
two spoofing detectors based on pitch. The left plot corresponds to a system where the
pitch has been warped by DTW between the enrollment and test log-pitch contours. The
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Figure 11.2: Effect of pitch errors on error rates.

right plot corresponds to a system where the pitch has been warped with the path obtained
from the MFCC alignment. The figure reveals that, for the left one, there is point where we
cannot reduce the false acceptance probability but selecting a very high threshold. However,
if we do that we will not detect any true spoofs. On the contrary, for the right one, the
effect of pitch detection errors is not so harmful. Thus, we can select an operating point for
the spoofing detector where we do not have false alarms and yet we are able to detect a fair
amount of spoofing attempts.

Once solved, as far as possible, the problem of pitch detection errors we can proceed to
calculate the distance:

dlog−pitch(ri, t)
2 =

1

|V |
∑

k∈V

(rwi
(k)− tw(k))2
σ2
wi

(11.3)

V = {k ∋ rwi
(k) > 0 ∧ tw(k) > 0} (11.4)

where rwi
is the warped log-pitch of the ith reference signal and tw is the warped pitch of

the test signal. V is the set of frames that are voiced in both the reference and the test
segments. The variances σ2

wi
were computed on the warped reference segment rwi

.

11.4.2.3 Pass-phrase detection

In our setup, users authenticate themselves by uttering any pass-phrase among those
recorded in the enrollment. We based on the MFCC distance to detect which pass-phrase
the user selected. According to our results, MFCCs chose the right pass-phrase better than
pitch. Not in vain, MFCCs are the standard features for speech recognition systems. We
decided that the pass-phrase in the test segment should be the same as the pass-phrase in
the enrollment segment with minimum dMFCC:

ŝ(t) = s (rn) ∋ n = argmin
i

dMFCC(ri, t) (11.5)

where s(f) is the pass-phrase uttered in the segment f .
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11.4.2.4 Fusion

We computed a weighted sum of MFCC and log-pitch distances for the pairs (ri, t) where
ri contains the same pass-phrase as t:

R =
{

ri ∋ s(ri) = ˆs(t)
}

(11.6)

d(ri, t) = w1dMFCC(ri, t) + w2dlog−pitch(ri, t) ∋ ri ∈ R . (11.7)

The output score of the spoofing detector was the minimum of those weighted distances:

d = min
ri∈R

d(ri, t) . (11.8)

11.5 Far-Field Replay Attack Detection System

The far-field detector is based on a SVM working on a set of acoustic features extracted
from the speech signal.

11.5.1 Features

For each recording, we selected a set of features that could detect two types of manipulations
of the speech signal:

• The signal was acquired by a far-field microphone.

• The signal was replayed by a loudspeaker.

Currently, speaker verification systems are mostly used on telephone applications. That
implies that the user is supposed to be close to the telephone handset. If we detect that
the user was far from the handset during the recording we consider it a spoofing attempt.
Far-field recordings present larger noise and reverberation levels than close-talk ones. As
consequence, their spectra are flatter and their modulation index smaller.

A loudspeaker is the simplest means of injecting the spoofing signal into a phone-call.
Probably, the impostor will use a easily transportable device like a smart-phone, with a
small loudspeaker. This kind of loudspeakers presents bad frequency responses in the low
part of the spectrum. Figure 11.3 shows a typical frequency response of a smart-phone
loudspeaker that evidences that low frequencies, under 500 Hz, are strongly attenuated.

Following, we describe our features.

11.5.1.1 Spectral Ratio

We defined the spectral ratio (SR), for a frame n as:

SR(n) =

NFFT/2−1
∑

f=0

log (|X(f, n)|) cos
(

(2f + 1)π

NFFT

)

(11.9)

where X(f, n) is the spectrogram of the signal and NFFT is the size of the FFT. Speech
frames were windowed with a Hamming window. Approximately, this measure represents
the log-ratio between the energy in the frequency range 0–2 kHz and the one in 2–4 kHz.
We averaged SR(n) over all speech frames to compute a unique value for each segment.
Spectrum flattening, due to noise and reverberation, implies lower values of SR.
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Figure 11.3: Typical frequency response of smartphone loudspeaker.

11.5.1.2 Low Frequency Ratio

We called low frequency ratio (LFR) to the log-ratio between the signal energy in 100–300
Hz and the one in 300–500 Hz. For a frame n, we calculated it as:

LFR(n) =
300Hz
∑

f=100Hz

log (|X(f, n)|)−
500Hz
∑

f=300Hz

log (|X(f, n)|) (11.10)

where X(f, n) is signal spectrogram. For each segment, we computed the average LFR after
removing the silence frames. Signals replayed by a loudspeaker present lower values of LFR.

11.5.1.3 Modulation Index

Modulation index was already introduced in Section 4.2. The modulation index at time t
is defined as

Indx(t) =
vmax(t)− vmin(t)

vmax(t) + vmin(t)
(11.11)

where v(t) is the envelope of the signal and vmax(t) and vmin(t) are the local maximum and
minimum of the envelope in a region close to the time t. The envelope was approximated
by the absolute value of the signal s(t) down-sampled to 60 Hz. For each segment, we
computed the average modulation index taking the frames whose indexes were above 0.75.
Noise and reverberation cause higher values of vmin and lower modulation indexes.

11.5.1.4 Sub-band Modulation Index

If noise only affects a small frequency band it may not be noticed by the standard
modulation index. We calculated the modulation index on several sub-bands to detect
far-field recordings with colored noises. The sub-band modulation index was calculated by
filtering the signal with a band-pass filter over the desired frequency range before feeding
it to the standard modulation index algorithm. We computed indexes for the bands: 1–3
kHz, 1–2 kHz, 2–3 kHz, 0.5–1 kHz, 1–1.5 kHz, 1.5–2 kHz, 2–2.5 kHz, 2.5–3 kHz, 3–3.5 kHz.
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Figure 11.4: Sub-band modulation index calculation.

11.5.2 Classification algorithm

For each recording, we built a feature vector x with all the features described in the previous
section:

x = (SR,LFR, Indx(0, 4kHz), . . . , Indx(3kHz, 3.5kHz)) . (11.12)

Feature vectors were classified with SVM. We remind that the SVM classification
function is defined as:

f(x) =
∑

i

αik(x,xi) + b (11.13)

where k is the kernel function, x is the test vector, and xi, αi and b are the support vectors,
the support vector weights, and the bias parameter that are estimated during the SVM
training process. The kernel that best performed was the Gaussian kernel:

k(xi,xj) = exp
(

γ ‖xi − xj‖2
)

. (11.14)

We trained our classifier with the LIBSVM toolkit [Chang and Lin, 2011]. The training
data was obtained from the NIST SRE08 database:

• Non spoofs: 1788 telephone signals from the NIST SRE08 train set.

• Spoofs: we created artificial spoofs from the far-field microphone interviews in the
NIST SRE08 train set. We passed those signals through a loudspeaker and a telephone
channel to simulate the conditions of a real spoof. We used two different loudspeakers:
a USB loudspeaker for a desktop computer and a mobile device loudspeaker; and two
different telephone channels: analog and digital. In this way, we obtained 1475 × 4
spoof signals.

11.6 Experiments

11.6.1 Databases

At the moment of this work, there were no publicly available databases for this task. In our
experiments, we used two datasets provided by a third party.

11.6.1.1 Database 1: far-field

The first database was designed to detect replay attacks on text-independent speaker
recognition. It consisted of only 5 speakers. Each speaker had 4 groups of signals:

• Originals: signals recorded by a close-talk microphone and transmitted over a
telephone channel. There were 1 enrollment signal and 7 test signals per speaker.
They were transmitted over different telephone channels: digital (enrollment and 3
test signals), analog wired (2 test signals) and analog wireless (2 test signals).
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• Microphone: signals recorded simultaneously to the originals by a far-field microphone.

• Analog Spoof: the microphone test signals replayed on a telephone handset and
transmitted over an analog channel.

• Digital Spoof: the microphone test signals replayed on a telephone handset and
transmitted over a digital channel.

11.6.1.2 Database 2: far-field + cut and paste

This database was recorded to experiment with replay attacks on text-dependent speaker
recognition. During the test phase, text-dependent systems ask the user to utter a
given pass-phrase. The spoofing process consists in manufacturing the test utterance by
cutting and pasting fragments of speech (words, syllables) obtained from victim’s available
recordings. The database consisted of two parts:

• Part 1: it consisted of 20 speakers. It included landline (T) signals for enrollment,
non-spoof and spoof tests; and GSM (G) signals for spoofs tests.

• Part 2: it consisted of 10 speakers. It included landline and GSM signals for all
enrollment, non-spoofs and spoof tests. It was recorded several months later than
Part 1 and both had seven speakers in common.

Recordings were made in three sessions:

• Session 1: it was used for speaker enrollment. Each speaker recorded 3 utterances
per channel type of 2 different pass-phrases (F1, F2). Each utterance was around 2
seconds long. The pass-phrases were:

– F1: ”Como manzanas en casa” (I eat apples at home).

– F2: ”Utilizo biometra de voz en mi trabajo” (I use voice biometrics at work).

• Session 2: it was used for non-spoofing access trials and consisted of 3 recordings per
channel type for each of the sentences F1 and F2.

• Session 3: it was composed of different sentences and a long text that contained the
same words as those that appear in the sentences F1 and F2. They were recorded
by a far-field microphone. Spoofing trials were created from this session. First, the
following excerpts were extracted from the recordings:

– ”En mi trabajo” (at work).

– ”Biometra de voz” (voice biometrics).

– ”Utilizo” (I use).

– ”Como” (I eat).

– ”En casa” (at home).

– ”Manzanas” (apples).

Then, excerpts were concatenated to obtain 6 samples per pass-phrase. Finally, the
signals were played on a telephone handset and transmitted over a landline or a GSM
channel.
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Three kinds of compositions were made:

• C1: Words were in the same place (beginning, middle or end) than in the source
sentences.

• C2: Words were in different place than in the source sentences.

• C3: Words were extracted from a long text.

We considered that compositions C1 were non-realistic so we only experimented on C2 and
C3.

Summing up, in this dataset we find these channel conditions:

• Telephone landline (T):

– Enrollment and non-spoof speech recorded directly over landline telephone
channel (Sessions 1 and 2).

– Spoof sentences, recorded by a far-field microphone, and replayed with a
loudspeaker on the telephone handset (Session 3).

• GSM (G):

– Enrollment and non-spoof speech recorded directly over GSM mobile channel
(Sessions 1 and 2 of Part 2).

– Composed spoof sentences, recorded by microphone, and replayed with a speaker
on a mobile phone (Session 3).

Note that the spoofs in this dataset included both types of manipulation: cut and paste
and replay attack with far-field recording and loudspeaker.

11.6.2 Speaker verification system

We evaluated how spoofing attacks degrade the performance of a SV system based on
JFA [Kenny et al., 2008]. The system was similar to the one described in Section 2.8.1.
However, we trained it in a gender independent fashion to allow cross-gender trials. We
extracted 20 MFCCs (C0-C19) plus first and second derivatives from the speech segments.
After frame selection, features were short time Gaussianized as in [Pelecanos and Sridharan,
2001]. A gender independent Universal Background Model (UBM) of 2048 Gaussians
was trained by EM iterations. Then, 300 eigen-voices V and 100 eigen-channels U were
trained by EM ML+MD iterations. Speakers were enrolled by making MAP estimates
of the speaker dependent factors (y,z). Trials were scored by the first order Taylor
approximation of the log-likelihood ratio between the target and the UBM models, as shown
in Equation (2.13). Scores were ZT-normalized and calibrated to log-likelihood ratios by
linear logistic regression [Brummer and De Villiers, 2011] on the NIST SRE08 core trial
list [NIST Speech Group, 2008]. We used telephone data from NIST SRE04-06 for UBM
and JFA training; and for score normalization.

11.6.3 Speaker verification performance degradation

The results in this section evidence that spoofing degrades the performance of state-of-the-
art SV. We experimented on both of our databases.



11.6 Experiments 211

−10 −5 0 5 10 15 20
0

10

20

30

40

50

60

70

80

90

100

SV threshold

P
m

is
s
/P

fa
 (

%
)

Pmiss/Pfa vs Decision Threshold

 

 

Pmiss

Pfa

Pfa analog spoof

Pfa digital spoof

Figure 11.5: PMiss/PFA against decision threshold for the spoofing Database 1.

11.6.3.1 Database 1

Database 1 had 35 legitimate target trials, 140 non-spoof non-target trials, 35 analog spoofs
and 35 digital spoofs. Approximately, the enrollment segments were 60 seconds long and the
test segments 5 seconds long. We obtained an EER of 0.71% for non-spoof trials. Figure 11.5
plots the miss and false acceptance rates of our SV system against the SV decision threshold
for the four types of trials. The figure reveals that if we work on the EER operating point,
we will accept 68% of the spoofing trials. Analog and digital spoofs presented similar false
acceptance rates. To reduce the spoofing acceptance rates, we should increase the threshold
at the cost of worsen the miss rate. For example, we can select a threshold that makes
PMiss = PFA−spoof = 28%.

Figure 11.6 shows the score distribution for each group of trials. The curves evidence a
large overlap between the true targets and the spoofing attempts. Table 11.1 shows statistics
for the score difference between a legitimate utterance and its spoofed version (Remember
that non-spoof and spoof tests were recorded simultaneously). Note that some spoof tests
obtained larger scores than their non-spoof counterparts.

Table 11.1: Score reduction due to replay attack for spoofing Database 1.

∆LLR Mean Std Median Max Min

Analog 3.38 2.42 3.47 9.70 -1.26
Digital 3.52 2.30 3.37 9.87 -1.68
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Figure 11.6: SV score distributions for the spoofing Database 1.

11.6.3.2 Database 2

We experimented on the parts one (P1) and two (P2) of the database separately. For P1, we
enrolled each speaker on 6 landline utterances; and evaluated 120 legitimate target trials,
2280 non-spoof non-targets, 80 landline spoofs and 80 GSM spoofs. For P2, the speakers’
models were derived from 12 utterances (6 landline + 6 GSM); and we scored 120 legitimate
target trials (60 landline + 60 GSM), 1080 non-spoof non-target (540 landline + 540 GSM)
and 80 spoofs (40 landline + 40 GSM).

With non-spoofing trials, we obtained EER=1.66% and EER=5.74% for P1 and P2

respectively. Figure 11.7 displays the miss and false acceptance rates against the SV decision
threshold for the P1 set. Working on the EER operating point 5% of landline spoofs are
accepted but none of the GSM spoofs.

Figure 11.8 shows the score distributions for the trial sets in Database 2. For P1, the
spoofing scores were much lower than the true target scores but yet higher than the non-
target scores. For P2, the spoofing scores were lower than the non-target scores so none of
them would cheat the system. It seems that the setup used to create the spoofing signals
in P2 was somehow different than the one used in P1. As a result, the channel of P2 spoofs
was so different from the enrollment than JFA was not able to compensate it. Poor channel
compensation can be explained by the length of the utterances. It is well known that,
in short utterances, the channel factors cannot be properly estimated. Table 11.2 shows
statistics for the difference between the target and the spoofing SV scores. Differences were
calculated per speaker and pass-phrase and then averaged. ∆LLR were much larger than
the ones in Database 1.

11.6.4 Experiments cut and paste detection

We tried our cut and paste detector on Database 2. We used both parts of the database
despite that the trials in the Part 2 did not pass the SV system.
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Table 11.2: Score reduction due to spoofing in Database 2.

∆LLR Mean Std Median Max Min

P1
T 8.29 3.87 7.96 17.89 1.41
G 9.98 2.96 9.56 18.51 5.40

P2
T 10.21 2.51 9.76 17.78 6.86
G 10.21 3.32 10.19 18.36 4.65

11.6.4.1 Results for multiple channel conditions

We experimented with different combinations of the type of telephone channels used for
enrollment, non-spoof and spoof test. Table 11.3 presents the EER of spoofing detection
(not speaker verification) obtained. We compare the detectors based on the MFCC, the
log-pitch and the fusion of both. The nomenclature that defines each channel condition is
”enroll-channel non-spoof-test-channel spoof-test-channel”. Each one can be landline (T),
GSM (G), or mixed channel (TG). For example, the condition T T TG indicates that we
used landline for enrollment and non-spoof tests; and landline or GSM for spoof tests.

The MFCC produced better results than pitch. That was due to pitch detection errors
and to that MFCCs are also very affected by the channel mismatch due to the spoofing
creation procedure. We remind that the session used to create the spoofs was recorded by
a far-field microphone. Thus, even for conditions like T T T there was still some channel
mismatch between spoofs and non-spoofs. Despite that the MFCC were better, we think
fusing both features is more robust to prevent spoofs made from high quality recordings.
The fusion weights were tuned on the test data because we did not have any held-out set.
The results were quite similar across channel conditions.

Table 11.4 shows pass-phrase identification error rates. The system always chose the
correct pass-phrase in non-spoofing trials. This is important because otherwise, we would
obtain a high false spoof detection rate. On the other hand, the error rate of the spoofing
signals was very high. This, far from being a problem, improved the detection of true spoofs.

11.6.4.2 Results for sessions separated different time intervals

Part 2 of database 2 was recorded several months later than Part 1. Both parts had
seven speakers in common. We used the data from those seven speakers to evaluate the
performance of the algorithm when enrollment and test sessions are long time separated.
We set up an experiment where the session 1 of Part 1 was used for enrollment and the
rest of sessions of Part 1 and 2 for test. Table 11.5 shows the spoofing EER obtained.
The top block of the table corresponds to experiments with the same type of telephone
channel for all sessions (landline); and the bottom, to mixed channel types in test. The
nomenclature that defines each condition is similar to the one in the previous section. We
added two numbers to indicate the part and the session of the data. For example, condition
T11 G21 T13 indicates that enrollment signals were landlines from the session 1 of Part 1,
non-spoofs tests were GSM from the session 1 of Part 2; and spoofs tests were landlines
from the session 3 of Part 1.
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Table 11.3: EER(&) for cut and paste detection with multiple channel conditions.

EER(%) MFCC Pitch
Pitch
+

MFCC

P1

T T T 0.00 6.88 0.00
T T G 0.00 3.12 0.00
T T TG 0.00 6.46 0.00

P2

T T T 0.00 0.00 0.00
T G G 0.00 0.00 0.00
T TG TG 0.00 1.04 0.00
G T T 0.00 2.92 0.00
G G G 0.00 2.92 2.08
G TG TG 0.00 3.96 1.04
TG T T 0.00 2.92 0.00
TG G G 0.00 0.83 0.00
TG TG TG 0.00 2.50 0.00

Table 11.4: Pass-phrase detection error rates (%) for multiple channel conditions.

P (error) P (error|non− spoof) P (error|spoof)

P1

T T T 13.00 0.00 32.50
T T G 17.00 0.00 42.50
T T TG 21.43 0.00 37.50

P2

T T T 17.00 0.00 42.50
T G G 15.00 0.00 37.50
T TG TG 16.00 0.00 40.00
G T T 17.00 0.00 42.50
G G G 10.00 0.00 25.00
G TG TG 13.50 0.00 33.75
TG T T 19.00 0.00 47.50
TG G G 12.00 0.00 30.00
TG TG TG 15.50 0.00 38.75
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Figure 11.9: DET curve for the pooling of different channel conditions and session
separations.

Both, the pitch and the MFCC, yielded worse results when the enrollment session was
further in time from the non-spoofs tests, especially when there were mixed test channels.
Results were better when we did not have channel mismatch between enrollment and test.
There was not a significant difference between spoofs from Part 1 (close to the enrollment
session) and the ones from Part 2 (far from the enrollment). Although in the previous
section, we observed that the MFCCs were better than the log-pitch and that the fusion did
not improve, Table 11.5 indicates that, when enrollment and test are distant, the MFCCs
and the log-pitch provided similar performance. In this case, fusion clearly helped. We want
to make note that we had very few data for this experiment, so we could not measure low
error rates precisely. In fact, each classification error caused an EER absolute increment of
about 3%. In Figure 11.9, we plot a DET curve for the detector fusing log-pitch and MFCC,
where we pooled all the conditions of the table. EER was around 4%. Interestingly, the
misses and false alarm rates were bounded, that is, independently of the operating point
that we set for the spoofing detector, we always missed less than 5% of spoofs and the
false alarms were less than 10%. We are aware that this behavior may be particular to this
dataset and it may not generalize to others.

Table 11.6 shows the pass-phrase identification error rates for this experiment. The
system was always able to select the right pass-phrase in non-spoofs even when enrollment
and test segments were distant in time. For the spoofing trials, pass-phrase selection was
almost random, but there is no reason why it should damage the detection of spoof tests.

11.6.5 Results far-field replay attack detection

In this section, we evaluate the performance of the countermeasure that detects far-field
recordings and signals replayed by a loudspeaker. We experimented on Database 1 and 2.
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Table 11.5: EER(%) for cut and paste detection with different distance between sessions.

EER(%) MFCC Pitch
Pitch
+

MFCC

Landline

T11 T12 T13 0.00 2.98 0.00
T11 T12 T23 0.00 2.98 0.00
T11 T21 T13 4.17 4.17 0.00
T11 T21 T23 4.17 7.14 0.00
T11 T22 T13 0.00 4.17 0.00
T11 T22 T23 0.00 4.17 0.00

Mixed channel

T11 T12 TG13 0.00 2.08 0.00
T11 T12 TG23 0.00 2.08 0.00
T11 TG21 TG13 7.14 7.14 2.08
T11 TG21 TG23 7.14 2.98 3.57
T11 TG22 TG13 7.14 7.14 4.17
T11 TG22 TG23 8.63 5.06 4.17

Table 11.6: Pass-phrase detection error rates (%) for different distance between sessions.

P (error) P (error|non− spoof) P (error|spoof)

Land line

T11 T12 T13 21.43 0.00 53.57
T11 T12 T23 22.86 0.00 57.14
T11 T21 T13 22.86 0.00 57.14
T11 T21 T23 21.43 0.00 53.57
T11 T22 T13 21.43 0.00 53.57
T11 T22 T23 22.86 0.00 57.14

Mixed channel

T11 T12 TG13 27.55 0.00 48.21
T11 T12 TG23 26.53 0.00 46.43
T11 TG21 TG13 19.29 0.00 48.21
T11 TG21 TG23 18.57 0.00 46.43
T11 TG22 TG13 19.29 0.00 48.21
T11 TG22 TG23 18.57 0.00 46.43
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Table 11.7: EER(%) for far-field spoofing detection in Database 1.

Channel Features EER(%)

SR 20.00
Analog orig. LFR 0.00
vs. MI 30.7
Analog spoof Sb-MI 10.71

SR,MI,Sb-MI 0.00
SR,LFR,MI,Sb-MI 0.00

SR 36.07
Digital orig. LFR 0.00
vs. MI 30.7
Digital spoof Sb-MI 14.64

SR,MI,Sb-MI 10.71
SR,LFR,MI,Sb-MI 0.00

SR 37.32
Analog+Dig orig. LFR 7.32
vs. MI 31.9
Analog+Dig spoof Sb-MI 12.36

SR,MI,Sb-MI 8.03
SR,LFR,MI,Sb-MI 8.03

11.6.5.1 Database 1

Table 11.7 shows the spoofing detection EER for different features and channel conditions.
The input to the SVM classifier were spectral ratio (SR), modulation index (MI), sub-band
modulation indexes (Sb-MI) and low frequency ratio (LFR), as described in Section 11.5.1.
We also combined SR, MI and Sb-MI; and SR, LFR, MI and Sb-MI. We considered three
channel conditions: only analog telephone signals for spoof and non-spoofs, only digital
telephone signals, and mixed channels signals. The LFR obtained the lowest EER in all
conditions: EER=0% for conditions with one channel type and EER=7.32% for the mixed
channel condition. The spectral ratio and the modulation indexes did not obtained very
good results on their own, but combined (SR, MI, Sb-MI) they were close to the LFR in
two of the three channel types. The set (SR, LFR, MI, Sb-MI) was not better than the LFR
for this particular dataset. However, as LFR measures the impact of the loudspeaker on
the signal and the rest of features measure the effect of the far-field acquisition, we would
recommend using all the features for attacks where the criminal uses high quality equipment
or is able to inject the signal into the telephone line without a loudspeaker.

Figure 11.10 plots the DET curve for the mixed channel condition with the detector
based on all the features. Note that the miss rate was always lower than 10% independently
of the operating point that we chose for the spoofing detector. On the other hand, false
alarms could grow to more than 40%.
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Figure 11.10: DET curve far-field spoofing detection curve for the Database 1.

11.6.5.2 Database 2

Although Database 2 was mainly designed to detect cut and paste spoofs, we also applied
the replay detector on it. Table 11.8 shows the spoofing detection EER for both parts of
the database. We considered several combination of telephone channels for spoofs and non-
spoofs. The nomenclature that defines each condition is: non-spoof-test-channel spoof-test-
channel. For example, T TG means that we evaluated landline non-spoofs against mixed
landline and GSM spoofs. Part 2 presented lower error rates, which means that spoofs were
recorded in a way that degraded more the channel conditions compared to non-spoofs. We
already noted this fact in Section 11.6.3.2 when we evaluated the SV performance in this
database. For Part 1, the best result was for condition T G, the one with more channel
mismatch between spoofs and non-spoofs; and the worst was T T, the one with less channel
mismatch.

Figure 11.11 shows the spoofing detection DET curves. Except for condition T T of the
Part 2, we cannot reduce the false alarm rate as long as we want. If we want the false alarm
rates to be under 5% 5% in Part 1, and under 2% in Part 2, the miss rate grows rapidly.

Table 11.8: EER(%) for far-field spoofing detection in Database 2.

EER(%)

P1

T T 9.38
T G 2.71
T TG 5.62

P2

T T 0.00
G G 1.67
TG TG 1.46
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Figure 11.11: DET far-field detection curves for Database 2.

11.6.6 Results fusion of cut and paste and far-field detectors

In Database 2, we had both types of spoofs simultaneously so it makes sense to fuse the
spoofing detectors. We used the cut and paste detector with fusion of MFCC and pitch.
Training the fusion with logistic regression did not work properly. Eventually, our fusion
consisted in normalizing the scores in mean and variance and assigning the same weight to
each of them. Table 11.9 shows the EER that we obtained for each channel condition and
for the pool of all conditions. For Part 1, the result was worse than using only the cut and
paste detector. For Part 2, we improved the two conditions that did not have zero error
with the cut and paste detector.

Table 11.9: EER(%) for fusion of spoofing detectors in Database 2.

EER(%)

P1

T T T 5.00
T T G 0.62
T T TG 3.75
Pool 3.12

P2

T T T 0.00
T G G 0.00
T TG TG 0.00
G T T 0.00
G G G 0.00
G TG TG 0.00
TG T T 0.00
TG G G 0.00
TG TG TG 0.00
Pool 0.00
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Figure 11.12: PMiss/PFA against decision threshold for the fusion of SV and spoofing
detection on Database 1.

11.6.7 Fusion of speaker verification and spoofing detection

Finally, we fused the spoofing detector and the SV system. We did a hard fusion where
we rejected all the trials marked as spoof by the spoofing detector, i.e., we assigned them
SV score equal to −∞; the rest of trials kept the score provided by the SV system. We
wanted the fused system to maintain the performance for non-spoofing trials close to the
original SV system; and at the same time, to reduce the number of spoofing trials that
deceive the system. We chose the threshold of the spoofing detector with that in mind. For
not increasing the miss rate of the true target trials, we selected a high spoofing threshold.

We present results for Database 1 and for Part 1 of Database 2. For Database 1 we
used the system based on far-field and replay detection; and for Database 2, we used the
fusion of both detectors. Figure 11.12 refers to Database 1. It plots the miss and false
acceptance rates against the decision threshold on the fused SV score. If we consider the
EER operating point the percentage of accepted spoofs decreased from 68% to zero for
analogs and to 17% for digitals. If we decide to work in the point with EER between misses
and spoof acceptance, the miss rate is 14.3% instead of 28%, which was the value obtained
without the spoofing detector.

Figure 11.13 shows results for Part 1 of Database 2. If we again consider the EER
operating point the number of accepted spoofs decreases from 5% to 1.25% for landlines.
Besides, all GSM spoofs were rejected no matter what SV decision threshold we choose. In
exchange, we had a minimum miss probability of 1.25% because of true targets that the
system marks as spoof.

11.7 Summary

In this chapter, we dealt with the problem of spoofing attacks to speaker recognition systems.
Among all the types of attacks that we can find in the literature, we focused on replay
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Figure 11.13: PMiss/PFA against decision threshold for the fusion of SV and spoofing
detection on Database 2 Part 1.

attacks. Replay attacks are major threads because they are low technology attacks so they
are available even for criminals without speech processing knowledge. On the contrary,
attacks like voice conversion or speech synthesis require higher levels of expertise.

We considered attacks to text-independent and text-dependent speaker verification
systems. Text-independent and text-dependent systems with fixed pass-phrase are
vulnerable to the naive attack consisting in recording the victim’s voice and replaying it
on the SV system. For text-dependent system with prompted pass-phrase, criminals need
to carry out a more elaborate procedure consisting in extracting excerpts from different
recordings and concatenating them to obtain the phrase requested by the system. We
called that cut and paste replay attack.

We experimented on two databases. Database 1 was intended for text-independent SV.
The spoofs in this database were simple replay attacks. Database 2 was intended for text-
dependent SV and its spoofs included both types of attacks. On the one hand, the spoofs
were created by cutting and pasting pieces of several recordings. On the other hand, the
original recordings were acquired by far-field microphones and the composed signals were
replayed by a loudspeaker.

In order to detect naive replay attacks, we made several assumptions. First, we assumed
that the SV system was intended for a telephone application so a legitimate user should
talk close to the telephone handset (close-talk recording). Second, we assume that the
victim will not collaborate with the spoofer. Thus, the criminal should record the victim
from a certain distance. A far-field recording has higher levels of noise and reverberation
than a close-talk one. Third, we assumed that the criminal will replay the signal on the
phone with a portable loudspeaker (mobile phone, tablet, etc.). This kind of loudspeakers
produces a noticeable effect on the low frequencies of the signal. Summing up, our spoofing
countermeasure was based on detecting far-field recordings replayed by a loudspeaker. To
do it, we computed several features from the speech signal: spectral ratios and modulation
indexes. They were classified by a SVM. We trained the SVM with data from NIST SRE08.



11.7 Summary 223

We used telephone data for non-spoofs examples and far-field microphone data for spoof
examples. The microphone signals were filtered through loudspeaker and telephone channels
to simulate the conditions of the real spoofs. Training with these artificial spoofs provided
good error rates on real spoofs. On Database 1, the EER of spoofing detection was around
8% for mixed channel type. On Database 2, EER was between 0 and 9.38 % depending on
the channel condition.

To detect cut and paste attacks, we assumed that the test pass-phrases were the same
uttered during the enrollment phase. We computed distances between the enrollment and
test MFCC and log-pitch feature contours. Those contours were aligned by DTW. We
experimented with different telephone channels (landline and GSM) and different time
distance between enrollment and test sessions. Most conditions yielded EER=0%. The
worse condition, which corresponded to the case with more time distance between enrollment
and non-spoof tests, obtained EER=4.17%.

We evaluated the vulnerability to spoofing attacks of a SV system based on JFA. Results
evidenced very high acceptance rates of spoofs. Finally, we fused the SV score and the
result of the spoofing detector significantly reducing the spoofing acceptance. Having the
SV system working on the EER (for non-spoofs) operating point, spoofs acceptance reduced
from 68% to 17% on Database 1; and from 5% to 1.25% on Database 2.

Spoofing attacks are one of the main barriers that we face to introduce speaker
verification for security applications like telephone banking. Even thought, the research
community is increasingly interested in attacking this problem, there is still a long road
ahead. The wide variety of attacks that can be attempted makes spoofing detection a
complex problem. Besides, the lack of publicly available databases for this task makes
difficult to compare approaches.





Chapter 12

Detecting Tampering Attacks on
Speaker Verification Systems

12.1 Introduction

If in the previous chapter we focused on the vulnerability of SV systems to impersonators,
in this chapter, we deal with the opposite problem. Tampering attacks, also referred as
voice disguise in the literature [Perrot et al., 2007], are defined as the deliberate action of
a speaker who wants to modify his voice to hide his identity. This is a problem of great
importance in the context of forensic speaker recognition. It has been observed that disguise
happens in certain types of crime more frequently than others. Offenders usually attempt
to disguise their voices in situations where they expect to be recorded or when they may be
recognized by a listener who is familiar with their voice. Thus, tampering often happens in
cases such as kidnapping, blackmail, threatening calls or even calls to emergency services.
Disguise is more frequent in countries where these type of crimes are usual. For example,
in Brazil, disguise is common in the numerous kidnapping cases. There, placing a pencil
between the speaker’s teeth is a frequent disguise method [Figueiredo and Britto, 1996].
Data from the German police reported in [Masthoff, 1996] show that, during the period
1989–1994, disguise happened in 52% of cases where the offender may expect to have their
voice recorded. For blackmail cases, this percentage raised up to 69%.

There are many ways in which speakers can distort their voices. They can be classified
into electronic and non-electronic [Rodman, 2003]. In [Masthoff, 1996], electronic disguise
was reported to be relatively uncommon, occurring in only one to ten percent of voice
disguise cases. However, nowadays with the development of Internet and the smartphone
revolution, there is an increasing amount of available software that offers the possibility
of changing somebody’s voice [Scoompa, 2013, Kim, 2014, Zenital VOIP, 2014, Twiscon
Software, 2013]. The main technique used by these programs, consists in modifying the pitch
register by moving the mean or the pitch contour. It is also possible to add some specific
effects like echo or robotic voice. On the other hand, non-electronic means include whisper,
falsetto, foreign accent, change of speaking rate, imitation, pinched nostril, object in mouth,
etc [Zhang and Tan, 2008]. The great variety of non-electronic disguises can be divided into
four types according to the feature that we alter, as we show in Table 12.1 [Rodman,
2003]. Phonation refers to abnormal glottal activity; phonemic refers to the adoption of
abnormal allophones; prosodic relates to intonation, segment length and speaking rate; and
deformation involves forced physical changes in the vocal tract.
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Table 12.1: Classification of non-electronic tampering methods [Rodman, 2003].

Phonation Phonemic Prosodic Deformation

Raised pitch (falsetto) Use of dialect Intonation Pinched nostrils
Lowered pitch Foreign accent Stress placement Clenched Jaw
Creaky voice (glottal fry) Speech defect Segment lengthening

or shortening
Use of bite blocks

Whisper Mimicry Speech tempo Lip protrusion
Inspiratory Hyper-nasal

(velum lowered throughout)
Pulled cheeks

Raised or lowered larynx Tongue holding
Objects in mouth
Objects over mouth

In this chapter, we focus on some of those low technology attacks. In particular, we study
disguises consisting in covering the speaker’s mouth with the hand or a handkerchief; and
denasalization by pinched nostril. We will show how these disguises degrade the performance
of a state-of-the-art speaker verification system based on joint factor analysis. Moreover,
we will present tampering detection experiments with SVM and GMM classifiers.

This chapter is organized as follows. Section 12.2 reviews previous works on voice disguise
since the seventies until now. Section 12.3 describes the tampering detection systems,
including features and classifiers. Section 12.4 describes our experimental setup and results.
We experimented on four databases, two for each type of disguise. We evaluated the increase
of misses in the SV system due to the tampering attack; performance of our tampering
detectors; and the reduction of misses of tampering trials when we fuse the SV system and
the tampering detector. Finally, Section 12.5 presents the conclusions of the chapter.

12.2 State of the Art

Research on voice disguise started in 1970s in the context of forensic science. In these
first works, speaker identification and disguise detection tasks were carried out by just
listening the speech recordings or by visual inspection of their spectrograms. Comparison
of spectrograms of normal and disguised voices revealed strong variations in the formant
structure [Endres, 1971]. While most early works asked speakers to freely disguise their
voices in a manner that they felt that it would conceal their identities most effectively, the
work in [Reich et al., 1976] studied a large variety of disguises: old–age, hoarse, hypernasal,
slow-rate, and a free disguise of the speaker’s own choosing. The authors proposed an
open-set speaker identification task by spectrogram matching where reference signals always
consisted of normal speech and test signals could consist of normal or disguised speech.
The results proved that disguised speech significantly degraded performance. Later, the
authors repeated the experiment performing speaker identification by listening instead of
spectrogram comparison [Reich and Duke, 1979]. They achieved 92% of correct identification
rate with normal speech. Rates dropped to 59–81% depending on the disguise type, results
that were coherent with their previous work. The work in [McGlone et al., 1977], states
that fundamental frequency, formant frequencies and bandwidths are significantly altered by
disguise making speaker identification almost a matter of chance. In [Hollien and Majewski,
1977] three conditions were considered: normal speech, speech during stress and disguised
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speech. Speaker identification experiments by visualization of the long-term spectra found
slightly reduced identification rates for speech during stress but a large degradation for
disguised speech. Four years later, one of the first works on tampering detection showed
that both naive and sophisticated listeners are able to recognize disguise with a high degree
of reliability [Reich, 1981].

In [Shinan and Almeida, 1986], authors focused on disguises frequently found in criminal
cases: heightened voice, lowered voice and pinched nose. They studied the formant
transitions finding that there are regular deviations trends from one speech condition to the
others and that transitions are more different between speakers than between conditions,
which can be used to identify speakers. Another common disguise found in kidnapping
cases consists in using a form of phonation known as glottal fry or vocal creak [Hirson
and Duckworth, 1993]. This form of phonation occasionally occurs in normal speech
but it is more frequent in pathological voices. Trained listeners were able to perform
speaker identification with 65% accuracy on creaky voice, compared with 90% accuracy
on normal speech. In that work, there were also automatic speaker identification tests
made by comparing the power spectra of the [s] sound. They attained 50% accuracy when
identifying one speaker out of 10, and 81% accuracy when identifying one speaker out of
two. Creaky voice was also studied in [Moosmüller, 2001]. This work exposed that creaky
voice is common in women that disguise their voices by lowering their pitch to imitate male’s
voice. The authors studied 750 creaky and modal vowels pronounced by 5 female and four
male speakers. The analysis of formants evidenced that, for women, the second formant of
creaky vowels is lower than the one of the same vowel and same speaker in normal mode.
The effect on the male formants was inconsistent.

In [Orchard and Yarmey, 1995], whispering significantly worsened the identification
performance of human listeners.

The work in [Figueiredo and Britto, 1996] considers a disguise that is common in
kidnapping cases in Brazil and that consists in speaking with a pen between the front
teeth. This report examined the formant shifts in Brazilian Portuguese vowels that occur
with this type of disguise. The authors found that different speech segments are affected in
different degrees. The most evident effect was the lowering of the high vowels.

In [Clark and Foulkes, 2007], the authors studied how electronic modifications of the pitch
frequency affected speaker identification by humans. Listeners were trained to identify four
voices. Most listeners performed above chance level except when the pitch frequency was
reduced in 8 semitones.

The work in [Masthoff, 1996] explored the preferred forms of disguise of 20 German
subjects. They asked the speakers to disguise their voice to obscure identity while retaining
intelligibility. They found that the majority of the disguises included an alteration of
phonation and that the subjects used one or two masking techniques simultaneously. Fifty
five percent of speakers chose a single disguise method such as mimicking a foreign accent
or altering their natural pitch. The remaining 45% chose multiple disguise methods.
For example 15% chose a phonation change and a prosodic change; another 15% chose
a phonation change and a phonemic change; and another 15% chose a prosodic change
and a phonemic change. The authors noticed that when two speech characteristics
are simultaneously changed, identification becomes significantly more difficult for human
listeners. As only one or two phonetic parameters are changed some aspects of the vocal
behavior remain undisguised and available for forensic examination. For example, speakers
were unable to disguise strong regional dialect features. In [Moosmüller, 1997], it is also
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stated that dialect features can resist to voice disguise.

The work in [Künzel, 2000] investigated three types of disguise: raising fundamental
frequency, lowering fundamental frequency, and denasalization. The author focused on
the pitch frequency changes f0. He found that there are differences between both genders
with regard to the preferred disguise type as well as the articulatory alterations that they
employed to create it. The results correlated with the experience in actual forensic casework
showing that there is a relationship between the f0 of a speaker normal speech and his
preferred disguise. Speakers with higher than average f0 tend to increase their f0 level. This
process may or may not involve a register change to falsetto. On the other hand, speaker
with lower than average f0 prefer to disguise their voices by lowering f0 even more, sometimes
obtaining creaky voice. This tendency is more often observed in males while females are
reluctant to radically change their pitch pattern. The same dataset was used to evaluate
the vulnerability to tampering of a modern speaker verification system [Künzel et al., 2004].
Until this work most literature regarding voice disguise referred to speaker identification
by humans. With the popularization of automatic speaker recognition technology, the
interest about how disguise affects these systems started to increase. The results indicated
that, if the enrollment and test segment present the same type of disguise, voice disguise
affects performance only marginally. However, if the enrollment is normal speech, significant
degradation appears in the scores of 36%, 14% and 70% of the speakers for the disguises
high, low and denasalization respectively.

Another work investigating the performance of a GMM based SV system on disguised
speech is [Kajarekar et al., 2006]. In this case, speakers were instructed to try any voice
modification without blocking their mouths or obstructing the path between the mouth and
the microphone. Using the threshold optimized for the clean condition, the system falsely
rejected 39% of the target trials with disguise in the test segment. False rejection reduced
to 9% when the threshold was optimized for disguised speech. The authors compared the
automatic system with the performance of human listeners. The results showed that, in
general, the SV system outperforms humans when voices are disguised. In [Zhang and Tan,
2008], the authors investigate 10 types of disguises: raised and lowered pitch, fast and slow
speech, whisper, pinched nostril, masking on mouth, use of bite block (pencil), objects in
mouth (chewing gum) and foreign accents. Foreign accent did not affect the recognition. On
the contrary, masking on mouth and whisper had the largest effect with 0% identification
rate. Raised pitch was the second worst with 10% identification rate. Chewing gum, lowered
pitch and pinched nostril also had an important effect with identification rates of 45%, 55%
and 65%, respectively. The rest of disguises had weaker effects with identification rate
above 85%. Although the effect of pinched nostril on speaker recognition was not as great
as expected the voice quality was very degraded. Besides, they observed that some speakers
are more easily recognized due to their idiosyncratic voice quality or poor disguising skill.

There are few works dealing with automatic disguise detection. Some serious attempts
were presented in [Perrot and Chollet, 2008,Perrot et al., 2009,Chollet et al., 2012]. These
works focused on detecting pinched nostril, hand over the mouth, high pitched voice and
low pitched voice. A set of acoustic features including 12 MFCC with deltas, first two
formants and; mean, maximum and minimum pitch frequency was used as input to SVM
classifiers. Authors tried several architectures. The one yielding better results was a parallel
architecture with five SVM classifiers, one for each one of the four types of disguises and
another to discriminate disguised/normal. The output of the five classifiers is fused to obtain
the final decision. For the pool of all the disguise types, EER around 20% was obtained.
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In [Perrot et al., 2009], the authors evidenced that the performance of these classifiers highly
degrades when disguised signals present additive noise.

In this chapter, we focus on two types of tampering methods: hand or handkerchief
over the mouth; and denasalization by pinched nostrils. We evidence the performance
degradation of a state-of-the-art SV system under these attacks and evaluate several
classifiers for the task of automatic tampering detection.

12.3 Tampering Detection Systems

12.3.1 Features

In our experiments, the best performing features were the MFCC. MFCC were described in
Section 2.3.1. We removed silence frames with our LTSD based VAD [Ramirez et al., 2004].
We did not apply any normalization like CMS or CMVN to the MFCC to not reduce the
disguise effect on the features.

We also experimented with a wide range of other features however they did not
outperformed the MFCC, neither on their own nor fused with the MFCC. Because of this,
we will not present tampering detection results with these features. Among the features
that we experimented with, we find spectral ratios like the ones that we used to detect
replay attacks, described in Section 11.5.1. We also evaluated glottal properties, which were
proposed in [Stevens and Hanson, 1994] to assess speech quality. They were open quotient,
glottal opening, skewness of glottal pulse, rate of glottal closure and incompleteness of
the glottal closure. They were computed by gradients between the amplitudes of different
harmonics and that of the fundamental frequency as described in [Lugger and Yang, 2006].
Finally, we tried the quality measures proposed in [Monzo et al., 2007,Monzo et al., 2008]:
spectral flatness, Hammarberg index, drop-off of spectral energy above 1 kHz, jitter and
shimmer.

12.3.2 SVM classifiers

We used SVM and GMM classifiers. We tried two configurations for the training and
evaluation of the SVM. In the first one, we applied the SVM on the average of the feature
vectors of each speech file. Thus, the SVM evaluation function was

f(X) =
∑

i

αik(
1

T

T
∑

t=1

xt,x
∗
i ) + b (12.1)

where k is the kernel function, X = {x1,x2, . . . ,xT} is the set of feature vectors in the test
file, T is number of frames in X, xt is the t

th test feature; and x∗
i , αi and b are the support

vectors, the support vector weights, and the bias parameter that are estimated during the
SVM training. We tried linear, polynomial and Gaussian kernels. The Gaussian kernel
performed the best:

k(xi,xj) = exp
(

γ ‖xi − xj‖2
)

. (12.2)

In the second configuration, we trained the SVM on all the feature vectors instead of
doing it on the average. Then, the SVM was evaluated in a frame by frame fashion and the
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scores of each frame were averaged:

f(X) =
1

T

T
∑

t=1

∑

i

αik(xt,x
∗
i ) + b . (12.3)

We also evaluated two configurations regarding the way to organize the SVM training
data. In the first one, the training and evaluation data were from the same database. Given
the small size of our datasets, we could not divide them into training and test sets. To
avoid over-fitting we used a leave-one-out procedure. To be more precise, it was a leave-one-
speaker-out procedure. That is, we trained a SVM per speaker with positive and negative
samples from the rest of speakers. Then, we evaluate the SVM only for the segments of the
corresponding speaker. Finally, the tampering detection scores from all the speakers were
pooled together to compute error rates and plot DET curves.

In the second training configuration, we took advantage that we had two different
databases for each type of tampering (covering mouth and denasalization). Although the SV
results indicated that databases with the same type of tampering performed very different,
we tried to train on one database and test on the other.

12.3.3 GMM classifier

We also tried a GMM based classifier. We trained a GMM for normal speech and another
for disguised speech by maximum likelihood EM iterations [Bishop, 2006]. Test segments
were evaluated by the log-likelihood ratio between both models:

LLR =
1

T

T
∑

t=1

lnP (xt|Normal)− lnP (xt|Tamper) . (12.4)

We used the same training configurations as the SVM: training and test on the same database
with the leave-one-speaker-out procedure and training and test on different databases.

12.4 Experiments

12.4.1 Databases

At the moment of this work, there were no publicly available databases for this task. In
our experiments, we used datasets provided by a third party. We focused on two types of
tampering: covering the mouth and denasalization by pinched nostrils. We had two different
databases for each one of them.

12.4.1.1 Covering Mouth Database 1

The disguise in this dataset consisted in covering the speaker’s mouth with a handkerchief
together with the hand making a shell. This type of disguise strongly distorted the spectral
features that are used by current SV systems. This database consisted of 10 speakers with
3 sessions:

• Session 1: used for speaker enrollment. There were around 12 seconds of speech per
speaker.
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• Session 2: normal test signals. There were 120 short segments around 3 seconds long,
12 different phrases per speaker.

• Session 3: tampering test signals. There were another 120 short segments around 3
seconds long. Speakers repeated the same phrases as in session 2.

Signals were recorded over a landline telephone channel. With this database, we evaluated
120 normal target trials, 120 tampering target trials and 1080 normal non-target trials.

12.4.1.2 Covering Mouth Database 2

In this dataset, disguises were created by making a tube with the hands. The dataset
consisted of 21 speakers with 3 sessions: enrollment, normal tests and tampering tests.
Signals were recorded over landline and mobile channels. Speakers repeated the same
sentences in the sessions 2 and 3, which were the same as in Database 1. With this database,
we evaluated 252 normal target trials, 252 tampering target trials and 5040 normal non-
target trials.

12.4.1.3 Denasalization Database 1

Denasalization consists in pinching the nostrils while the user is speaking. In this way,
the sound wave is reflected back along the nasal cavity interfering with the wave in the
pharynx. At certain frequencies both waves cancel each other introducing anti-resonances
in the transfer function of the vocal tract. As covering the mouth, the spectral properties
of the recorded signals change and damage the SV performance. The database consisted
of 52 speakers. It included read and spontaneous speech recorded over a GSM channel.
There were speech segments 60, 90 and 120 seconds long. Normal segments of 120 seconds
were used for enrollment and the rest for test. We evaluated 198 normal targets trials, 165
tampering target trials and 10098 normal non-target trials.

12.4.1.4 Denasalization Database 2

The second denasalization dataset consisted of 10 speakers with three sessions:

• Session 1: used for enrollment. It was a text 30 seconds long.

• Session 2: used for normal tests. There were 4 recordings of 4 different sentences.

• Session 3: used for denasalized tests. There were 4 recordings of the same 4 sentences
used in session 2.

We evaluated 160 normal target trials, 1440 normal non-target trials and 160 tampering
target trials.

12.4.2 Speaker verification performance degradation

We evaluated how tampering increases the misses in our JFA SV system, which we described
in Section 11.6.3 of the previous chapter.



232 Chapter 12. Detecting Tampering Attacks on Speaker Verification Systems

−15 −10 −5 0 5 10 15
0

10

20

30

40

50

60

70

80

90

100

SV threshold

P
m

s
s
/P

fa
(%

)

Pmiss/Pfa vs Decision Threshold

 

 

Pmiss normal  

Pfa

Pmiss tamper  

(a) Database 1.

−15 −10 −5 0 5 10 15
0

10

20

30

40

50

60

70

80

90

100

SV threshold

P
m

s
s
/P

fa
(%

)

Pmiss/Pfa vs Decision Threshold

 

 

Pmiss normal  

Pfa

Pmiss tamper  

(b) Database 2.

Figure 12.1: PMiss/PFA vs decision threshold for databases with tampering by covering
mouth.
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Figure 12.2: SV score distribution for databases with tampering by covering mouth.

Table 12.2: SV score reduction by covering mouth.

∆LLR Mean Std Median Max Min

Database 1 4.71 3.65 4.20 17.02 -1.95
Database 2 3.65 3.09 3.42 13.59 -5.31
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12.4.2.1 Covering mouth

First, we focus on the datasets with disguise by covering the mouth. For non-tampering
trials, Database 1 obtained EER=6.57%, and Database 2 EER=4.25%. Figure 12.1 displays
the misses and false acceptances against the SV threshold for both datasets. If we place
the operating point of the SV system in the threshold where PMiss−normal = PFA, we obtain
a large amount of misses for the tampering target trials. For Database 1, we measured
PMiss−tamper = 45.80% and, for Database 2, PMiss−tamper = 44.05%. That means that
miss rates multiply by 6 and 9 respectively. To reduce the misses of tampering trials
we need to considerably lower the SV threshold in exchange of increasing the number
false acceptances. For example, in the point with equal error rates between tampering
misses and false acceptances, we obtain PMiss−tamper = PFA = 22.5% for Database 1 and
PMiss−tamper = PFA = 19.05% for Database 2.

Figure 12.2 shows the score distributions for the different trial sets. The tampering
trial distributions are approximately in the middle, between the normal targets and the
non-targets. There is an important overlap between non-targets and tampering trials that
explains the increase of misses that we saw above.

In Table 12.2, we present some statistics for the reduction of score ∆LLR between
normal and tampering targets. Each ∆LLR was computed between segments of the same
speaker uttering the same phrase. The table evidences that the disguises had different
degree of success. For some trials the tampering did not succeed, obtaining larger score in
the disguised version than in the normal one. On the other hand, some disguises achieved
huge score drops.

12.4.2.2 Denasalization

The datasets with denasalization tampering behaved differently. For non-tampering trials,
Database 1 obtained EER=4.09% and Database 2 EER=1.45%. Figure 12.3 shows misses
and false acceptance rates against the SV threshold, and Figure 12.4 shows the score
distributions for the different groups of trials. Table 12.3 shows statistics for the difference
between the normal targets and tampering scores ∆LLR. For Database 2, ∆LLR was
computed as in the databases with covering mouth disguise; that is, as the difference between
trials with the same speaker and phrase. For Database 1, as speakers say different phrases in
tampering than in normal segments, a ∆LLR was computed for each speaker by subtracting
the average scores of his normal and tampering trials.

Database 1 presented very high target scores and, although tampering greatly dropped
the scores, they remained larger than the tampering scores in the other databases. If we
work in the EER operating point, we obtain PMiss−tamper = 10.89% that is much lower than
the misses in both covering mouth datasets. For Database 2, the resulting score distributions
are much similar to those of covering mouth disguise. Again, working in the EER operating
point, tampering increased the miss rate to PMiss−tamper = 40%–the miss rate multiply by
26. To reduce the miss rates, we can work in the point with equal tampering misses and
false acceptances rates. Then, we obtain PMiss−tamper = PFA = 6.43% for Database 1, and
PMiss−tamper = PFA = 12.50% for Database 2. Differences between both databases were
mainly due to the longer duration of the segments in Database 1, which allows better inter-
session compensation.
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Figure 12.3: PMiss/PFA vs decision threshold for databases with denasalization.
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Figure 12.4: SV score distribution for databases with denasalization.

Table 12.3: SV score reduction by denasalization.

∆LLR Mean Std Median Max Min

Database 1 26.51 11.37 26.62 53.37 3.94
Database 2 3.75 2.76 3.27 12.24 -1.25
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Table 12.4: EER(%) Covering mouth detector.

Features
Train leave-one-out Train on Database 1

Database 1 Database 2 Database 2

SVM SVM FbyF GMM SVM SVM FbyF GMM SVM SVM FbyF GMM

C1-4 2.22 2.61 1.87 16.13 17.85 17.57 31.56 31.05 24.14
C1-6 3.88 0.71 0.55 19.20 16.54 16.32 36.41 33.53 23.11
C1-12 3.83 0.00 0.69 19.68 14.73 15.16 31.31 24.83 23.14

12.4.3 Results covering mouth detection

We applied the classifiers described in Section 12.3 to detect disguise by covering mouth.
Table 12.4 shows tampering detection EER for both databases. Note that they are not SV
error rates but tampering detection ones. We tried different MFCC dimension and three
classifiers: SVM on the average feature of the file (SVM), SVM trained and tested in a
frame by frame fashion (SVM FbyF), and GMM. The group of columns on the left refers
to the case where classifiers are trained and evaluated with a leave-one-out procedure and
the group on the right refers to the case were the classifier is trained on Database 1 and
evaluated on Database 2. We tried different number of components for the GMM obtaining
the best results with 64 Gaussians.

When training with leave-one-out, the SVM frame by frame attained the lowest error
rates followed very closely by the GMM. Although in the previous section, we showed that
covering with a handkerchief (Database 1) or only with the hand (Database 2) produced
similar increments of the miss rate, here, we observe that the latter is much more difficult
to detect. While for Database 1, we obtained perfect classification, for Database 2 the best
EER was as high as 14.73%. When training on Database 1, the EER in Database 2 was even
higher. In this case, the GMM produced the best result with EER=23.11%. The GMM
generalized better between datasets while the SVM seemed to over-fit attaining higher error
rates.

Figure 12.5 shows tampering DET curves for each classifier. We only plot the curve
corresponding to the optimum number of MFCCs for each classifier. Regarding Database 1,
the curve of the SVM frame by frame does not appear because the error is zero. The GMM
also yielded quite good results; misses are always under 5% and false alarms under 1%.
Regarding Database 2 with the leave-one-out setup, although in terms of EER the SVM
frame by frame was slightly better than the GMM, the curve reveals that in some operating
points the GMM is better and the differences between both curves are not significant. GMM
and SVM frame by frame attained 0% false alarms while detecting more than 60% of the
tampering attempts. The SVM on the average MFCC is clearly worse than the others
in the low false alarm region of the curve. Regarding the classifiers trained on Database
1 and tested on Database 2, the GMM was better in all the operating points and, more
significantly, in the low false alarm region.

12.4.4 Results denasalization detection

Table 12.5 shows tampering detection EER for both datasets with denasalization disguise.
Again, we present results for our three classifiers with the two training modes (leave-one-out,
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Figure 12.5: DET curves for detection of tampering by covering mouth.

train on Database 1). The best number of components for the GMM was 64.

The best classifier was the GMM in all cases, in Database 1 with MFCC C1-12 and, in
Database 2 with C1-C6. In Database 2, there was not much difference between training the
GMM with leave-one-out or on Database 1. Both datasets presented high error rates. The
best results were EER=16.98% for Database 1; and EER=18.97% for Database 2.

Figure 12.6 shows tampering DET curves for each classifier. We only plot the curve
corresponding to the optimum MFCC dimension for each classifier. For Database 1, the
GMM classifier was significantly better in all operating points. The largest difference
happened for false alarms under 1%. The miss rate for very low false alarms was always
under 40%. Regarding Database 2, for false alarms larger than 20%, the GMM trained with
leave-one-out performed similarly to the one trained on Database 1. For false alarms under
20%, the GMM and SVM frame by frame trained on Database 1 were better. GMM and
SVM frame by frame obtained very close curves but the GMM was better in most of the
operating points.

Table 12.5: EER(%) Denasalization detector.

Features
Train leave-one-out Train on Database 1

Database 1 Database 2 Database 2

SVM SVM FbyF GMM SVM SVM FbyF GMM SVM SVM FbyF GMM

C1-4 22.88 23.53 22.19 30.79 25.68 24.40 29.37 25.73 25.01
C1-6 22.82 20.92 19.06 25.74 24.49 18.97 28.80 21.45 19.57
C1-12 21.25 20.56 16.98 19.43 25.73 27.06 34.84 26.09 25.17
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Figure 12.6: DET curves for detection of tampering by denasalization.

12.4.5 Fusion of speaker verification and tampering detection

Finally, we fused the SV system and the tampering detector to improve the overall
performance. We used the tampering detectors based on GMM given that they performed
better than the SVM in most cases. We did a hard fusion were we marked as target all the
trials that were classified as disguised, i.e., we assigned then SV score equal to +∞. We
are aware that this strategy may not make sense in many applications because that fact
that the voice is disguised does not imply that it corresponds to the person that we are
looking for. However, it could be useful for a surveillance application where we search for
criminals in telephone calls. If we detect that somebody is disguising his voice, he may be
a criminal and the call deserves further investigation. We wanted the tampering detector
not to increase the false alarm rate of non-disguised non-targets. Therefore, we chose a high
threshold for the score of the tampering detector.

Figure 12.7 displays the new curves PMiss/PFA against SV threshold that we obtained
with the fusion. The left column corresponds to the databases with covering mouth disguise
and the right columns to the database with denasalization. We can compare this figure
with Figures 12.1 and 12.3. We attained an evident reduction of the number of misses
in Subfigures 12.7a, 12.7c and 12.7f. Table 12.6 compares the performance in the EER
operating point of the SV with and without tampering detection. It shows the EER, the
PMiss of disguised targets and their relative improvement. PMiss−tamper improved by more
than 50% in four of the six conditions while EER worsened by less than 40%. The best
results were for the Databases 1 of both types of disguise were PMiss−tamper improved by
more than 75% while EER worsened by less than 5%.
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(a) Covering mouth DB 1.
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(b) Denasalization DB 1.
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(c) Covering mouth DB 2 trn. leave-one-out.
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(d) Denasalization DB 2 trn. leave-one-out.
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(e) Covering mouth DB 2 trn. on Database 1.
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(f) Denasalization DB 2 trn. on Database 1.

Figure 12.7: PMiss/PFA against decision threshold for the fusion of SV and tampering
detection.
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Table 12.6: EER(%) and PMiss−tamper(%) in the EER operating point for the fusion of SV
and tampering detection.

Train leave-one-out Train on Database 1

Database 1 Database 2 Database 2

EER PMiss−tamper EER PMiss−tamper EER PMiss−tamper

Covering mouth
SV 6.57 44.80 4.25 44.05 4.25 44.05
SV + tampering 6.85 0.00 5.69 11.51 5.27 30.95
Rel. improvement -4.26 100.00 -33.88 73.87 -24.00 29.73

Denasalization
SV 4.09 10.89 1.45 40.00 1.45 40.00
SV + tampering 4.17 2.47 2.43 33.75 2.01 16.25
Rel. improvement -1.95 77.31 -67.58 15.62 -38.62 59.37

12.5 Summary

In this chapter, we approached the problem of detecting voice disguised to avoid speaker
recognition. We focused on two disguise methods: covering the mouth with the hand or a
handkerchief; and denasalization by pinching the nostrils. We chose these methods because
they do not require any technical knowledge so they can be carried out by any type of
criminal.

We applied different features and classifiers to the task of tampering detection. MFCC
were the features that performed the best. Regarding the classifiers, GMM and SVM
evaluated in frame by frame fashion performed similarly in most of the conditions but
the GMM seemed to be more robust to over-fitting.

We experimented on four datasets, two for each type of disguise. We tried two modes of
training the classifiers: training and evaluation on the same database by using a leave-one-
out procedure; and training on one of the datasets and evaluating on the other.

Using a JFA SV system, we showed that, disguised target trials present miss rates much
higher than normal trials. For example, for a system working in the EER operating point,
we observed PMiss−tamper ∼ 40% while PMiss−normal was always under 7%. Regarding the
disguise detection experiments, we obtained different results depending on the dataset. For
the database with disguise by covering the mouth with a handkerchief, tampering detection
EER was as low as 0.55%. The disguise by covering the mouth with the hand was more
difficult to detect with EER=15–23%. For the denasalization datasets, the EER was also
quite high being between 17 and 20%.

Despite of the high error rates of the tampering detectors, the fusion of the SV system
with the tampering detector attained a significant improvement. The fusion consisted in
marking as targets all the trials that were classified as disguised. We are aware that the
fact that the voice is disguise does not means that it corresponds to the target speaker.
However, this strategy could make sense in some security applications. The threshold on
the score of the tampering detector was set high for not increasing the low false alarm rates.
In most conditions, the miss rate of tampering trials improved by more than 50% with small
increase of the error rates of the normal trials.
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Tampering is a major thread to speaker verification in the field of law enforcement. As
it happens for spoofing attacks, there are still few works dealing with this problem. The
wide variety of disguise methods that a criminal can use makes this problem a tough one.
Besides, the lack of publicly available databases complicates the comparison of approaches
and collaboration between institutions.
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Chapter 13

Conclusions and Future Lines

13.1 Conclusions

In the last years, NIST evaluations have driven most speaker recognition research. Given the
characteristics of NIST datasets, researchers had developed effective methods to characterize
speakers and compensate speaker variability between different sessions. However, NIST
presents an ideal scenario with relatively clean speech, collaborative users and sufficient
data to train probabilistic models. However when applying speaker verification in real
environments, we face some challenges that deserve further research. This thesis dealt with
some of them. First, we worked on estimating the reliability of the speaker verification
decisions. Second, we focused on the i-vector approach and the difficulties of modeling
i-vector distributions when having recordings acquired in different conditions or when the
training data is limited. In the last part of the thesis, we were interested in attacks to
speaker recognition systems. We considered spoofing and tampering attacks. Both attacks
have opposite intentions, while spoofing intends a impostor to impersonate a target speaker,
tampering aims to conceal the speaker’s identity. Following, we present the conclusions of
each part of the thesis.

13.1.1 Quality Measures and Reliability

Speaker verification performance can decrease due to multiple causes: noise and
reverberation in the speech signals, test languages and transmission channels different from
those in the data used to train JFA and PLDA models, etc. Then, SV decisions become
unreliable and we should not dare to assert whether the trial is target or non-target. This
fact motivated us to work on reliability estimation. We applied Bayesian networks to model
the causal relationships between the trial reliability, the speaker verification score and a set
of quality measures computed from the enrollment and test utterances of the trial. The
trials with low reliability are rejected. Thus, we can assure that the rest of trials present
low error rates.

In Chapter 4, we described our quality measures in detail. These were selected because
they carry information about noise and reverberation levels or channel type. Some measures
had been used in previous works: signal-to-noise ratio, spectral entropy, number of speech
frames, log-likelihood of the MFCC given the UBM, etc. Others are novel contributions
of this thesis. Among them, we should point out the use of VTS parameters as quality
measures. The VTS approach is well known in speech recognition in noise [Li et al., 2009].
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VTS approximates linearly the non-linear effect of noise and reverberation on the MFCC
by applying vector Taylor series. This linear function facilitates computing the means and
variances of the noisy space GMM from the clean space GMM. The Taylor series coefficients
depend on the mean and variances of the noise and channel in cepstral domain, which can
be estimated by EM iterations. We stacked the noise and channel means and reduced
dimensionality by linear discriminant analysis intending to create a measure sensible to
noise and reverberation.

In Chapter 6, we introduced a novel Bayesian network whose purpose was to model how
SV score distributions change when trial segments are distorted. This BN hypothesizes the
existence of two scores: one observed and another hidden. The observed score or noisy score
is the one given by the SV system while the hidden score or clean score is the ideal score that
we would obtain if we had high quality speech. The network has another hidden variable, the
quality state that means the type of distortion. Each value of the quality estate is associated
with a distribution of quality measures and with a distribution for the difference between the
clean and noisy scores. The network allows us to compute the posterior distributions for the
hidden variables given the observed variables. The reliability posterior is the probability
that the clean score is over or under the threshold, what is obtained by integrating the
posterior distribution of the clean score. The parameters of the network can be estimated
with the EM algorithm. We proved that it works even with three hidden variables involved,
i.e., trial label, quality states and clean score.

We experimented on NIST SRE augmented with noise and reverberation, and two
datasets with real distortions. The networks were trained on NIST SRE08 and tested
on the rest of databases. We compared the proposed BN with previous models, described
in Chapter 5. We compared the approaches by curves plotting actual DCF against the
percentage of rejected trials. The best reliability estimator is the one that attains the lowest
DCF while rejecting the lowest number of trials, as explained in Chapter 3. The new BN
outperformed the baseline for trial added noise and real distortions. For reverberation, the
results were alike. The best quality measures where the VTS parameters and the UBM
log-likelihood.

In Chapter 3, we defined an extended DCF that add terms that penalize rejecting well
classified trials. This extended DCF help to establish the operating point of the reliability
estimator. For example, on NIST with noise and reverberation added, we selected and
operating point where we rejected 40% of trials, EER improved by 22% and actual DCF by
83%.

We can also apply the proposed BN to compute an improved SV likelihood ratio. Thus,
we can use the network in applications where we require classifying all the trials. The results
evidenced that the improved ratio was better calibrated.

Signal distortions can be different in each dataset. Hence, in Chapter 7 we addressed
the problem of adapting the BN from one domain with a large amount of training data to
another one with scarce data. We proposed to employ Maximum a posteriori adaptation.
We obtained good results if, besides of adapting the network, we re-calibrated the scores for
the target database.

13.1.2 PLDA for Non-Collaborative Environments

In Chapter 2, we reviewed the evolution of speaker recognition technology in the last years.
At the end of the chapter, we compared the performance of state-of-the-art system on a
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common datasets. Although JFA slightly outperformed i-vectors in the telephone–telephone
conditions, i-vectors were better in conditions involving far-field microphones. For that
reason, in Part III we focused on the i-vector paradigm and, more specifically, on PLDA
as a mean of modeling the i-vector distributions. We addressed several issues concerning
i-vector modeling.

In Chapter 8, we considered the problem of simultaneously having i-vectors recorded in
different conditions like different channel types, noise types or noise levels. Intending to
approach the problem in a principled way, we introduced a PLDA variant, that we called
multi-channel SPLDA (MCSPLDA), where the speaker space distribution was common
to all types of channels and the channel space distribution was channel dependent. We
compared this model with a standard SPLDA just trained on pooled clean and noisy data.
We experimented on the NIST SRE12, which included artificially added noises. MCSPLDA
and SPLDA attained similar results. We concluded that training an unique within-class
covariances with all the available data can be more robust than training one covariance per
channel type. No gain was for noises not included in training with respect to training the
PLDA with only clean data.

In theory, to properly estimate the parameters of the PLDA model we need a number
of speakers much larger than the i-vector dimension as well as several recordings per
speaker. However, we usually count with much less speakers. This implies a certain
uncertainty about the values of the model parameters. Standard training methods like
maximum likelihood make point estimates of the parameters ignoring that uncertainty.
In Chapter 9, we proposed to compute a posterior distribution for the model parameters
given the development data and use it to evaluate fully Bayesian likelihood ratios by
integrating out the model parameters. Using model posteriors instead of point estimates,
uncertainty is taken into account. As the integrals involved are intractable, we developed and
approximated procedure that uses variational inference to compute posterior distributions.
We compared the Bayesian approach with i-vector length normalization (intended to
reduce mismatch between development and trial datasets). The improvement of both
techniques was comparable. We obtained small gains by combining both approaches.
The computational cost of the Bayesian approach is much larger than the one of length
normalization, so it is only worth in some applications.

We also considered the problem of training PLDA for applications where the development
data is scarce. In Chapter 10, we proposed to do MAP adaptation of PLDA from a domain
with sufficient development data (out-of-domain) to the target domain. We used the same
variational Bayes procedure developed for Chapter 9. In our experiments, performance
improved by 15–40% with respect to the out-of-domain model. The main improvement
came from the adaptation of the within-class covariance.

13.1.3 Spoofing and Tampering

The last part of the thesis was dedicated to spoofing and tampering attacks to speaker
recognition systems. We focused on low effort attacks that criminals could perpetrate
without needing any speech processing knowledge.

Chapter 11 dealt with replay attacks. Text-independent and text-dependent systems
with fixed pass-phrase are vulnerable to the naive attack consisting in recording the victim’s
voice and replaying it on the SV system. For text-dependent systems with prompted pass-
phrase, we need to concatenate excerpts from different recordings (cut and paste). To
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detect naive replay attacks, we assumed that the criminal should record the victim from
a certain distance and replay the signal on the phone with a portable loudspeaker. Thus,
the detector was based on a set of acoustic features and an SVM trained to detect far-field
and loudspeaker channels. To detect cut and paste attacks, we computed distances between
the enrollment and test MFCC and log-pitch feature contours. We showed that spoofing
dramatically increases false acceptance of state-of-the-art SV systems. By fusing the output
of spoofing and speaker detectors we reduced false alarms.

In Chapter 12, we worked on detecting voice disguised to avoid speaker detection. We
focused on two disguise methods: covering the mouth with the hand or a handkerchief; and
denasalization by pinching the nostrils. Disguised target trials presented miss rates much
higher than normal trials. The tampering detector consisted of MFCC features and; SVM
or GMM classifiers. Covering the mouth with a handkerchief had tampering detection EER
was as low as 0.55%. Meanwhile, covering the mouth with the hand and denasalization
had a much higher EER between 15 and 23%. Disguised target trials presented miss rates
much higher than normal trials but using the tampering detector we attained a significant
improvement.

Spoofing attacks are one of the main barriers that we face to introduce speaker
verification for security applications like telephone banking. On the other hand, tampering
is a major threat to speaker verification in the field of law enforcement. Even though, the
research community is increasingly interested in addressing these problems, there is still a
long road ahead. The wide variety of attacks that can be attempted makes this problem a
complex one. Besides, the lack of publicly available databases complicates the comparison
of approaches and collaboration between institutions.

13.2 Contributions of the Thesis

Following, we enumerate the main contributions, to our view, of this thesis. In the part
considering quality measures and reliability, those contributions where:

• Bayesian network to model the variability of the SV score in adverse
environments: we defined a BN that relates speech quality measures with the
distribution of the SV score. The network allows us to compute a posterior distribution
for the hypothetical score that we would obtain if we would have high quality speech.
Applied to the task of reliability estimation, we showed that it outperformed previous
works.

• VTS parameters as quality measures: vector Taylor series is a well known
approximation used in speech recognition for computing the mean and variance of
the noisy GMM from a clean GMM. One of the steps of this approach consists in
computing the noise and channel means in cepstral domain by EM iteration. We
introduced a novel quality measure based on stacking those noise and channel means
and reducing their dimension by LDA. This measure performed well in our reliability
experiments.

• SNR estimation with comb filters: we computed signal-to-noise ratios taking
advantage of that the energy of voiced speech is mainly concentrated in multiples of
its pitch frequency while the noise frequency distribution is more uniform. We used two
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complementary comb filters to estimate speech and noise powers. The ratio between
those powers was calibrated to obtain the SNR. With this method, we can compute
the SNR in signals without silence intervals, which we usually need to estimate the
noise power.

• Saturation detector: we presented an algorithm to detect saturated frames in
cases where the saturation level is unknown. This can happen if the signal suffers
amplitude changes in the transmission channel after saturation. We used an heuristic
algorithm combining three measures: repetition of local maxima, deviation of the
speech distribution from the Laplace distribution, and appearance of harmonics in
high frequencies.

The main contributions regarding i-vector modeling with PLDA were:

• Multichannel PLDA: we defined a mixture of PLDA models with eigen-voice matrix
and speaker factors tied across the components of the mixture and different channel
covariances for each component. This PLDA intended to model i-vectors from different
sources in a principled way.

• Bayesian two-covariance model: The fully Bayesian two-covariance model or full-
rank PLDA, assumed that the model parameters are hidden variables with prior and
posterior distributions instead of point estimates. As the model posteriors could not
be obtained in close form, we approximated them by variational Bayes. We used this
model for two purposes:

– Evaluation of fully Bayesian likelihood ratios: the Bayesian ratio integrates
out the model parameters based on the model posterior. In this manner, model
uncertainty is taken into account. This method greatly improved performance
for non length-normalized i-vectors.

– MAP adaptation of the model: adapting a PLDA model from one domain
to another where the development data is scarce. Adapting the within-class
covariance significantly improved the results.

Finally, the contributions related to attacks to SV systems were:

• Naive replay attacks detector: we assumed that replay attacks would be recorded
by a far-field microphone and replayed on the telephone handset by a loudspeaker.
We trained a SVM to distinguish between this type of signals and the rest.

• Cut and paste detector: we detected signals created by cutting and pasting
excerpts from other signals. For that, we compared the MFCC and the log-pitch
contours of the test signals with those of the enrollment. Contours were aligned
by DTW. The method was based on the idea that cut and paste would create
discontinuities and strange intonation and energy patterns. Both spoofing detector
provided error rates close to 0% in the dataset evaluated.

• Tampering detector: we used MFCC features together with GMM and SVM to
detect low effort tampering attacks. The results evidenced that detection of these
attacks is challenging.
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As a consequence of this work we applied for two European patents:

• Cut and Paste Spoofing Detection Using Dynamic Time Warping, Agnitio
S.L., Madrid, Spain, 2009 European Patent App. No: 09771309.3–2225
PCT/EP2009008851.

• Estimation of Reliability in Speaker Recognition, Agnitio S.L., Madrid, Spain, 2013,
European Patent App. No: 13165466.7–1910.
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13.3 Future Lines

Finally, we propose some future research lines that can be considered from the work in this
thesis. Regarding quality measures and reliability, we propose:

• Expand the number of distortion types: in this thesis, we experimented with a
dataset with additive and convolutive noise. We should try new noise types, non-linear
distortions and other degradations that could affect the speech signal.
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• New quality measures: the quality measures used in this thesis performed well
on additive noise but not so well on reverberation. We need better measures that
can relate reverberation with trial reliability. We will also need measures for the new
distortion that we consider.

In the field of speaker and channel models, we propose:

• Noise compensation at feature or i-vector extraction levels: in Chapter 8,
we showed that multichannel PLDA did not improved standard PLDA in noisy
conditions. This makes us think that compensating for noise at i-vector level may
be a task too complicated. The fact that noise alters the Gaussian responsibilities
given the UBM, which are then used to compute sufficient statistics and then i-
vectors, probability has a highly non-linear effect on the i-vector. Thus, we think
that may be more effective to compensate noise and other distortions in early stages
of the pipeline. Whatever technique that can improve those responsibilities should
significantly improve performance. Recent promising works about this topic use deep
neural networks to compute responsibilities [Lei et al., 2014b] or VTS to obtain a
noisy UBM from the clean UBM and compute sufficient statistics with it [Lei et al.,
2013,Lei et al., 2014a,Mart́ınez et al., 2014].

• Fast evaluation of fully Bayesian likelihood ratios: in Chapter 9, we showed that
we can obtain some improvement from fully Bayesian likelihood ratios. However, the
Bayesian approach has a huge computational cost compared to standard likelihood
ratios, which makes it unfeasible for large scale applications. Finding faster
approximations to evaluate Bayesian ratios is another interesting line of work.

• Unsupervised adaptation of PLDA: in most domains, obtaining labeled
development data is difficult, expensive or just impossible. If we are fortunate we
will obtain unlabeled data. That means that we know neither who speaks in each
recording nor how many speakers there in the dataset. The logical step is extending
the work in Chapter 10 to adapt PLDA with unlabeled data. We have already started
to work on it [Villalba and Lleida, 2014].

• Adaptation of UBM and i-vector extractors: as well as adapting PLDA, we
could think on creating a framework to jointly adapt UBM, i-vector extractor and
PLDA.

Finally, regarding attacks to speaker verification systems we think that future research
should be oriented towards:

• Development of a public dataset: to foster research on attacks to speaker
recognition, we need publicly available databases and common evaluations protocols.
This would favor meaningful comparison of approaches and collaboration between
institutions.
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Appendix A

Bayesian Inference of a Gaussian
Distribution

A.1 Introduction

Here, we write the equations needed for Bayesian inference of multivariate Gaussian
distributions with non-informative priors. We use precision matrix notation that is the
one preferred along this thesis. The results given here will be useful for the derivation of
our Bayesian PLDA model. This appendix is based on [Minka, 1998].

A.2 Inferring a Gaussian distribution

The multivariate Gaussian distribution is defined by:

P (x|m,Λ) = N
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where m is the mean vector and Λ a full precision matrix.
We assume a non-informative prior Π for m and Λ (Jeffrey’s Prior):

P (m,Λ|Π) = P (m|Λ,Π)P (Λ|Π) (A.2)
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First, we obtain the posteriors for m and Λ, given the observations X = {x1,x2, . . . ,xN}

P (m,Λ|X,Π) = P (m,Λ|Π)
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where
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Now, we need the marginal posterior for the precision Λ:

P (Λ|X,Π) =
∫

m

P (m,Λ|X,Π) dm (A.9)

=
1

P (X|Π)
α

|Λ|(d+1)/2

1

Nd/2

∣

∣

∣

∣

Λ

2π

∣

∣

∣

∣

N/2

exp

(

−1

2
tr (SΛ)

)

∫

m

∣

∣

∣

∣

NΛ

2π

∣

∣

∣

∣

1/2

exp

(

−N
2
(m− x)TΛ(m− x)

)

dm (A.10)

=
1

P (X|Π)
α

|Λ|(d+1)/2

1

Nd/2

∣

∣

∣

∣

Λ

2π

∣

∣

∣

∣

N/2

exp

(

−1

2
tr (SΛ)

)

(A.11)
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Now, we apply the following relation
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to obtain the marginal likelihood of the data
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where S0 = (x−m0)(x−m0)
T +V0

We plug (A.15) into (A.11) to obtain the marginal posterior of Λ that is Wishart
distributed:
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where ZNd = πd(d−1)/4
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Finally, we derive the joint posterior for m and Λ by plugging-in (A.15) into (A.6):
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Summing up:

P (m,Λ|X,Π) = P (m|Λ,X,Π)P (Λ|X,Π) (A.22)
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We can also calculate the marginal posterior for the mean m:
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where we used the matrix relation in [Minka, 2000]

|I+BC| = |I+CB| (A.34)

and T is the Student’s T distribution defined as
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A.3 Inferring a Gaussian distribution with given mean

Here, we particularize the results of the previous section for a distribution where the mean
is known m0. The Jeffrey’s prior Π for Λ is:

P (Λ|Π) = lim
k→0
W (Λ|W0/k, k) (A.36)

= α |Λ|−(d+1)/2 (A.37)

The posterior for Λ, given a set of observations X = {x1,x2, . . . ,xN} is
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Now, we use (A.13) to compute P (X|Π):
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Finally, we plug (A.41) into (A.38) to obtain the marginal posterior of Λ:
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Proofs for Bayesian Network to
Model Variations of the Speaker
Verification Score Given Quality
Measures

B.1 Bayesian Network

This appendix, we derive the equations related to the Bayesian network presented in
Chapter 6. Figure B.1 illustrates the graphical model of the network.

siθi

ŝi zi

Qpi

πθ

µsΛs

µ∆sΛ∆s

µQp
ΛQp

πz

N

P

Figure B.1: BN to model SV score variations in adverse environments.

The nodes included in the Bayesian network are:

• ŝi is the noisy observed score given by the SV system.



258 Appendix B. Proofs for BN to Model Variations of the SV Score

• si is the hidden clean score. The relation between si and ŝi is

ŝi = si +∆si . (B.1)

• zi are the states of quality. It is a 1-of-K binary vector with elements zik with
k = 1, . . . , K. Each possible value of zi corresponds to a different type or level of
distortion of the speech segments.

• Qip are the observed quality measures. We consider that there are P groups of
quality measures that are independent between them given zi. Thus, we can force
independence between variables that we think that should not be correlated. We
denote by Qi = {Qip}Pp=1 the set of measures of trial i.

• θi is the labeling of the trial. θi ∈ {T ,N} where T is the target hypothesis and N is
the non-target hypothesis.

• πθ = (PT , PN ) is the hypothesis prior.

• πz are the priors over the quality states.

The conditional distributions that define the nodes of the network are:

P (si|θi = θ) =N
(

s|µsθ ,Λ
−1
sθ

)

(B.2)

P (ŝi|si, zik = 1, θi = θ) =N
(

ŝi|si + µ∆skθ ,Λ
−1
∆skθ

)

(B.3)

P (Qi|zik = 1) =
P
∏

p=1

N
(

Qip|µQpk
,Λ−1

Qpk

)

(B.4)

P (zi) =
K
∏

k=1

πzik
zk

. (B.5)

B.2 Posterior Distribution of the Hidden Score

B.2.1 Case with θ and z observed

Here, we derive the posterior P (s|ŝ, θ, z). First, we need the joint distribution:

P (s, ŝ|θ, zk = 1) =P (ŝ|s, θ, zk = 1)P (s|θ) (B.6)

=N
(

ŝ|s+ µ∆skθ ,Λ
−1
∆skθ

)

N
(

s|µsθ ,Λ
−1
sθ

)

. (B.7)

Then, we develop the posterior

P (s|ŝ, θ, zk = 1) =
P (s, ŝ|θ, zk = 1)

P (ŝ|θ, zk = 1)
(B.8)

=
N
(

ŝ|s+ µ∆skθ ,Λ
−1
∆skθ

)

N
(

s|µsθ ,Λ
−1
sθ

)

∫

N
(

ŝ|s+ µ∆skθ ,Λ
−1
∆skθ

)

N
(

s|µsθ ,Λ
−1
sθ

)

ds
(B.9)
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where the numerator is

N
(

ŝ|s+ µ∆skθ ,Λ
−1
∆skθ

)

N
(

s|µsθ ,Λ
−1
sθ

)

(B.10)

=

∣

∣

∣

∣

Λ∆skθ

2π

∣

∣

∣

∣

1/2

exp

(

−1

2
(ŝ− s− µ∆skθ)

TΛ∆skθ(ŝ− s− µ∆skθ)

)

×
∣

∣

∣

∣

Λsθ

2π

∣

∣

∣

∣

1/2

exp

(

−1

2
(s− µsθ)

TΛsθ(s− µsθ)

)

(B.11)

=
1

2π
|Λ∆skθΛsθ |1/2 exp

(

−1

2
sT (Λ∆skθ +Λsθ) s+ sT (Λ∆skθ (ŝ− µ∆skθ) +Λsθµsθ)

−1

2
(ŝ− µ∆skθ)

T Λ∆skθ (ŝ− µ∆skθ)−
1

2
µT
sθ
Λsθµsθ

)

(B.12)

=
1

2π
|Λ∆skθΛsθ |1/2 exp

(

−1

2
γkθ

)

exp

(

−1

2
(s− µ′

skθ
)TΛ′

skθ
(s− µ′

skθ
)

)

(B.13)

and

Λ′
skθ

=Λ∆skθ +Λsθ (B.14)

µ′
skθ

=Λ′−1
skθ

(Λ∆skθ (ŝ− µ∆skθ) +Λsθµsθ) (B.15)

γkθ =(ŝ− µ∆skθ)
T Λ∆skθ (ŝ− µ∆skθ) + µT

sθ
Λsθµsθ − µ′T

skθ
Λ′

skθ
µ′
skθ

. (B.16)

We can expand γkθ:

γkθ =(ŝ− µ∆skθ)
T Λ∆skθ (ŝ− µ∆skθ) + µT

sθ
Λsθµsθ

− (Λ∆skθ (ŝ− µ∆skθ) +Λsθµsθ)
T (Λ∆skθ +Λsθ)

−1 (Λ∆skθ (ŝ− µ∆skθ) +Λsθµsθ)
(B.17)

= (ŝ− µ∆skθ)
T Λ∆skθ (ŝ− µ∆skθ) + µT

sθ
Λsθµsθ

− (ŝ− µ∆skθ)
T Λ∆skθ (Λ∆skθ +Λsθ)

−1 Λ∆skθ (ŝ− µ∆skθ)

− µT
sθ
Λsθ (Λ∆skθ +Λsθ)

−1 Λsθµsθ

− 2µT
sθ
Λsθ (Λ∆skθ +Λsθ)

−1 Λ∆skθ (ŝ− µ∆skθ) (B.18)

= (ŝ− µ∆skθ)
T (Λ∆skθ −Λ∆skθ (Λ∆skθ +Λsθ)

−1 Λ∆skθ

)

(ŝ− µ∆skθ)

+ µT
sθ

(

Λsθ −Λsθ (Λ∆skθ +Λsθ)
−1 Λsθ

)

µsθ

− 2µT
sθ
Λsθ (Λ∆skθ +Λsθ)

−1 Λ∆skθ (ŝ− µ∆skθ) (B.19)

= (ŝ− µ∆skθ)
T Λsθ (Λ∆skθ +Λsθ)

−1 Λ∆skθ (ŝ− µ∆skθ)

+ µT
sθ
Λsθ (Λ∆skθ +Λsθ)

−1 Λ∆skθµsθ

− 2µT
sθ
Λsθ (Λ∆skθ +Λsθ)

−1 Λ∆skθ (ŝ− µ∆skθ) (B.20)

=(ŝ− (µsθ + µ∆skθ))
TΛsθ (Λ∆skθ +Λsθ)

−1 Λ∆skθ(ŝ− (µsθ + µ∆skθ)) . (B.21)
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Now, we solve the integral

P (ŝ|θ, zk = 1) =

∫

N
(

ŝ|s+ µ∆skθ ,Λ
−1
∆skθ

)

N
(

s|µsθ ,Λ
−1
sθ

)

ds (B.22)

=
1

2π
|Λ∆skθΛsθ |1/2 exp

(

−1

2
γkθ

)
∫

exp

(

−1

2
(s− µ′

skθ
)TΛ′

skθ
(s− µ′

skθ
)

)

ds

(B.23)

=
1

2π
|Λ∆skθΛsθ |1/2 exp

(

−1

2
γkθ

) ∣

∣

∣

∣

Λ′
skθ

2π

∣

∣

∣

∣

−1/2

(B.24)

=

∣

∣

∣

∣

ΛsθΛ
′−1
skθ

Λ∆skθ

2π

∣

∣

∣

∣

1/2

exp

(

−1

2
γkθ

)

(B.25)

By combining (B.9), (B.13) and (B.24), we obtain

P (s|ŝ, θ, zk = 1) =

∣

∣

∣

∣

Λ′
skθ

2π

∣

∣

∣

∣

1/2

exp

(

−1

2
(s− µ′

skθ
)TΛ′

skθ
(s− µ′

skθ
)

)

. (B.26)

And summing up:

P (s|ŝ, θ, zk = 1) =N
(

s|µ′
skθ
,Λ′−1

skθ

)

(B.27)

where

Λ′
skθ

=Λ∆skθ +Λsθ (B.28)

µ′
skθ

=Λ′−1
skθ

(Λ∆skθ (ŝ− µ∆skθ) +Λsθµsθ) (B.29)

and

P (ŝ|θ, zk = 1) =N
(

ŝ|µ′
ŝkθ
,Λ′−1

ŝkθ

)

(B.30)

where

Λ′
ŝkθ

=ΛsθΛ
′−1
skθ

Λ∆skθ (B.31)

µ′
ŝkθ

=µsθ + µ∆skθ . (B.32)

B.2.2 Case with θ hidden and z observed

Now, we consider a more general case where θ is also hidden. Then the posterior is computing
by integrating out θ:

P (s|ŝ, zk = 1) =
∑

θ∈{T ,N}

P (s, θ|ŝ, zk = 1) (B.33)

=
∑

θ∈{T ,N}

P (s|ŝ, θ, zk = 1)P (θ|ŝ, zk = 1) (B.34)

=
∑

θ∈{T ,N}

P (θ|ŝ, zk = 1)N
(

s|µ′
skθ
,Λ′−1

skθ

)

. (B.35)
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The posterior of s is a mixture of two Gaussians and the weights are the label posteriors
P (θ|ŝ, zk = 1). The target posterior is computed as

P (θ = T |ŝ, zk = 1) =
P (ŝ|T , zk = 1)PT

∑

θ∈{T ,N} P (ŝ|θ, zk = 1)P (θ)
(B.36)

=
1

1 + P (ŝ|N ,zk=1)
P (ŝ|T ,zk=1)

1−PT

PT

(B.37)

=
1

1 + exp (− lnR (ŝ, zk = 1)− logit(PT ))
(B.38)

where

lnR (ŝ, zk = 1) = lnP (ŝ|T , zk = 1)− lnP (ŝ|N , zk = 1) (B.39)

and Probŝ|T , zk = 1 is given by (B.30).

B.2.3 General case

Finally in the most general case, z, θ and s are hidden. The posterior of s is computed by
integrating out the rest of hidden variables:

P (s|ŝ,Q) =
∑

θ∈{T ,N}

K
∑

k=1

P (s, θ, zk = 1|ŝ,Q) (B.40)

=
∑

θ∈{T ,N}

K
∑

k=1

P (θ, zk = 1|ŝ,Q)P (s|ŝ, θ, zk = 1) (B.41)

=
∑

θ∈{T ,N}

K
∑

k=1

P (θ, zk = 1|ŝ,Q)N
(

s|µ′
skθ
,Λ′−1

skθ

)

(B.42)

where

P (θ, zk = 1|ŝ,Q) =
P (ŝ,Q|θ, zk = 1)P (θ, zk = 1)

P (ŝ,Q)
(B.43)

=
P (ŝ|θ, zk = 1)P (Q|zk = 1)P (θ) πzk

∑

θ∈{T ,N}

∑K
k=1 P (ŝ|θ, zk = 1)P (Q|zk = 1)P (θ) πzk

. (B.44)

The term P (Q|zk = 1) is given by (B.4), P (ŝ|θ, zk = 1) is given by (B.30) and; Λ′
skθ

and
µ′
skθ

are given by (B.28) and (B.29).

B.3 EM algorithm

B.3.1 General case, training with s and z hidden

In the general case, we assume z and s hidden, and θ known during training.
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B.3.2 E-step

In the E-step we compute the posterior of the hidden variables, P (si, zi|ŝi,Qi, θi):

P (si, zi|ŝi,Qi, θi) = P (si|ŝi, θi, zi)P (zi|ŝi,Qi, θi) . (B.45)

The first term is given by (B.27).
The second term is

P (zik = 1|ŝi,Qi, θi) =
P (ŝi,Qi|zik = 1, θi)P (zik = 1)

P (ŝi,Qi|θi)
(B.46)

=
πzkP (ŝi|zik = 1, θi)P (Qi|zik = 1)

∑K
k=1 πzkP (ŝi|zik = 1, θi)P (Qi|zik = 1)

(B.47)

where P (ŝi|zik = 1, θi) is given by (B.30). We define

γ(zik) = P (zik = 1|ŝi,Qi, θi) (B.48)

to simplify the notation in following equations.

B.3.3 M-step

In the M-step, we maximize the EM auxiliary function: We maximize the EM auxiliary
function:

Q(M) =
N
∑

i=1

E [lnP (ŝi,Qi, si, zi|θi)] . (B.49)

The joint probability of the observed and hidden variables can be decomposed as:

P (ŝi,Qi, si, zi|θi) =P (ŝi|si, zi, θi)P (Qi|zi)P (si|θi)P (zi) . (B.50)

This allow us to write the auxiliary function as:

Q(M) ==
N
∑

i=1

E [lnP (ŝi|si, zi, θi)] + E [lnP (Qi|zi)] + E [lnP (si|θi)] + E [lnP (zi)] (B.51)

First, we maximize respect to πz with the restriction that
∑K

k=1 πzk = 1. We obtain:

πzk =
Nzk

∑K
k=1Nzk

(B.52)

where we defined

Nzk =
N
∑

i=1

γ(zik) . (B.53)

By maximizing with respect to µQp and ΛQp , we obtain:

µQpk
=

1

Nzk

N
∑

i=1

γ(zik)Qip (B.54)

Λ−1
Qpk

=
1

Nzk

N
∑

i=1

γ(zik)
(

Qip − µQpk

) (

Qip − µQpk

)T
(B.55)
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We maximize respect to µs and Λs to obtain:

µsθ =
1

Nθ

N
∑

i=1

tiθE [si] (B.56)

Λ−1
sθ

=
1

Nθ

N
∑

i=1

tiθE
[

(si − µsθ) (si − µsθ)
T
]

(B.57)

=
1

Nθ

N
∑

i=1

tiθE
[

sis
T
i

]

− µsθµ
T
sθ

(B.58)

where we defined tiθ = 1 if θi = θ and tiθ = 0 if θi 6= θ; and Nθ =
∑N

i=1 tiθ.

Now, we manipulate the term of the auxiliary that depends on µ∆s and Λ∆s:

Q(µ∆s,Λ∆s) =
N
∑

i=1

E [lnP (ŝi|si, zi, θi)] (B.59)

=
N
∑

i=1

∑

θ∈{T ,N}

K
∑

k=1

tiθ

(

1

2
γ(zik) ln

∣

∣

∣

∣

Λ∆skθ

2π

∣

∣

∣

∣

−1

2
tr
(

Λ∆skθE
[

zik (ŝi − (si + µ∆skθ)) (ŝi − (si + µ∆skθ))
T
])

)

(B.60)

=
1

2

∑

θ∈{T ,N}

K
∑

k=1

(

Nθzk ln

∣

∣

∣

∣

Λ∆skθ

2π

∣

∣

∣

∣

−tr
(

Λ∆skθ

N
∑

i=1

tiθE
[

zik (ŝi − (si + µ∆skθ)) (ŝi − (si + µ∆skθ))
T
]

))

(B.61)

where we defined

γ(θi, zik) =tiθγ(zik) (B.62)

Nθzk =
N
∑

i=1

γ(θi, zik) (B.63)

Deriving with respect to µ∆s and Λ∆s, we obtain

µ∆skθ =
1

Nθzk

N
∑

i=1

(γ(θi, zik)ŝi − tiθE [ziksi]) (B.64)

Λ−1
∆skθ

=
1

Nθzk

N
∑

i=1

tiθE
[

zik (ŝi − si − µ∆skθ) (ŝi − si − µ∆skθ)
T
]

(B.65)

=
1

Nθzk

N
∑

i=1

tiθE
[

zik (ŝi − si) (ŝi − si)
T
]

− µ∆skθµ
T
∆skθ

(B.66)
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To complete the formulas, we need to compute the expectations:

E [si] =
K
∑

k=1

γ(zik)µ
′
sikθ

(B.67)

E
[

sis
T
i

]

=
K
∑

k=1

γ(zik)
(

Λ′−1
skθ

+ µ′
sikθ

µ′T
sikθ

)

(B.68)

E [ziksi] =γ(zik)µ
′
sikθ

(B.69)

E
[

ziksis
T
i

]

=γ(zik)
(

Λ′−1
skθ

+ µ′
sikθ

µ′T
sikθ

)

(B.70)

E
[

zik (ŝi − si) (ŝi − si)
T
]

=γ(zik)
(

ŝiŝ
T
i − ŝiµ

′T
sikθ
− µ′

sikθ
ŝTi +Λ′−1

skθ
+ µ′

sikθ
µ′T
sikθ

)

(B.71)

Finally, we plug-in the expectations into (B.56), (B.58), (B.64) and (B.66) to obtain the
final values of the parameters:

µsθ =
1

Nθ

N
∑

i=1

K
∑

k=1

γ(θi, zik)µ
′
sikθ

(B.72)

Λ−1
sθ

=
1

Nθ

N
∑

i=1

K
∑

k=1

γ(θi, zik)
(

Λ′−1
skθ

+ µ′
sikθ

µ′T
sikθ

)

− µsθµ
T
sθ

(B.73)

µ∆skθ =
1

Nθzk

N
∑

i=1

γ(θi, zik)
(

ŝi − µ′
sikθ

)

(B.74)

Λ−1
∆skθ

=
1

Nθzk

N
∑

i=1

γ(θi, zik)
(

ŝiŝ
T
i − ŝiµ

′T
sikθ
− µ′

sikθ
ŝTi + µ′

sikθ
µ′T
sikθ

)

+Λ′−1
skθ
− µ∆skθµ

T
∆skθ

(B.75)

=
1

Nθzk

N
∑

i=1

γ(θi, zik)
(

ŝi − µ′
sikθ

) (

ŝi − µ′
sikθ

)T
+Λ′−1

skθ
− µ∆skθµ

T
∆skθ

(B.76)

B.3.4 Objective function

Here, we derive the EM auxiliary function to evaluate the convergence:

Q(M) =
N
∑

i=1

E [lnP (ŝi|si, zi, θi)] + E [lnP (Qi|zi)] + E [lnP (si|θi)] + E [lnP (zi)] . (B.77)
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The term
∑N

i=1 E [lnP (ŝi|si, zi, θi)]:

N
∑

i=1

E [lnP (ŝi|si, zi, θi)]

=
∑

θ∈{T ,N}

K
∑

k=1

1

2
Nθzk ln

∣

∣

∣

∣

Λ∆skθ

2π

∣

∣

∣

∣

− 1

2
tr

(

Λ∆skθ

N
∑

i=1

tiθE
[

zik (ŝi − (si + µ∆skθ)) (ŝi − (si + µ∆skθ))
T
]

)

(B.78)

=
∑

θ∈{T ,N}
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∑

k=1

1

2
Nθzk ln

∣

∣

∣

∣

Λ∆skθ

2π
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∣

− 1

2
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∑
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tiθE
[

zik ((ŝi − si)− µ∆skθ) ((ŝi − si)− µ∆skθ)
T
]

)

(B.79)

=
∑

θ∈{T ,N}

K
∑

k=1
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2
Nθzk ln
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Λ∆skθ

2π

∣
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∣

∣

− 1

2
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Λ∆skθ
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tiθ

(

E
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zik (ŝi − si) (ŝi − si)
T
]

−E [zik (ŝi − si)]µ
T
∆skθ
− µ∆skθE [zik (ŝi − si)]

T + γ(zik)µ∆skθµ
T
∆skθ
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(B.80)

=
∑

θ∈{T ,N}
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∑

k=1
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∣
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− 1
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sikθ

) (

ŝi − µ′
sikθ

)T
+Λ′−1

skθ

−
(

ŝi − µ′
sikθ

)

µT
∆skθ
− µ∆skθ

(

ŝi − µ′
sikθ

)

+ µ∆skθµ
T
∆skθ

))

. (B.81)

The term
∑N

i=1 E [lnP (Qi|zi)]:

N
∑

i=1

E [lnP (Qi|zi)] =
P
∑

p=1

K
∑

k=1

1

2
Nzk ln

∣

∣

∣

∣

ΛQpk

2π
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∣

∣

∣

− 1

2
tr

(

ΛQpk

N
∑

i=1

γ(zik)
(

Qip − µQpk

) (

Qip − µQpk

)T

)

. (B.82)
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The term
∑N

i=1 E [lnP (si|θi)]
N
∑

i=1

E [lnP (si|θi)] =
∑

θ∈{T ,N}

1

2
Nθ ln

∣

∣

∣

∣

Λsθ

2π

∣

∣

∣

∣

− 1

2
tr

(

Λsθ

N
∑

i=1

tiθE
[

(si − µsθ) (si − µsθ)
T
]

)

(B.83)

=
∑

θ∈{T ,N}

1

2
Nθ ln

∣

∣

∣

∣

Λsθ

2π

∣

∣

∣

∣

− 1

2
tr

(

Λsθ

N
∑

i=1

tiθ

(

E
[

sis
T
i

]

− E [si]µ
T
sθ
− µsθE [si]

T + µsθµ
T
sθ

)

)

.

(B.84)

And finally, the term
∑N

i=1 E [lnP (zi)]:

N
∑

i=1

E [lnP (zi)] =
K
∑

k=1

Nzk ln πzk . (B.85)

B.3.5 Case with s observed and z hidden

Now, we assume that only z is hidden and s and θ are known.

B.3.6 E-step

We compute the posterior of the hidden variable P (z|ŝ, s,Q, θ)

P (zk = 1|ŝ, s,Q, θ) =P (zk = 1, ŝ, s,Q|θ)
P (ŝ, s,Q|θ) (B.86)

=
πzkP (ŝ|s, θ, zk = 1)P (s|θ)P (Q|zk = 1)

∑K
k=1 πzkP (ŝ|s, θ, zk = 1)P (s|θ)P (Q|zk = 1)

. (B.87)

We define

γ(zk) = P (zk = 1|ŝ, s,Q, θ) . (B.88)

B.3.7 M-step

Again, we maximize the EM auxiliary function:

Q(M) =
N
∑

i=1

E [lnP (ŝi|si, zi, θi)] + E [lnP (Qi|zi)] + E [lnP (si|θi)] + E [lnP (zi)] (B.89)

The equations for πz, µQpk
and ΛQpk

are the same as for the general case. Thus we have:

πzk =
Nzk

∑K
k=1Nzk

(B.90)
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where

Nzk =
N
∑

i=1

γ(zik) , (B.91)

µQpk
=

1

Nzk

N
∑

i=1

γ(zik)Qip (B.92)

Λ−1
Qpk

=
1

Nzk

N
∑

i=1

γ(zik)
(

Qip − µQpk

) (

Qip − µQpk

)T
(B.93)

We maximize with respect to µs and Λs to obtain:

µsθ =
1

Nθ

N
∑

i=1

tiθsi (B.94)

Λ−1
sθ

=
1

Nθ

N
∑

i=1

tiθ (si − µsθ) (si − µsθ)
T (B.95)

=
1

Nθ

N
∑

i=1

tiθsis
T
i − µsθµ

T
sθ

(B.96)

We write the terms of Q depending on µ∆s and Λ∆s as:

Q(µ∆s,Λ∆s) =
N
∑

i=1

E [lnP (ŝi|si, zi, θi)] (B.97)

=
N
∑

i=1

∑

θ∈{T ,N}

K
∑

k=1

tiθ

(

1

2
γ(zik) ln

∣

∣

∣

∣

Λ∆skθ

2π

∣

∣

∣

∣

−1

2
tr
(

Λ∆skθγ(zik) (ŝi − (si + µ∆skθ)) (ŝi − (si + µ∆skθ))
T
)

)

(B.98)

=
1

2

∑

θ∈{T ,N}

K
∑

k=1

(

Nθzk ln

∣

∣

∣

∣

Λ∆skθ

2π

∣

∣

∣

∣

−tr
(

Λ∆skθ

N
∑

i=1

γ(θi, zik) (ŝi − (si + µ∆skθ)) (ŝi − (si + µ∆skθ))
T

))

(B.99)

and maximize to obtain:

µ∆skθ =
1

Nθzk

N
∑

i=1

γ(θi, zik) (ŝi − si) (B.100)

Λ−1
∆skθ

=
1

Nθzk

N
∑

i=1

γ(θi, zik) (ŝi − si − µ∆skθ) (ŝi − si − µ∆skθ)
T (B.101)

=
1

Nθzk

N
∑

i=1

γ(θi, zik) (ŝi − si) (ŝi − si)
T − µ∆skθµ

T
∆skθ

. (B.102)
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B.3.8 Objective function

The EM auxiliary to evaluate convergence is:

Q(M) =
N
∑

i=1

E [lnP (ŝi|si, zi, θi)] + E [lnP (Qi|zi)] + E [lnP (si|θi)] + E [lnP (zi)] (B.103)

The terms 2 and 4 are the same as for the general case and are given by (B.82) and (B.85).
The rest of terms are different.

The term
∑N

i=1 E [lnP (ŝi|si, zi, θi)] is
N
∑

i=1

E [lnP (ŝi|si, zi, θi)] =
∑

θ∈{T ,N}

K
∑

k=1

1

2
Nθzk ln

∣

∣

∣

∣

Λ∆skθ

2π

∣

∣

∣

∣

− 1

2
tr

(

Λ∆skθ

N
∑

i=1

γ(θi, zik) ((ŝi − si)− µ∆skθ) ((ŝi − si)− µ∆skθ)
T

)

.

(B.104)

And the term
∑N

i=1 E [lnP (si|θi)] is
N
∑

i=1

E [lnP (si|θi)] =
∑

θ∈{T ,N}

1

2
Nθ ln

∣

∣

∣

∣

Λsθ

2π
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− 1

2
tr

(

Λsθ

N
∑

i=1

tiθ (si − µsθ) (si − µsθ)
T

)

. (B.105)



Appendix C

EM for PLDA

C.1 Introduction

Probabilistic linear discriminant analysis [Prince and Elder, 2007] is a linear generative
model commonly used to describe the distribution of the speakers’ observations (i-vector).
The model decomposes each i-vector into a speaker dependent term and a channel term.
The channel term represents the inter-session variability between different observations of
the same speaker. While i-vectors are observed variables, the speaker and channel terms
are hidden. As in other models with hidden variables like GMM or HMM, we apply the
expectation-maximization algorithm (EM) to estimate the parameters of the model. In this
appendix, we derive the equations of the EM-algorithm needed to train the multiple flavors
of PLDA employed in this thesis. Models differ in the assumptions made about the prior
distributions of speaker and channel spaces. The two-covariance model assumes that both
the speaker and channel spaces are of full-rank. The simplified PLDA model (SPLDA)
assumes that the speaker space is low-rank. Finally, the full PLDA model complicates
SPLDA by restricting the channel covariance to have the form UUT + D where U is a
low-rank matrix and D a diagonal matrix.

C.2 Definition of Sufficient Statistics

Let’s assume that we are given M speakers with Ni observations by speaker. We denote
by φij the jth observation of the speaker i and by Φi the set of all the observations of i.
We define some sufficient statistics that simplify the computations. The first-order and
second-order statistics for speaker i are:

Fi =

Ni
∑

j=1

φij (C.1)

Si =

Ni
∑

j=1

φijφ
T
ij (C.2)
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and the centered statistics are:

Fi =Fi −Niµ (C.3)

Si =

Ni
∑

j=1

(φij − µ) (φij − µ)T = Si − µFT
i − Fiµ

T +Niµµ
T (C.4)

where µ is a speaker and channel independent mean of the observations.

We also define the global statistics as:

N =
M
∑

i=1

Ni (C.5)

F =
M
∑

i=1

Fi F =
M
∑

i=1

Fi (C.6)

S =
M
∑

i=1

Si S =
M
∑

i=1

Si . (C.7)

C.3 Two-Covariance Model

C.3.1 Model definition

The two-covariance model, also called full-rank PLDA, assumes that an i-vector φij of the
session j of speaker i can be written as:

φij = yi + ǫij (C.8)

where yi is the speaker identity variable and ǫij is a channel offset.

The following priors are assumed for the speaker and channel distributions:

yi ∼ N
(

yi|µ,B−1
)

(C.9)

ǫij ∼ N
(

ǫij|0,W−1
)

(C.10)

where N denotes the Gaussian distribution; µ is the speakers mean; B−1 is the between
class covariance matrix, W−1 is the within class covariance matrix; and B and W are the
precision matrices. We denote byM = (µ,B,W) the set of all the parameters of the model.

C.3.2 EM algorithm

C.3.2.1 E-step

In the E-step we calculate the posterior distribution of the hidden variables yi:

P (yi|Φi,M) =
P (Φi|yi,W)P (yi|µ,B)

P (Φi|M)
(C.11)
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so

lnP (yi|Φi,M) =

Ni
∑

j=1

lnP (φij|yi,W) + lnP (yi|µ,B) + const (C.12)

= −1

2

Ni
∑

j=1

(φij − yi)
TW(φij − yi)−

1

2
(yi − µ)TB(yi − µ) + const (C.13)

= yT
i WFi −

1

2
Niy

T
i Wyi −

1

2
yT
i Byi + yT

i Bµ+ const (C.14)

= −1

2
yT
i (B+NiW)yi + yT

i (Bµ+WFi) + const . (C.15)

Equation (C.15) has the form of a Gaussian distribution so:

P (yi|Φi,M) = N
(

yi|L−1
i γi,L

−1
i

)

(C.16)

Li = B+NiW (C.17)

γi = Bµ+WFi . (C.18)

C.3.2.2 M-step

In the M-step, we maximize the auxiliary function Q(M):

Q(M) =
M
∑

i=1

EY [lnP (Φi,yi|M)] (C.19)

=
M
∑

i=1

EY [lnP (Φi|yi,W)] + EY [lnP (yi|µ,B)] (C.20)

= Q(W) +Q(µ,B) . (C.21)

From (C.9), the term Q(µ,B) is

Q(µ,B) =
M

2
ln |B| − 1

2
tr

(

B
M
∑

i=1

EY

[

(yi − µ) (yi − µ)T
]

)

+ const . (C.22)

We derive Q with respect to µ:

∂Q(µ,B)

∂µ
=

1

2

M
∑

i=1

BEY [yi − µ] = 0 =⇒ (C.23)

µ =
1

M

M
∑

i=1

EY [yi] . (C.24)

We derive Q with respect to B:

∂Q(µ,B)

∂B
=
M

2

(

2B−1 − diag(B−1)
)

− 1

2
(2K− diag(K)) = 0 (C.25)
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where K =
∑M

i=1 EY

[

(yi − µ) (yi − µ)T
]

, so

B−1 =
1

M

M
∑

i=1

EY

[

(yi − µ) (yi − µ)T
]

=
1

M

M
∑

i=1

EY

[

yiy
T
i

]

− µµT . (C.26)

From (C.10), the term Q(W) is

Q(W) =
N

2
ln |W| − 1

2
tr

(

W
M
∑

i=1

Ni
∑

j=1

EY

[

(φij − yi) (φij − yi)
T
]

)

+ const . (C.27)

We derive Q with respect to W:

∂Q(W)

∂W
= 0 =⇒ (C.28)

W−1 =
1

N

M
∑

i=1

Ni
∑

j=1

EY

[

(φij − yi) (φij − yi)
T
]

(C.29)

=
1

N

(

S−
M
∑

i=1

FiEY [yi]
T −

M
∑

i=1

EY [yi]F
T
i +

M
∑

i=1

NiEY

[

yiy
T
i

]

)

. (C.30)

C.3.2.3 Objective function

We can check the convergence by computing the marginal likelihood of the data in each
iteration of the EM-algorithm. For a given speaker i, by applying Bayes rule, it can be
written as

P (Φi|M) =
P (Φi|y0,M)P (y0)

P (y0|Φi,M)
(C.31)

where y0 can adopt whatever value that we decide as long as the denominator is not zero.
By taking (C.9), (C.10) and (C.16); y0 = EY [yi]; and summing for all the speakers, the
total likelihood of the data is:

lnP (Φ|θ,M) =− Nd

2
ln(2π) +

N

2
ln |W| − 1

2
tr (WCW)

+
M

2
ln |B| − 1

2
tr (BCB)−

1

2

M
∑

i=1

ln |Li| (C.32)

where

CB =
M
∑

i=1

(EY [yi]− µ) (EY [yi]− µ)T (C.33)

=
M
∑

i=1

EY [yi] EY [yi]
T −

(

M
∑

i=1

EY [yi]

)

µT − µ
(

M
∑

i=1

EY [yi]

)T

+MµµT (C.34)
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and

CW =
M
∑

i=1

Ni
∑

j=1

(φij − EY [yi]) (φij − EY [yi])
T (C.35)

= S−
M
∑

i=1

FiEY [yi]
T −

M
∑

i=1

EY [yi]F
T
i +

M
∑

i=1

NiEY [yi] EY [yi]
T . (C.36)

C.4 Simplified PLDA

C.4.1 Model definition

For simplified PLDA (SPLDA), an i-vector φij of speaker i is written as:

φij = µ+Vyi + ǫij (C.37)

where µ is a speaker independent term, V is a low-rank eigen-voices matrix, yi is the speaker
factor vector, and ǫij is a channel offset.

We assume the following priors for the variables:

yi ∼ N (yi|0, I) (C.38)

ǫij ∼ N
(

ǫij|0,W−1
)

(C.39)

where N denotes the Gaussian distribution; and W is a full within class precision matrix.
The set of all the model parameters is denoted byM = (µ,V,W).

C.4.2 Data conditional likelihood

The likelihood of the data given the hidden variables, for speaker i, is

lnP (Φi|yi,M) =

Ni
∑

j=1

lnN
(

φij|µ+Vyi,W
−1
)

(C.40)

=
Ni

2
ln

∣

∣

∣

∣

W

2π

∣

∣

∣

∣

− 1

2

Ni
∑

j=1

(φij − µ−Vyi)
TW(φij − µ−Vyi) (C.41)

=
Ni

2
ln

∣

∣

∣

∣

W

2π

∣

∣

∣

∣

− 1

2
tr
(

WSi

)

+ yT
i V

TWFi −
Ni

2
yT
i V

TWVyi (C.42)

We can write this likelihood in another form, useful for the M-step, by defining:

ỹi =

[

yi

1

]

, Ṽ =
[

V µ
]

. (C.43)
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Then, we obtain

lnP (Φi|yi,M) =

Ni
∑

j=1

lnN
(

φij|Ṽỹi,W
−1
)

(C.44)

=
Ni

2
ln

∣

∣

∣

∣

W

2π

∣

∣

∣

∣

− 1

2

Ni
∑

j=1

(φij − Ṽỹi)
TW(φij − Ṽỹi) (C.45)

=
Ni

2
ln

∣

∣

∣

∣

W

2π

∣

∣

∣

∣

− 1

2
tr (WSi) + ỹT

i Ṽ
TWFi −

Ni

2
ỹT
i Ṽ

TWṼỹi (C.46)

=
Ni

2
ln

∣

∣

∣

∣

W

2π

∣

∣

∣

∣

− 1

2
tr
(

W
(

Si − 2Fiỹ
T
i Ṽ

T +NiṼỹiỹ
T
i Ṽ

T
))

. (C.47)

C.4.3 Posterior of the hidden variables

The posterior of y is given by

P (yi|Φi,M) =
P (Φi|yi,M)P (yi)

P (Φi|M)
. (C.48)

By using (C.38) and (C.42), we obtain:

lnP (yi|Φi,M) = lnP (Φi|yi,M) + lnP (yi) + const (C.49)

=yT
i V

TWFi −
Ni

2
yT
i V

TWVyi −
1

2
yT
i yi + const (C.50)

=yT
i V

TWFi −
1

2
yT
i

(

I+NiV
TWV

)

yi + const . (C.51)

Equation (C.51) has the form of a Gaussian distribution:

P (yi|Φi,M) = N
(

yi|L−1
i γi,L

−1
i

)

(C.52)

where

Li =I+NiV
TWV (C.53)

γi =VTWFi . (C.54)

C.4.4 Marginal likelihood of the data

The marginal likelihood of the data is

P (Φi|M) =
P (Φi|y0,M)P (y0)

P (y0|Φi,M)
(C.55)

where we can plug-in whatever y0 as the denominator is not zero. By taking (C.42), (C.38)
and (C.52); and y0 = 0, we obtain:

lnP (Φi|M) =
Ni

2
ln

∣

∣

∣

∣

W

2π

∣

∣

∣

∣

− 1

2
tr
(

WSi

)

− 1

2
ln |Li|+

1

2
γTi L

−1
i γi . (C.56)
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C.4.5 EM algorithm

C.4.5.1 E-step

In the E-step we calculate the posterior of y by (C.52).

C.4.5.2 M-step ML

We maximize the EM auxiliary function Q(M):

Q(M) =
M
∑

i=1

EY [lnP (Φi,yi|M)] (C.57)

=
M
∑

i=1

EY [lnP (Φi|yi,M)] + EY [lnP (yi)] . (C.58)

We develop Q by (C.46):

Q(M) =
N

2
ln |W| − 1

2
tr

(

W
M
∑

i=1

(

Si − 2FiEY [ỹi]
T ṼT +NiṼEY

[

ỹiỹ
T
i

]

ṼT
)

)

+ const

(C.59)

=
N

2
ln |W| − 1

2
tr

(

W

(

S− 2

(

M
∑

i=1

FiEY [ỹi]
T

)

ṼT

+Ṽ

(

M
∑

i=1

NiEY

[

ỹiỹ
T
i

]

)

ṼT

))

+ const . (C.60)

We define the accumulators:

Rỹ =
M
∑

i=1

NiEY

[

ỹiỹ
T
i

]

(C.61)

C =
M
∑

i=1

FiEY [ỹi]
T . (C.62)

Then, the auxiliary function looks like

Q(M) =
N

2
ln |W| − 1

2
tr
(

W
(

S− 2CṼT + ṼRỹṼ
T
))

+ const . (C.63)

We derive Q with respect to Ṽ:

∂Q(M)

∂Ṽ
= C− ṼRỹ = 0 =⇒ (C.64)

Ṽ = CR−1
ỹ . (C.65)

We derive Q with respect to W:

∂Q(M)

∂W
=
N

2

(

2W−1 − diag(W−1)
)

− 1

2

(

K+KT − diag(K)
)

= 0 (C.66)
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where K = S− 2CṼT + ṼRỹṼ
T , so

W−1 =
1

N

K+KT

2
(C.67)

=
1

N

(

S− ṼCT −CṼT + ṼRỹṼ
T
)

(C.68)

=
1

N

(

S− ṼCT
)

. (C.69)

Finally, we just need to evaluate the expectations EY [ỹi] and EY

[

ỹiỹ
T
i

]

:

EY [ỹi] =

[

EY [yi]
1

]

(C.70)

EY

[

ỹiỹ
T
i

]

=

[

EY

[

yiy
T
i

]

EY [yi]

EY [yi]
T 1

]

(C.71)

EY [yi] =L−1
i γi (C.72)

EY

[

yiy
T
i

]

=L−1
i + EY [yi] EY [yi]

T . (C.73)

C.4.5.3 M-step MD

The minimum divergence (MD) step consists in minimizing the KL distance between the
true and the assumed prior for the hidden variables. It has been observed that MD helps
to avoid saddle points and speeds convergence up [Brummer, 2009]. We, temporally, need
to assume an over-parametrized model with a general prior for the hidden variables:

P (yi) = N
(

yi|µy,Λ
−1
y

)

. (C.74)

Now, we maximize the term of the EM auxiliary that depends on the new parameters
µy and Λy:

Q(µy,Λy) =
M
∑

i=1

EY

[

lnN
(

yi|µy,Λ
−1
y

)]

(C.75)

=
M

2
ln |Λy| −

1

2
tr

(

Λy

M
∑

i=1

EY

[

(yi − µy) (yi − µy)
T
]

)

+ const . (C.76)

We derive Q with respect to µy

∂Q(µy,Λy)

∂µy

=
1

2

M
∑

i=1

ΛyEY [yi − µy] = 0 =⇒ (C.77)

µy =
1

M

M
∑

i=1

EY [yi] . (C.78)

We derive Q with respect to Λ−1
y :

∂Q(µy,Λy)

∂Λ−1
y

=
M

2

(

2Λ−1
y − diag(Λ−1

y )
)

− 1

2
(2K− diag(K)) = 0 (C.79)
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where K =
∑M

i=1 EY

[

(yi − µy) (yi − µy)
T
]

, so

Σy = Λ−1
y =

1

M

M
∑

i=1

EY

[

(yi − µy) (yi − µy)
T
]

=
1

M

M
∑

i=1

EY

[

yiy
T
i

]

− µyµ
T
y . (C.80)

To minimize the divergence between the standard and the general prior we need to find
a transform y = ψ(y′) such as y′ has a standard prior. That is

y =µy + (Σ1/2
y )Ty′ . (C.81)

By applying this transform, we make the effect of the non-standard priors to be absorbed
into µ and V:

µ′ =µ+Vµy (C.82)

V′ =V(Σ1/2
y )T (C.83)

where Σ
1/2
y is the upper triangular Cholesky decomposition of Σy.

C.4.5.4 Objective function

Convergence can be checked by computing the marginal likelihood of the development data
given the model, i.e., this is Equation (C.56) summed for all the speakers:

lnP (Φ|M) =
N

2
ln

∣

∣

∣

∣

W

2π

∣

∣

∣

∣

− 1

2
tr
(

WS
)

− 1

2

M
∑

i=1

ln |Li|+
1

2

M
∑

i=1

γTi L
−1
i γi . (C.84)

C.5 PLDA

C.5.1 Model definition

The general PLDA model supposes that an i-vector φij of the session j of the speaker i is
written as:

φij = µ+Vyi +Uxij + ǫij (C.85)

where µ is a speaker independent term, V is a low-rank eigen-voices matrix, yi is the speaker
factors vector, U is a low-rank eigen-channels matrix, xij is the channel factors vector and
ǫij is an offset accounting for the residual variability not included in U.

We assume the following priors:

yi ∼ N (yi|0, I) (C.86)

xij ∼ N (xij|0, I) (C.87)

ǫij ∼ N
(

ǫij|0,D−1
)

(C.88)

where N denotes the Gaussian distribution; and D is a diagonal precision matrix. φ is
observed variable while y and x are hidden. We denote by Xi the set of all the channel
factors of speaker i and byM = (µ,V,U,D) the set of all the model parameters.
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C.5.2 Data conditional likelihood

The likelihood of the data given the hidden variables, for speaker i, is

lnP (Φi|yi,Xi,M) =

Ni
∑

j=1

lnN
(

φij|µ+Vyi +Uxij,D
−1
)

(C.89)

=
Ni

2
ln

∣

∣

∣

∣

D

2π

∣

∣

∣

∣

− 1

2

Ni
∑

j=1

(φij − µ−Vyi −Uxij)
TD(φij − µ−Vyi −Uxij)

(C.90)

=
Ni

2
ln

∣

∣

∣

∣

D

2π

∣

∣

∣

∣

− 1

2
tr
(

DSi

)

+ yTVTDFi −
Ni

2
yT
i V

TDVy

+

Ni
∑

j=1

xT
ijU

TD (φij − µ)− yT
i V

TDUxij −
1

2
xT
ijU

TDUxij . (C.91)

We can write this likelihood in other form by defining:

ỹij =





yi

xij

1



 , Ṽ =
[

V U µ
]

. (C.92)

Then, we obtain

lnP (Φi|yi,Xi,M) =

Ni
∑

j=1

lnN
(

φij|Ṽỹij,D
−1
)

(C.93)

=
Ni

2
ln

∣

∣

∣

∣

D

2π

∣

∣

∣

∣

− 1

2

Ni
∑

j=1

(φij − Ṽỹij)
TD(φij − Ṽỹij) (C.94)

=
Ni

2
ln

∣

∣

∣

∣

D

2π

∣

∣

∣

∣

− 1

2
tr (DSi) +

Ni
∑

j=1

ỹT
ijṼ

TDφij −
1

2
ỹT
ijṼ

TDṼỹij (C.95)

=
Ni

2
ln

∣

∣

∣

∣

D

2π

∣

∣

∣

∣

− 1

2
tr

(

D

(

Si +

Ni
∑

j=1

−2φijỹ
T
ijṼ

T + Ṽỹijỹ
T
ijṼ

T

))

.

(C.96)

C.5.3 Posterior of the hidden variables

The posterior of the hidden variables can be decomposed into two factors by applying the
product rule:

P (yi,Xi|Φi,M) = P (Xi|yi,Φi,M)P (yi|Φi,M) (C.97)

C.5.3.1 Conditional posterior of Xi

The conditional posterior of Xi is

P (Xi|yi,Φi,M) =
P (Φi|yi,Xi,M)P (Xi)

P (Φi|yi,M)
. (C.98)
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By using (C.87) and (C.91), we obtain

lnP (Xi|yi,Φi,M) = lnP (Φi|yi,Xi,M) + lnP (Xi|M) + const (C.99)

=

Ni
∑

j=1

xT
ijU

TD (φij − µ)− yTVTDUxij

− 1

2
xT
ijU

TDUxij −
1

2
xT
ijxij + const (C.100)

=

Ni
∑

j=1

xT
ijU

TD (φij − µ−Vyi)−
1

2
xT
ijLxxij + const (C.101)

=

Ni
∑

j=1

xT
ijζij −

1

2
xT
ijLxxij + const (C.102)

where

ζij =UTD (φij − µ−Vyi) = ζ̃ij − Jyi (C.103)

ζ̃ij =UTD (φij − µ) (C.104)

J =UTDV (C.105)

Lx =I+UTDU . (C.106)

Equation (C.102) has the form of a product of Gaussian distributions. Therefore

P (Xi|yi,Φi,M) =

Ni
∏

j=1

N
(

xij|xij,L
−1
x

)

(C.107)

where

xij = L−1
x ζij . (C.108)

C.5.3.2 Posterior of yi

The marginal posterior of y is

P (yi|Φi,M) =
P (Φi|yi,M)P (yi)

P (Φi|M)
. (C.109)

Now, we apply Bayes theorem to write

P (Φi,Xi|yi,M) = P (Φi|yi,Xi,M)P (Xi|yi,M) = P (Xi|Φi,yi,M)P (Φi|yi,M) .
(C.110)

Simplifying:

P (Φi|yi,Xi,M)P (Xi) = P (Xi|Φi,yi,M)P (Φi|yi,M) . (C.111)

Then, isolating P (yi|Φi,M):

P (yi|Φi,M) =
P (Φi|yi,Xi,M)P (Xi)P (yi)

P (Xi|Φi,yi,M)P (Φi|M)

∣

∣

∣

∣

Xi=0

. (C.112)



280 Appendix C. EM for PLDA

Note that P (yi|Φi,M) is not conditioned on Xi so we can plug-in whatever value that
we choose.

By Equations (C.86), (C.91) and (C.102), we obtain:

lnP (yi|Φi,M) = lnP (Φi|yi,Xi,M) + lnP (y)− lnP (Xi|Φi,yi,M) + const (C.113)

=yTVTDFi −
Ni

2
yT
i V

TDVyi −
1

2
yT
i yi +

1

2

Ni
∑

j=1

xT
ijLxxij + const (C.114)

=yTVTDFi −
1

2
yT
i

(

I+NiV
TDV

)

yi

+
1

2

Ni
∑

j=1

(φij − µ−Vyi)
T DUL−1

x UTD (φij − µ−Vyi) + const (C.115)

=yTVTDFi −
1

2
yT
i

(

I+NiV
TDV

)

yi

+
1

2

Ni
∑
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(φij − µ)T DUL−1
x UTD (φij − µ)

− 2yT
i V

TDUL−1
x UTD (φij − µ)

+ yT
i V

TDUL−1
x UTDVyi + const (C.116)

=yTVT
(

D−DUL−1
x UTD

)

Fi

− 1

2
yT
i

(

I+NiV
T
(

D−DUL−1
x UTD

)

V
)

yi + const . (C.117)

That is a Gaussian distribution:

P (yi|Φi,M) = N
(

yi|yi,L
−1
yi

)

(C.118)

where

Lyi
=I+NiV

T
(

D−DUL−1
x UTD

)

V = I+Ni

(

VTDV − JTL−1
x J
)

(C.119)

γi =VT
(

D−DUL−1
x UTD

)

Fi = γ̃i − JTL−1
x ζ̃i (C.120)

γ̃i =VTDFi (C.121)

ζ̃i =

Ni
∑

j=1

ζ̃ij (C.122)

yi =L−1
yi
γi . (C.123)

C.5.4 Marginal likelihood of the data

The marginal likelihood for speaker i data is

P (Φi|M) =
P (Φi|yi,Xi,M)P (yi)P (Xi)

P (Xi|yi,Φi,M)P (yi|Φi,M)

∣

∣

∣

∣

yi=0,Xi=0

. (C.124)



C.5 PLDA 281

Taking (C.91), (C.86), (C.87), (C.102) and (C.118):

lnP (Φi|M) =
Ni
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∣

∣
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2
γTi L

−1
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γi . (C.125)

The fourth term can be developed as

Ni
∑

j=1

ζ̃TijL
−1
x ζ̃ij =

Ni
∑

j=1

(φij − µ)T DUL−1
x UTD (φij − µ) (C.126)
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(C.127)

=tr
(
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x UTDSi
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. (C.128)

Finally, we obtain:

lnP (Φi|M) =
Ni

2
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− Ni

2
ln |Lx|

− 1

2
ln |Lyi
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2
γTi L
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yi
γi . (C.129)

C.5.5 EM algorithm

C.5.5.1 E-step

In the E-step, we calculate the posterior of y and X by (C.97).

C.5.5.2 M-step ML

We maximize the EM auxiliary function Q(M)

Q(M) =
M
∑

i=1

EY,X [lnP (Φi,yi,Xi|M)] (C.130)

=
M
∑

i=1

EY,X [lnP (Φi|yi,Xi,M)] + EY,X [lnP (yi)] + EY,X [lnP (Xi)] . (C.131)

By taking (C.96), that is

Q(M) =
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(C.132)

We define the accumulators:

Rỹ =
M
∑

i=1

Ni
∑

j=1

EY

[

ỹijỹ
T
ij

]

(C.133)

C =
M
∑

i=1

Ni
∑

j=1

φijEY [ỹij]
T ; . (C.134)
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Then, the auxiliary looks like

Q(M) =
N

2
ln |D| − 1

2
tr
(

D
(

S− 2CṼT + ṼRỹṼ
T
))

+ const . (C.135)

We derive Q with respect to Ṽ:

∂Q(M)

∂Ṽ
= C− ṼRỹ = 0 =⇒ (C.136)

Ṽ = CR−1
ỹ . (C.137)

We derive Q with respect to D:

∂Q(M)

∂D
=
N
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(
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where K = S− 2CṼT + ṼRỹṼ
T , so

D−1 =
1

N

K+KT

2
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=
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=
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S− ṼCT
)
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Finally, we need to evaluate the expectations EY [ỹij] and EY

[

ỹijỹ
T
ij

]

and compute Rỹ

and C. For C, we have

C =
M
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where

EY [yi] =yi (C.143)

EY,X [xij] =EY [xij ] = L−1
x

(
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(C.144)

and
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Cx =
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∑
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∑
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=
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=
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For Rỹ, we have

Rỹ =





Ry Ryx Ry1

Rxy Rx Rx1

RT
y1 RT

x1 N
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 (C.151)

where
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and

Cy = Cy − µRT
y1 . (C.166)
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C.5.5.3 M-step MD

For the MD step, we assume an over-parametrized model with a general prior for the hidden
variables:

P (yi) =N
(

yi|µy,Λ
−1
y

)

(C.167)

P (xij|yi) =N
(

xij|Hyi + µx,Λ
−1
x

)

. (C.168)

Now, we maximize the term of the EM auxiliary that depends on the new prior:
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We derive Q with respect to µy

∂Q(µy,Λy,H, µx,Λx)

∂µy
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We derive Q with respect to Λy:

∂Q(µy,Λy,H, µx,Λx)
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We derive Q with respect to µx:

∂Q(µy,Λy,H, µx,Λx)

∂µx
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We derive Q with respect to H:
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. (C.185)

Finally, we derive Q with respect to Λx:

∂Q(µy,Λy,H, µx,Λx)
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=
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where K =
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i=1

∑Ni
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(C.190)

The transform (y,x) = ψ(y′,x′) such as y′ and x′ has a standard prior is

y =µy + (Σ1/2
y )Ty′ (C.191)

x =µx +Hy + (Σ1/2
x )Tx′ (C.192)

=µx +Hµy +H(Σ1/2
y )Ty′ + (Σ1/2

x )Tx′ (C.193)

where Σ1/2 denotes the upper triangular Cholesky decomposition of Σ.
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The effect of the new prior can be absorbed into µ, V and U by applying that transform:

U′ =U(Σ−1/2
x )T (C.194)

V′ =(V +UH) (Σ−1/2
y )T (C.195)

µ′ =µ+ (V +UH)µy +Uµx . (C.196)

C.5.5.4 Objective function

Convergence can be checked by tracking the marginal likelihood of the data. This consists
in accumulate Equation (C.129) for all speakers:

lnP (Φ|M) =
N

2
ln

∣

∣

∣

∣

D

2π

∣

∣

∣

∣

− 1

2
tr
((

D−DUL−1
x UTD

)

S
)

− N

2
ln |Lx|

− 1

2

M
∑

i=1

ln |Lyi
|+ 1

2

M
∑

i=1

γTi L
−1
yi
γi . (C.197)



Appendix D

EM for Multi-channel SPLDA

D.1 Introduction

In this appendix, we derive the equations need to estimate the parameters of the multi-
channel SPLDA (MCSPLDA) model described in Chapter 8. MCSPLDA is a variant of
SPLDA where the within-class covariance that we use to model each i-vector depends on the
type of channel where it comes from. For example, we could have a within-class covariance
for telephone recordings and another one for far-field microphone recordings.

D.2 Model Description

Multi-channel SPLDA is a linear generative model where an i-vector φij of speaker i is
written as

φij = Vyi + ǫij (D.1)

where V is the eigenvoices matrix, yi is the speaker factor vector, and ǫij is a channel offset.
We introduce a variable zij that indicates the type of channel that generates ǫij . zij is a
1-of-K binary vector with elements zijk for k = 1, . . . , K. We assume that some kind of
channel detector provides the type of channel for each speaker or at least the probability
P (zijk) for it.

We put the following priors on the variables:

yi ∼ N (y|0, I) (D.2)

ǫij|zijk = 1 ∼ N
(

ǫij|µk,W
−1
k

)

(D.3)

where N denotes a Gaussian distribution; µk is a channel dependent mean; and Wk

is the channel dependent within class precision matrix. We define µ = {µk}Kk=1 and

W = {Wk}Kk=1. The denote byM = (µ,V,W) the set of all the model parameters.
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D.3 Definitions of Sufficient Statistics

We define channel dependent sufficient statistics for speaker i as:

Nik =

Ni
∑

j=1

P (zijk = 1) (D.4)

Fik =

Ni
∑

j=1

P (zijk = 1)φij (D.5)

Sik =

Ni
∑

j=1

P (zijk = 1)φijφ
T
ij . (D.6)

We define the channel centered statistics as

Fik =Fik −Nikµk (D.7)

Sik =

Ni
∑

j=1

P (zijk = 1) (φij − µk) (φij − µk)
T = Sik − µkF

T
ik − Fikµ

T
k +Nikµkµ

T
k . (D.8)

Finally, we define the global statistics:

Nk =
M
∑

i=1

Nik (D.9)

Fk =
M
∑

i=1

Fik (D.10)

Fk =
M
∑

i=1

Fik (D.11)

Sk =
M
∑

i=1

Sik (D.12)

Sk =
M
∑

i=1

Sik . (D.13)
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D.4 Data Conditional Likelihood

The likelihood of the data given the hidden variables for speaker i is

lnP (Φi|yi, zi,M) =

Ni
∑

j=1

K
∑

k=1

P (zijk = 1) lnN
(

φij|µk +Vyi,W
−1
k

)

(D.14)

=
K
∑

k=1

Nik

2
ln

∣

∣

∣

∣

Wk

2π

∣

∣

∣

∣

− 1

2

Ni
∑

j=1

P (zijk = 1) (φij − µk −Vyi)
TWk(φij − µk −Vyi) (D.15)

=
K
∑

k=1

Nik

2
ln

∣

∣

∣

∣

Wk

2π

∣

∣

∣

∣

− 1

2
tr
(

WkSik

)

+ yT
i V

TWkFik −
Nik

2
yT
i V

TWkVyi

(D.16)

We can write this likelihood in another form, useful for the M-step derivations:

lnP (Φi|yi, zi,M) =
K
∑

k=1

Nik

2
ln

∣

∣

∣

∣

Wk

2π

∣

∣

∣

∣

− 1

2
tr
(

Wk

(

Sik − 2Fikµ
T
k +Nikµkµ

T
k

−2 (Fik −Nkiµk)y
T
i V

T +NikVyiy
T
i V

T
))

. (D.17)

D.5 Posterior of the Hidden Variables

The posterior of yi is given by

P (yi|Φi, zi,M) =
P (Φi|yi, zi,M)P (yi)

P (Φi|zi,M)
. (D.18)

Taking (D.2) and (D.16), we obtain:

lnP (yi|Φi, zi,M) = lnP (Φi|yi, zi,M) + lnP (yi) + const (D.19)

=
K
∑

k=1

yT
i V

TWkFik −
Nik

2
yT
i V

TWkVyi −
1

2
yT
i yi + const (D.20)

=yT
i

K
∑

k=1

VTWkFik −
1

2
yT
i

(

I+
K
∑

k=1

NikV
TWkV

)

yi + const (D.21)

Equation (D.21) has the form of a Gaussian distribution so, finally, we obtain:

P (yi|Φi, zi,M) = N
(

yi|L−1
i γi,L

−1
i

)

(D.22)

where

Li =I+
K
∑

k=1

NikV
TWkV (D.23)

γi =
K
∑

k=1

VTWkFik . (D.24)
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D.6 Marginal Likelihood of the Data

The marginal likelihood of the data for speaker i is

P (Φi|zi,M) =
P (Φi|y0, zi,M)P (y0)

P (y0|Φi, zi,M)
(D.25)

where y0 can be whatever as long as the denominator is not zero. By taking (D.16), (D.2)
and (D.22); and y0 = 0, we obtain:

lnP (Φi|zi,M) =
K
∑

k=1

Nik

2
ln

∣

∣

∣

∣

Wk

2π

∣

∣

∣

∣

− 1

2

K
∑

k=1

tr
(

WkSik

)

− 1

2
ln |Li|+

1

2
γTi L

−1
i γi . (D.26)

D.7 EM algorithm

D.7.1 E-step

In the E-step we calculate the posterior of y with (D.22).

D.7.2 M-step ML

We maximize the EM auxiliary function Q(M):

Q(M) =
M
∑

i=1

EY [lnP (Φi,yi|zi,M)] (D.27)

=
M
∑

i=1

EY [lnP (Φi|yi, zi,M)] + EY [lnP (yi)] . (D.28)

If we plug-in (D.17), we obtain:

Q(M) =
K
∑

k=1

Nk

2
ln |Wk| −

1

2
tr

(

Wk

M
∑

i=1

(

Sik − 2Fikµ
T
k +Nikµkµ

T
k

−2 (Fik −Nkiµk) EY

[

yT
i

]

VT +NikVEY

[

yiy
T
i

]

VT
))

+ const (D.29)

=
K
∑

k=1

Nk

2
ln |Wk|

− 1

2
tr
(

Wk

(

Sk − 2Fkµ
T
k +Nkµkµ

T
k

−2
(

M
∑

i=1

FikEY [yi]
T

)

VT + 2µk

(

M
∑

i=1

NkiEY [yi]
T

)

VT

+V

(

M
∑

i=1

NikEY

[

yiy
T
i

]

)

VT

))

+ const . (D.30)
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Now, we find convenient to define

Ryk =
M
∑

i=1

NikEY

[

yiy
T
i

]

(D.31)

Ak =
M
∑

i=1

NikEY [yi] (D.32)

Ck =
M
∑

i=1

FikEY [yi]
T . (D.33)

Thus, we can write the EM objective in a more compact form:

Q(M) =
K
∑

k=1

Nk

2
ln |Wk| −

1

2
tr
(

Wk

(

Sk − 2Fkµ
T
k +Nkµkµ

T
k

−2CkV
T + 2µkA

T
kV

T +VRykV
T
))

+ const (D.34)

We derive Q with respect to µk:

∂Q(M)

∂µk

= Wk (Fk −Nkµk −VAk) = 0 (D.35)

=⇒ µk =
1

Nk

(Fk −VAk) . (D.36)

We derive Q with respect V:

∂Q(M)

∂V
=

K
∑

k=1

Wk

(

Ck − µkA
T
k −VRyk

)

= 0 . (D.37)

We substitute (D.36) into (D.37):

K
∑

k=1

Wk

(

Ck −
1

Nk

(Fk −VAk)A
T
k −VRyk

)

= 0 (D.38)

=⇒
K
∑

k=1

WkV

(

Ryk −
1

Nk

AkA
T
k

)

=
K
∑

k=1

Wk

(

Ck −
1

Nk

FkA
T
k

)

(D.39)

Additionally, we define

Bk =Ryk −
1

Nk

AkA
T
k (D.40)

D =
K
∑

k=1

Wk

(

Ck −
1

Nk

FkA
T
k

)

. (D.41)

Thus, we obtain that to compute V we need to solve:

K
∑

k=1

WkVBk = D (D.42)
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To solve this equation we have to apply the property of the Kronecker product (BT ⊗
A)vec(X) = vec(AXB). Finally, we have to solve the linear system of equations:

K
∑

k=1

(

BT
k ⊗Wk

)

vec(V) = vec(D) (D.43)

For Wk, we have that

∂Q(M)

∂Wk

=
Nk

2

(

2W−1
k − diag(W−1

k )
)

− 1

2

(

K+KT − diag(K)
)

= 0 (D.44)

where

K = Sk − 2Fkµ
T
k +Nkµkµ

T
k − 2CkV

T + 2µkA
T
kV

T +VRykV
T . (D.45)

Then, isolating Wk:

W−1
k =

1

Nk

K+KT

2
(D.46)

=
1

Nk

(

Sk − Fkµ
T
k − µkF

T
k +Nkµkµ

T
k

−CkV
T −VCT

k + µkA
T
kV

T +VAkµ
T
k +VRykV

T
)

. (D.47)

We have to update iteratively µk, V and Wk.

D.7.3 M-step MD

In the minimum divergence step, we assume a general prior for y, instead of a standard
normal prior:

P (y) = N
(

y|µy,Λ
−1
y

)

(D.48)

To obtain the optimum values for µy and Λy, we maximize the term of the EM auxiliary
that corresponds to the prior:

Q(µy,Λy) =
M
∑

i=1

EY

[

lnN
(

yi|µy,Λ
−1
y

)]

(D.49)

=
M

2
ln |Λy| −

1

2
tr

(

Λy

M
∑

i=1

EY

[

(yi − µy) (yi − µy)
T
]

)

+ const . (D.50)

We derivate with respect to µy:

∂Q(µy,Λy)

∂µy

=
1

2

M
∑

i=1

ΛyEY [yi − µy] = 0 =⇒ (D.51)

µy =
1

M

M
∑

i=1

EY [yi] . (D.52)
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We derivate with respect to Λ−1
y :

∂Q(µy,Λy)

∂Λ−1
y

=
M

2

(

2Λ−1
y − diag(Λ−1

y )
)

− 1

2
(2S− diag(S)) = 0 (D.53)

where S =
∑M

i=1 EY

[

(yi − µy) (yi − µy)
T
]

, so

Σy = Λ−1
y =

1

M

M
∑

i=1

EY

[

(yi − µy) (yi − µy)
T
]

=
1

M

M
∑

i=1

EY

[

yiy
T
i

]

− µyµ
T
y . (D.54)

To minimize the divergence between the general prior and the standard normal prior,
first, we have to find a transform y = ψ(y′) such as y′ has a standard prior. That is

y =µy + (Σ1/2
y )Ty′ . (D.55)

This transform can be used to make µk and V to absorb the effect of the non-standard
prior:

µ′
k =µk +Vµy (D.56)

V′ =V(Σ1/2
y )T , (D.57)

where Σ
1/2
y is the upper triangular Cholesky decomposition.

D.7.4 Objective function

We can check the convergence of the EM algorithm by evaluating the marginal likelihood
of the training data, i.e., it is Equation (D.26) accumulated for all the speakers

lnP (Φ|M) =
K
∑

k=1

Nk

2
ln

∣

∣

∣

∣

Wk

2π

∣

∣

∣

∣

− 1

2

K
∑

k=1

tr
(

WkSk

)

− 1

2

M
∑

i=1

ln |Li|+
1

2

M
∑

i=1

γTi L
−1
i γi . (D.58)





Appendix E

Variational Inference for Bayesian
Two-Covariance Model

E.1 Introduction

In this appendix, we derive the variational Bayes solution of the Bayesian two-covariance
model used in Chapters 9 and 10. The difference between the fully Bayesian and the classical
versions of the model consists in that the fully Bayesian version assumes that the model
parameters are hidden variables with priors over them while in the standard version they
are deterministic variables. While deterministic variables are generally derived by maximum
likelihood estimation, for hidden variables, we can compute posterior distributions. Posterior
distributions present the advantage that they include information regarding the uncertainty
about the value of the parameters.

E.2 The Bayesian Two-Covariance Model

Figure E.1 depicts the graphical model of our Bayesian two-covariance model. As we have
already explained in previous chapters, the model decomposes each i-vector φij of the session
j of speaker i as:

φij = yi + ǫij (E.1)

where yi is the speaker identity variable and ǫij is a channel offset. We assume Gaussian
priors for the speaker and channel spaces:

yi ∼ N
(

yi|µ,B−1
)

(E.2)

ǫij ∼ N
(

ǫij|0,W−1
)

(E.3)

where µ is the speaker independent mean; B is the between class precision matrix, and
W is the within class precision matrix. We denote by M = (µ,B,W) the set of all the
parameters of the model and byM = (µ,B) the parameters of speaker space.

In the Bayesian version of the model, we have the priors over the model parameters,
ΠMy

and ΠW. We denote by Π =
(

ΠMy
,ΠW

)

the set of model priors.

Additionally, we denote by Φ the set of all the i-vectors in the database, by Φi the
i-vectors of the ith speaker, Y the set of all speaker variables of the dataset, and by θ the
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W µB

ΠW
ΠMy

φij yi

θij

Ni

M

Figure E.1: Graphical model of the Bayesian two-covariance model.

labels that indicate the assignations of i-vectors to speakers. We assume that we have M
speakers with Ni i-vectors per speaker. The total number of i-vector is N =

∑M
i=1Ni.

Computing the posterior distribution of the hidden variables of the fully Bayesian model
in close form is non-tractable. We approximated the posteriors by applying variational
Bayes (VB) inference [Bishop, 2006]. We present equations for the case where we assume
non-informative priors and for the case with informative conjugate priors.

E.3 Variational Inference with Non-Informative

Priors

E.3.1 Model priors

A non-informative prior (Jeffreys prior) encodes the absence of information about µ, B
and W other than the training data. With a non-informative prior no Gaussian should
be preferred over others and it should be invariant to any translation or scaling of the
measurement space. We introduced the non-informative priors for the parameters of
Gaussian distributions in Appendix A. We can use the same kind of prior for the Gaussian
distributions of the two-covariance model. Then, model prior can be written as:

P (M|Π) =P
(

µ,B|ΠMy

)

P (W|ΠW) (E.4)

where

P
(

µ,B|ΠMy

)

=P
(

µ|B,ΠMy

)

P
(

B|ΠMy

)

(E.5)

= lim
k→0
N
(

µ|µ0, (kB)−1)W (B|B0/k, k) (E.6)

=α

∣

∣

∣

∣

B

2π

∣

∣

∣

∣

1/2

|B|−(d+1)/2 (E.7)

P (W|ΠW) = lim
k→0
W (W|W0/k, k) (E.8)

=α |W|−(d+1)/2 (E.9)

where W denotes a Wishart distribution and d the dimensionality of the i-vector. Since
this densities do not integrate to 1, they are improper and the symbol α is introduced to



E.3 Variational Inference with Non-Informative Priors 297

denote a normalizing constant which approaches zero. Note that an improper prior does
not implies an improper posterior.

E.3.2 Variational distributions

In order to derive the VB equations of the model we need to write down the joint distribution
of all the observed and hidden variables:

P (Φ,M,Y|θ,Π) = P (Φ|Y,My,W, θ,Π)P (Y|My,W, θ,Π)P (My|W, θ,Π)P (W|θ,Π) .
(E.10)

By looking the conditional dependencies described in the figure, we can simplify (E.10) into:

P (Φ,M,Y|θ,Π) = P (Φ|Y,W, θ)P (Y|My)P
(

My|ΠMy

)

P (W|ΠW) . (E.11)

We found convenient to choose the following partition for the joint posterior of the latent
variables of the model:

q (M,Y) = q (M) q (Y) . (E.12)

The optimum for each one of the factors q (Zi) is obtained by taking the expectation of the
joint distribution in (E.11) w.r.t. the rest of factors q (Zj 6=i). We iterate across the factors
until that the distributions converge.

Thus, the optimum for the factor q (Y) is given by

ln q∗ (Y) = EM [lnP (Φ,M,Y|θ,Π)] + const (E.13)

By plugging-in (E.11) we obtain:

ln q∗ (Y) = EM [lnP (Φ|Y,W, θ)] + EM [lnP (Y|My)] + const (E.14)

where the terms that do not depend on Y can be absorbed into the additive constant const.
Now, we substitute (E.2) and (E.3) into (E.14) and, again, absorb any term that does

not depend on Y into the additive constant. Thus, we obtain:

ln q∗ (Y) =
M
∑

i=1

Ni
∑

j=1

EM [lnP (φij|yi,W)] +
M
∑

i=1

EMy
[lnP (yi|My)] + const (E.15)

=− 1

2

M
∑

i=1

Ni
∑

j=1

EM

[

(φij − yi)
TW(φij − yi)

]

− 1

2

M
∑

i=1

EM

[

(yi − µ)TB(yi − µ)
]

+ const (E.16)

=
M
∑

i=1

yT
i EM [W]Fi −

1

2

M
∑

i=1

Niy
T
i EM [W]yi

− 1

2

M
∑

i=1

yT
i EM [B]yi +

M
∑

i=1

yT
i EM [Bµ] + const (E.17)

=
M
∑

i=1

−1

2
yT
i (EM [B] +NiEM [W])yi + yT

i

(

EMy
[Bµ] + EM [W]Fi

)

+ const

(E.18)



298 Appendix E. Variational Inference for Bayesian Two-Covariance Model

where Fi is first order sufficient statistic for speaker i:

Fi =

Ni
∑

j=1

φij . (E.19)

We note that (E.18) has the form of the sum of logarithms of Gaussian distributions.
Thus, we identify the mean and variance of the distributions and write:

q∗ (Y) =
M
∏

i=1

q∗ (yi) (E.20)

q∗ (yi) = N
(

yi|L−1
i γi,L

−1
i

)

(E.21)

Li = EM [B] +NiEM [W] (E.22)

γi = EMy
[Bµ] + EM [W]Fi . (E.23)

Note that the factorization of q∗ (Y) into one Gaussian per speaker has not been forced in
any way but it arises naturally from the factorization (E.12).

In the same manner, we derive the optimum for the factor q (M):

ln q∗ (M) = EY [lnP (Φ,M,Y|θ,Π)] + const . (E.24)

By applying (E.11), we obtain:

ln q∗ (M) =
[

EY [lnP (Y|My)] + EY

[

lnP
(

My|ΠMy

)]]

+ [EY [lnP (Φ|Y,W, θ)] + EY [lnP (W|ΠW)]] + const (E.25)

= ln q∗ (My) + ln q∗ (W) . (E.26)

The model q∗ (M) is decomposed into two independent factors, one for the speaker space
and another for the channel space. Again, we did not force this factorization but it arose
naturally.

For q∗ (My), we substitute (E.2) and (E.7) into (E.25) and absorb any term that does
not depend on µ or B into the additive constant:

ln q∗ (My) =
M
∑

i=1

EY [lnP (yi|My)] + EY [lnP (µ,B|Π)] + const (E.27)

=
M

2
ln |B| − 1

2

M
∑

i=1

EY

[

(yi − µ)TB(yi − µ)
]

+
1

2
ln |B| − d+ 1

2
ln |B|+ const .

(E.28)

Now, we define:

y =
1

M

M
∑

i=1

EY [yi] (E.29)

Sy =
M
∑

i=1

EY

[

(yi − y) (yi − y)T
]

=
M
∑

i=1

EY

[

yiy
T
i

]

−MyyT . (E.30)
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We use them to develop (E.28):

ln q∗ (My) =
M

2
ln |B| − 1

2
tr

(

B
M
∑

i=1

EY

[

(yi − µ) (yi − µ)T
]

)

+
1

2
ln |B| − d+ 1

2
ln |B|+ const (E.31)

=
M

2
ln |B| − 1

2
tr

(

B
M
∑

i=1

EY

[

((yi − y)− (µ− y)) ((yi − y)− (µ− y))T
]

)

+
1

2
ln |B| − d+ 1

2
ln |B|+ const (E.32)

=
M

2
ln |B| − 1

2
tr

(

B

(

M
∑

i=1

EY

[

(yi − y) (yi − y)T
]

+M (µ− y) (µ− y)T
))

+
1

2
ln |B| − d+ 1

2
ln |B|+ const (E.33)

=

[

1

2
ln |B| − M

2
(µ− y)TB(µ− y)

]

+

[

M

2
ln |B| − d+ 1

2
ln |B| − 1

2
tr (BSy)

]

+ const . (E.34)

If we compare equations (E.34) and (A.20), we see that q∗ (My) is Gaussian-Wishart
distributed:

q∗ (My) = N
(

µ|µ, (MB)−1)W (B|Ψy,M) if M > d (E.35)

where

µ =y (E.36)

Ψy =S−1
y . (E.37)

For q∗ (W), we substitute (E.3), and (E.9) into (E.25) and absorb any term that does
not depend on W into the additive constant:

ln q∗ (W) =
M
∑

i=1

Ni
∑

j=1

EY [lnP (φij|yi,W)] + EY [lnP (W|ΠW)] + const (E.38)

=
N

2
ln |W| − 1

2

M
∑

i=1

Ni
∑

j=1

EY

[

(φij − yi)
TW(φij − yi)

]

− d+ 1

2
ln |W|+ const

(E.39)

=
N

2
ln |W| − d+ 1

2
ln |W| − 1

2
tr

(

W
M
∑

i=1

Ni
∑

j=1

EY

[

(φij − yi) (φij − yi)
T
]

)

+ const

(E.40)

= ln |W| − d+ 1

2
ln |W| − 1

2
tr (WSW) + const (E.41)
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where

S =
M
∑

i=1

Ni
∑

j=1

φijφ
T
ij (E.42)

SW =
M
∑

i=1

Ni
∑

j=1

EY

[

(φij − yi) (φij − yi)
T
]

(E.43)

=S+
M
∑

i=1

(

NiEY

[

yiy
T
i

]

− EY [yi]F
T
i − FiEY [yi]

T
)

. (E.44)

If we compare (E.41) with (A.20), we see that q∗ (W) is Wishart distributed:

q∗ (W) =W (W|ΨW, N) if N > d (E.45)

where

ΨW = S−1
W . (E.46)

Finally, we need to evaluate the expectations EM [B], EM [Bµ], EM [W], EY [yi] and
EY

[

yiy
T
i

]

. Using the properties of the Gaussian and Wishart distributions [Bishop, 2006]
we obtain:

EM [B] =MΨy (E.47)

EM [Bµ] =

∫

B

∫

µ

BµN
(

µ|µ, (MB)−1)W (B|Ψy,M) dµ dB (E.48)

=

∫

B

B

∫

µ

µN
(

µ|µ, (MB)−1) dµW (B|Ψy,M) dB (E.49)

=

∫

B

BW (B|Ψy,M) dBµ =MΨyµ (E.50)

EM [W] = NΨW (E.51)

EY [yi] =L−1
i γi (E.52)

EY

[

yiy
T
i

]

=L−1
i + EY [yi] EY [yi]

T = L−1
i + L−1

i γiγ
T
i L

−1
i . (E.53)

E.3.3 Variational lower bound

In this section, we derive the equation to compute the variational lower bound. The lower
bound is an approximation of the complete data likelihood and can be use to evaluate the
convergence of the VB algorithm.
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L =

∫

Y

∫

W

∫

B

∫

µ

q (µ,B,W,Y) ln

(

P (Φ, µ,B,W,Y|θ,Π)
q (µ,B,W,Y)

)

dµ dB dW dY (E.54)

=EM,Y [lnP (Φ, µ,B,W,Y|θ,Π)]− EM,Y [ln q (µ,B,W,Y)] (E.55)

=EW,Y [lnP (Φ|Y,W, θ)] + EMy,Y [lnP (Y|My)]

+ EMy

[

lnP
(

My|ΠMy

)]

+ EW [lnP (W|ΠW)]

− EMy
[ln q (µ,B)]− EW [ln q (W)]− EY [ln q (Y)] . (E.56)

We evaluate EW,Y [lnP (Φ|Y,W, θ)]:

EW,Y [lnP (Φ|Y,W, θ)] =
M
∑

i=1

Ni
∑

j=1

EW,Y [lnP (φij|yi,W)] (E.57)

=
N

2
EW [ln |W|]− Nd

2
ln(2π)

− 1

2

M
∑

i=1

Ni
∑

j=1

EW,Y

[

(φij − yi)
TW(φij − yi)

]

(E.58)

=
N

2
lnW̃ − Nd

2
ln(2π)

− 1

2
tr

(

EW [W]
M
∑

i=1

Ni
∑

j=1

EY

[

(φij − yi) (φij − yi)
T
]

)

(E.59)

=
N

2
lnW̃ − Nd

2
ln(2π)− 1

2
tr (EW [W]SW) (E.60)

where we used the properties of the Wishart distribution [Bishop, 2006] to define:

lnW̃ ≡ EW [ln |W|] =
d
∑

i=1

ψ

(

N + 1− i
2

)

+ d ln 2 + ln |ΨW| . (E.61)

If we compute the lower bound just after updating q∗ (W), EW [W] = NS−1
W and we can

simplify:

EW,Y [lnP (Φ|Y,W, θ)] =
N

2
lnW̃ − Nd

2
(ln(2π) + 1) . (E.62)

Note that, if we evaluate the lower bound between the update of q (Y) and q (W), we should
use (E.60).
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Now, we evaluate EMy,Y [lnP (Y|My)]:

EMy,Y [lnP (Y|My)] =
M
∑

i=1

EMy,Y [lnP (yi|µ,B)] (E.63)

=
M

2
EB [ln |B|]− Md

2
ln(2π)− 1

2

M
∑

i=1

EMy,Y

[

(yi − µ)TB(yi − µ)
]

(E.64)

=
M

2
EB [ln |B|]− Md

2
ln(2π)

− 1

2

M
∑

i=1

(

EMy,Y

[

yT
i Byi

]

−2EMy,Y

[

yT
i Bµ

]

+ EMy

[

µTBµ
])

(E.65)

=
M

2
EB [ln |B|]− Md

2
ln(2π) +MyTEMy

[Bµ]

− 1

2
tr

(

EMy
[B]

M
∑

i=1

EY

[

yiy
T
i

]

+MEMy

[

BµµT
]

)

. (E.66)

To evaluate (E.66) we need to calculate some new expectations. Using the properties of
the Gaussian and Wishart distributions [Bishop, 2006] we have

ln B̃ ≡ EB [ln |B|] =
d
∑

i=1

ψ

(

M + 1− i
2

)

+ d ln 2 + ln |Ψy| (E.67)

and EMy

[

BµµT
]

is

EMy

[

BµµT
]

=

∫

B

∫

µ

BµµTN
(

µ|µ, (MB)−1)W (B|Ψy,M) dµ dB (E.68)

=

∫

B

B

∫

µ

µµTN
(

µ|µ, (MB)−1) dµW (B|Ψy,M) dB (E.69)

=

∫

B

B
(

(MB)−1 + µµT
)

W (B|Ψy,M) dB (E.70)

=M−1I+

∫

B

BW (B|Ψy,M) dBµµT (E.71)

=M−1I+MΨyµµ
T . (E.72)

For the particular case where we evaluate the lower bound after updating q∗ (µ,B) we
can go on simplifying. We plug-in (E.30), (E.47), (E.50),(E.67) and (E.72) into (E.66) and
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use that µ = y and Ψy = S−1
y :

EMy,Y [lnP (Y|My)] =
M

2
ln B̃− Md

2
ln(2π) +MyTMS−1

y y

− 1

2
tr

(

MS−1
y

M
∑

i=1

EY

[

yiy
T
i

]

+M
(

M−1I+MS−1
y yyT

)

)

(E.73)

=
M

2
ln B̃− Md

2
ln(2π)

− 1

2
tr

(

I+MS−1
y

(

M
∑

i=1

EY

[

yiy
T
i

]

−MyyT

))

(E.74)

=
M

2
ln B̃− Md

2
ln(2π)− 1

2
tr
(

I+MS−1
y Sy

)

(E.75)

=
M

2
ln B̃− Md

2
ln(2π)− 1

2
tr ((M + 1)I) (E.76)

=
M

2
ln B̃− Md

2
ln(2π)− (M + 1)d

2
. (E.77)

Note that if we evaluate the lower bound after updating q∗ (Y) and before q∗ (µ,B), µ 6= y
and Ψy 6= S−1

y and we should use (E.66).

Now, we evaluate EMy

[

lnP
(

My|ΠMy

)]

:

EMy

[

lnP
(

My|ΠMy

)]

= lnα− d

2
ln(2π)− d

2
ln B̃ . (E.78)

Now, we evaluate EW [lnP (W|ΠW)]:

EMy
[lnP (W|ΠW)] = lnα− d+ 1

2
lnW̃ . (E.79)

Now, we evaluate EMy
[ln q (µ,B)]:

EMy
[ln q (µ,B)] =EMy

[

lnN
(

µ|µ, (MB)−1)]+ EB [lnW (B|Ψy,M)] (E.80)

=
d

2
ln

(

M

2π

)

+
1

2
ln B̃− M

2
EMy

[

(µ− µ)TB(µ− µ)
]

− H [q (B)] (E.81)

where H [q (B)] is the entropy of the Wishart distribution [Bishop, 2006]

H [q (B)] =H [W (B|Ψy,M)] (E.82)

=− lnB (Ψy,M)− M − d− 1

2
ln B̃+

Md

2
(E.83)

B(W, N) =
1

2Nd/2ZNd

|W|−N/2 (E.84)

and

EMy

[

(µ− µ)TB(µ− µ)
]

=EMy

[

µTBµ
]

− 2µTEMy
[Bµ] + µTEB [B]µ (E.85)

=tr
(

EMy

[

BµµT
])

− µTEB [B]µ (E.86)

=tr
(

M−1I+MS−1
y µµT

)

− µTMS−1
y µ (E.87)

=dM−1 . (E.88)
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By plugging (E.88) into (E.81):

EMy
[ln q (µ,B)] =

d

2
ln

(

M

2π

)

+
1

2
ln B̃− d

2
− H [q (B)] . (E.89)

Now, we evaluate EW [ln q (W)]:

EMy
[ln q (W)] =EW [lnW (W|ΨW, N)] = −H [q (W)] (E.90)

where H [q (W)] is the entropy of the Wishart distribution [Bishop, 2006]

H [q (W)] =H [W (W|ΨW, N)] (E.91)

=− lnB (ΨW, N)− N − d− 1

2
lnW̃ +

Nd

2
. (E.92)

Finally, we evaluate EY [ln q (Y)]:

EY [ln q (Y)] =
M
∑

i=1

EY

[

lnN
(

yi|L−1
i γi,L

−1
i

)]

(E.93)

=− Md

2
ln(2π) +

1

2

M
∑

i=1

ln |Li| −
1

2

M
∑

i=1

EY

[

(yi − L−1
i γi)

TLi(yi − L−1
i γi)

]

(E.94)

=− Md

2
ln(2π) +

1

2

M
∑

i=1

ln |Li|

− 1

2

M
∑

i=1

tr
(

LiEY

[

(

yi − L−1
i γi

) (

yi − L−1
i γi

)T
])

(E.95)

=− Md

2
ln(2π) +

1

2

M
∑

i=1

ln |Li| −
1

2

M
∑

i=1

tr
(

LiL
−1
i

)

(E.96)

=− Md

2
(ln(2π) + 1) +

1

2

M
∑

i=1

ln |Li| . (E.97)

E.4 Variational Inference with Informative Conjugate

Priors

E.4.1 Model priors

In this section, we put an informative prior over the model parameters. We chose Gaussian
Wishart priors that are conjugate priors for the Gaussian distribution:

P
(

My|ΠMy

)

=N
(

µ|µ0, (βy0B)−1)W (B|Ψy0 , νy0) (E.98)

P (W|ΠW) =W (W|ΨW0 , νW0) . (E.99)
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E.4.2 Variational distributions

We write again the joint distribution of all the random variables:

P (Φ,M,Y|θ,Π) = P (Φ|Y,W, θ)P (Y|My)P
(

My|ΠMy

)

P (W|ΠW) . (E.100)

We assume a partition of the posterior into two factors:

q (M,Y) = q (M) q (Y) . (E.101)

The optimum for the factor q (Y) is the same as for the non-informative case:

q∗ (Y) =
M
∏

i=1

q∗ (yi) (E.102)

q∗ (yi) =N
(

yi|L−1
i γi,L

−1
i

)

(E.103)

Li =EMy
[B] +NiEW [W] (E.104)

γi =EMy
[Bµ] + EW [W]Fi . (E.105)

The optimum for the factor q (M) is given by

ln q∗ (M) = EY [lnP (Φ,M,Y|θ,Π)] + const . (E.106)

By plugging (E.100), we obtain again that the model factor can be decomposed into two
independent factors:

ln q∗ (M) =
[

EY [lnP (Y|My)] + EY

[

lnP
(

My|ΠMy

)]]

+ [EY [lnP (Φ|Y,W, θ)] + EY [lnP (W|ΠW)]] + const (E.107)

= ln q∗ (My) + ln q∗ (W) . (E.108)

First, we compute q∗ (µ,B). We substitute (E.2), and (E.98) into (E.107) and absorb
any term that does not depend on µ or B into the additive constant:

ln q∗ (My) =
M
∑

i=1

EY [lnP (yi|My)] + EY

[

lnP
(

µ,B|ΠMy

)]

+ const (E.109)

=
M

2
ln |B| − 1

2

M
∑

i=1

EY

[

(yi − µ)TB(yi − µ)
]

+
1

2
ln |B| − βy0

2
(µ− µ0)

TB(µ− µ0)

+
νy0 − d− 1

2
ln |B| − 1

2
tr
(

BΨ−1
y0

)

+ const . (E.110)
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Now, we define:

y =
1

M

M
∑

i=1

EY [yi] (E.111)

Sy =
M
∑

i=1

EY

[

(yi − y) (yi − y)T
]

=
M
∑

i=1

EY

[

yiy
T
i

]

−MyyT (E.112)

βy =βy0 +M (E.113)

νy =νy0 +M (E.114)

µ =
1

βy
(βy0µ0 +My) (E.115)

Ψ−1
y =Ψ−1

y0
+ Sy +

βy0M

βy
(y − µ0) (y − µ0)

T . (E.116)

Now, we can write (E.110) as

ln q∗ (My) =
M

2
ln |B| − 1

2
tr

(

B

(

M
∑

i=1

EY

[

(yi − y) (yi − y)T
]

+M (µ− y) (µ− y)T
))

+
1

2
ln |B| − βy0

2
(µ− µ0)

TB(µ− µ0)

+
νy0 − d− 1

2
ln |B| − 1

2
tr
(

BΨ−1
y0

)

+ const (E.117)

=− 1

2
tr
(

B
(

M (µ− y) (µ− y)T + βy0 (µ− µ0) (µ− µ0)
T
))

+
1

2
ln |B|+ νy0 +M − d− 1

2
ln |B| − 1

2
tr
(

B
(

Ψ−1
y0

+ Sy

))

+ const (E.118)

=− 1

2
tr
(

B
(

M
(

µµT − µyT − yµT + yyT
)

+ βy0

(

µµT − µµT
0 − µ0µ

T + µ0µ
T
0

)))

+
1

2
ln |B|+ νy − d− 1

2
ln |B| − 1

2
tr
(

B
(

Ψ−1
y0

+ Sy

))

+ const (E.119)

=− 1

2
tr
(

B
(

(M + βy0)
(

µµT

− 1

M + βy0

µ (My + βy0µ0)
T − 1

M + βy0

(My + βy0µ0)µ
T

+
1

M + βy0

(

MyyT + βy0µ0µ
T
0

)

)))

+
1

2
ln |B|+ νy − d− 1

2
ln |B| − 1

2
tr
(

B
(

Ψ−1
y0

+ Sy

))

+ const (E.120)

=
1

2
ln |B| − βy

2
(µ− µ)TB(µ− µ)

− 1

2
tr

(

B

(

MyyT + βy0µ0µ
T
0 −

1

M + βy0

(My + βy0µ0) (My + βy0µ0)
T

))

+
νy − d− 1

2
ln |B| − 1

2
tr
(

B
(

Ψ−1
y0

+ Sy

))

+ const (E.121)
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=
1

2
ln |B| − βy

2
(µ− µ)TB(µ− µ) + νy − d− 1

2
ln |B|

− 1

2
tr

(

B

(

Ψ−1
y0

+ Sy +
βy0M

M + βy0

(y − µ0) (y − µ0)
T

))

+ const (E.122)

=

[

1

2
ln |B| − βy

2
(µ− µ)TB(µ− µ)

]

+

[

νy − d− 1

2
ln |B| − 1

2
tr
(

BΨ−1
y

)

]

+ const (E.123)

obtaining that q∗ (My) is Gaussian-Wishart distributed:

q∗ (My) = N
(

µ|µ, (βyB)−1)W (B|Ψy, νy) if νy > d . (E.124)

For q∗ (W), we substitute (E.3), and (E.99) into (E.107) and absorb any term that does
not depend on W into the additive constant:

ln q∗ (W) =
M
∑

i=1

Ni
∑

j=1

EY [lnP (φij|yi,W)] + EY [lnP (W|ΠW)] + const (E.125)

=
N

2
ln |W| − 1

2

M
∑

i=1

Ni
∑

j=1

EY

[

(φij − yi)
TW(φij − yi)

]

+
νW0 − d− 1

2
ln |W| − 1

2
tr
(

WΨ−1
W0

)

+ const . (E.126)

We define

SW =
M
∑

i=1

Ni
∑

j=1

EY

[

(φij − yi) (φij − yi)
T
]

(E.127)

νW =νW0 +N (E.128)

Ψ−1
W =Ψ−1

W0
+ SW (E.129)

and write (E.126) as

ln q∗ (W) =
νW − d− 1

2
ln |W| − 1

2
tr
(

WΨ−1
W

)

+ const . (E.130)

Thus, q∗ (W) is Wishart distributed:

q∗ (W) =W (W|ΨW, νW) if νW > d . (E.131)

Finally, we need to evaluate the expectations EMy
[B], EMy

[Bµ], EW [W], EY [yi] and
EY

[

yiy
T
i

]

by applying the properties of the Gaussian and Wishart distributions [Bishop,
2006]:

EMy
[B] =νyΨy (E.132)

EMy
[Bµ] =νyΨyµ (E.133)

EMy
[W] =νWΨW (E.134)

EY [yi] =L−1
i γi (E.135)

EY

[

yiy
T
i

]

=L−1
i + EY [yi] EY [yi]

T . (E.136)
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E.4.3 Variational lower bound

In this section, we evaluate the lower bound used to check the convergence of our algorithm.

L =

∫

Y

∫

W

∫

B

∫

µ

q (µ,B,W,Y) ln

(

P (Φ, µ,B,W,Y|θ,Π)
q (µ,B,W,Y)

)

dµ dB dW dY (E.137)

=EM,Y [lnP (Φ, µ,B,W,Y|θ,Π)]− EM,Y [ln q (µ,B,W,Y)] (E.138)

=EW,Y [lnP (Φ|Y,W, θ)] + EMy,Y [lnP (Y|My)]

+ EMy

[

lnP
(

My|ΠMy

)]

+ EW [lnP (W|ΠW)]

− EMy
[ln q (µ,B)]− EW [ln q (W)]− EY [ln q (Y)] . (E.139)

We evaluate EY [lnP (Φ|Y,W, θ)]:

EY [lnP (Φ|Y,W, θ)] =
N

2
EW [ln |W|]− Nd

2
ln(2π)− 1

2
tr (EW [W]SW) (E.140)

=
N

2
lnW̃ − Nd

2
ln(2π)− νW

2
tr (ΨWSW) (E.141)

where

lnW̃ ≡ EW [ln |W|] =
d
∑

i=1

ψ

(

νW + 1− i
2

)

+ d ln 2 + ln |ΨW| . (E.142)

Now, we evaluate EMy,Y [lnP (Y|My)]:

EMy,Y [lnP (Y|My)] =
M

2
EB [ln |B|]− Md

2
ln(2π) +MyTEMy

[Bµ]

− 1

2
tr

(

EMy
[B]

M
∑

i=1

EY

[

yiy
T
i

]

+MEMy

[

BµµT
]

)

. (E.143)

To evaluate (E.143) we need to calculate some new expectations. Using the properties
of the Gaussian and Wishart distributions [Bishop, 2006] we have

ln B̃ ≡ EB [ln |B|] =
d
∑

i=1

ψ

(

νy + 1− i
2

)

+ d ln 2 + ln |Ψy| (E.144)

and

EMy

[

BµµT
]

=

∫

B

∫

µ

BµµTN
(

µ|µ, (βyB)−1)W (B|Ψy, νy) dµ dB (E.145)

=

∫

B

B

∫

µ

µµTN
(

µ|µ, (βyB)−1) dµW (B|Ψy, νy) dB (E.146)

=

∫

B

B
(

(βyB)−1 + µµT
)

W (B|Ψy, νy) dB (E.147)

=β−1
y I+

∫

B

BW (B|Ψy, νy) dBµµT (E.148)

=β−1
y I+ νyΨyµµ

T . (E.149)
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Now, we can plug (E.112), (E.132), (E.133), (E.144) and (E.149) into (E.143)

EMy,Y [lnP (Y|My)] =
M

2
ln B̃− Md

2
ln(2π) +MyTνyΨyµ

− 1

2
tr

(

νyΨy

M
∑
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[

yiy
T
i

]

+M
(

β−1
y I+ νyΨyµµ

T
)

)

(E.150)

=
M

2
ln B̃− Md

2
ln(2π) +MyTνyΨyµ

− 1

2
tr
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yiy
T
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(E.151)

=
M

2
ln B̃− Md

2
ln(2π)− Md

2βy

− Mνy
2

(µ− y)TΨy(µ− y)− νy
2
tr (ΨySy) . (E.152)

Now, we evaluate EMy

[

lnP
(

My|ΠMy

)]

:

EMy

[

lnP
(

My|ΠMy

)]

=EMy

[

lnN
(

µ|µ0, (βy0B)−1)]+ EB [lnW (B|Ψy0 , νy0)] (E.153)

=
d

2
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(

βy0
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+
1

2
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2
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2
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2
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(E.154)

where

EMy

[

(µ− µ0)
TB(µ− µ0)

]

=EMy

[

µTBµ
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− 2µT
0EMy

[Bµ] + µT
0EB [B]µ0 (E.155)

=tr
(

EMy

[

BµµT
])

− 2µT
0 νyΨyµ+ µT

0 νyΨyµ0 (E.156)

=tr
(

β−1
y I+ νyΨyµµ
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− 2µT
0 νyΨyµ+ µT

0 νyΨyµ0 (E.157)

=
d

βy
+ νy(µ− µ0)

TΨy(µ− µ0) . (E.158)

We plug (E.158) into (E.154):

EMy

[
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)]

=
d
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. (E.159)

Now, we evaluate EW [lnP (W|ΠW)]

EW [lnP (W|ΠW)] =EW [lnW (W|ΨW0 , νW0)] (E.160)

= lnB (ΨW0 , νW0) +
νW0 − d− 1

2
lnW̃ − νW

2
tr
(

Ψ−1
W0

ΨW

)

. (E.161)

Now, we evaluate EMy
[ln q (µ,B)]

EMy
[ln q (µ,B)] =EMy

[

lnN
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µ|µ, (βyB)−1)]+ EB [lnW (B|Ψy, νy)] (E.162)
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2
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where H [q (B)] is the entropy of the Wishart distribution [Bishop, 2006]

H [q (B)] =H [W (B|Ψy, νy)] (E.164)

=− lnB (Ψy, νy)−
νy − d− 1

2
ln B̃+

νyd

2
(E.165)

B(W, N) =
1

2Nd/2ZNd

|W|−N/2 (E.166)

and
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=dβ−1
y . (E.170)

We plug (E.170) into (E.163):
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2
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2
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Now, we evaluate EW [ln q (W)]

EW [ln q (W)] =EW [lnW (W|ΨW, νW)] = −H [q (W)] (E.172)

where H [q (W)] is the entropy of the Wishart distribution [Bishop, 2006].

H [q (W)] =H [W (W|ΨW, νW)] (E.173)
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2
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2
. (E.174)

Finally, we evaluate EY [ln q (Y)]:

EY [ln q (Y)] =
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D. T., and Ortega-Garćıa, J. (2007). Emulating DNA: Rigorous Quantification

http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.60.5529&amp;rep=rep1&amp;type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.60.5529&amp;rep=rep1&amp;type=pdf
http://linkinghub.elsevier.com/retrieve/pii/S0885230805000537
http://linkinghub.elsevier.com/retrieve/pii/S0885230805000537
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=6288859
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=6288859
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=279278
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=279278
http://zeus.eed.usv.ro/SistemeDistribuite/2008/17RaduAnton.pdf
http://zeus.eed.usv.ro/SistemeDistribuite/2008/17RaduAnton.pdf
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=317924
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=317924
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=4960519
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.310.2259
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.310.2259


BIBLIOGRAPHY 321

of Evidential Weight in Transparent and Testable Forensic Speaker Recognition.
IEEE Transactions on Audio, Speech and Language Processing, 15(7):2104–2115.
Available from: http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?

arnumber=4291601.

[Grother and Tabassi, 2007] Grother, P. and Tabassi, E. (2007). Performance of biometric
quality measures. IEEE transactions on pattern analysis and machine intelligence,
29(4):531–43. Available from: http://www.ncbi.nlm.nih.gov/pubmed/17299212.

[Gupta et al., 2005] Gupta, H., Hautamaki, V., Kinnunen, T., and Franti, P. (2005). Field
Evaluation of Text-Dependent Speaker Recognition in an Access Control Application. In
Proceedings of the 10th International Conference Speech and Computer SPECOM 2005,
Patras, Greece. University of Patras. Available from: http://citeseerx.ist.psu.

edu/viewdoc/download?doi=10.1.1.144.4678&amp;rep=rep1&amp;type=pdf.

[Harriero et al., 2009] Harriero, A., Ramos, D., Gonzalez-Rodriguez, J., and Fierrez-
Aguilar, J. (2009). Analysis of the Utility of Classical and Novel Speech Quality Measures
for Speaker Verification. In Tistarelli, M. and Nixon, M., editors, Proceedings of the Third
International Conference on Advances in Biometrics, ICB 2009, volume 5558 of Lecture
Notes in Computer Science, pages 434–442. Springer-Verlag Berlin, Heidelberg, Alghero,
Italy. Available from: http://dx.doi.org/10.1007/978-3-642-01793-3_45.

[Hautamaki et al., 2011] Hautamaki, V., Lee, K., Kinnunen, T., Ma, B., and Li, H. (2011).
Regularized logistic regression fusion for speaker verification. In Proceedings of the 12th
Annual Conference of the International Speech Communication Association, Interspeech
2011, pages 2745–2748, Florence, Italy. ISCA. Available from: http://citeseerx.

ist.psu.edu/viewdoc/summary?doi=10.1.1.221.2350.

[Hautamaki et al., 2012] Hautamaki, V., Lee, K., and Larcher, A. (2012). Variational
Bayes logistic regression as regularized fusion for NIST SRE 2010. In Proceedings
of Odyssey 2012 - The Speaker and Language Recognition Workshop, Singapore.
ISCA. Available from: http://www.cs.joensuu.fi/pages/tkinnu/webpage/pdf/

regularized-fusion-Odyssey.pdf.

[Heck and Weintraub, 1997] Heck, L. P. and Weintraub, M. (1997). Handset-Dependent
Background Models for Robust Text-Independent Speaker Recognition. In Proceedings of
the IEEE International Conference on Acoustics, Speech and Signal Processing, ICASSP
1997, volume 2, pages 1071–1074, Munich, Bavaria, Germany. IEEE. Available from:
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=596126.

[Hermansky, 1990] Hermansky, H. (1990). Perceptual linear predictive (PLP) analysis of
speech. Journal of the Acoustical Society of America, 87(4):1738–1752. Available from:
http://lectures.idiap.ch/winter2005-2006/ic-48/courseslide/PLP.pdf.

[Hermansky and Morgan, 1994] Hermansky, H. and Morgan, N. (1994). RASTA
processing of speech. IEEE Transactions On Speech And Audio Processing, 2(4):578–
589. Available from: http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?
arnumber=326616.

http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=4291601
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=4291601
http://www.ncbi.nlm.nih.gov/pubmed/17299212
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.144.4678&amp;rep=rep1&amp;type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.144.4678&amp;rep=rep1&amp;type=pdf
http://dx.doi.org/10.1007/978-3-642-01793-3_45
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.221.2350
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.221.2350
http://www.cs.joensuu.fi/pages/tkinnu/webpage/pdf/regularized-fusion-Odyssey.pdf
http://www.cs.joensuu.fi/pages/tkinnu/webpage/pdf/regularized-fusion-Odyssey.pdf
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=596126
http://lectures.idiap.ch/winter2005-2006/ic-48/courseslide/PLP.pdf
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=326616
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=326616


322 BIBLIOGRAPHY

[Higgins and Wohlford, 1986] Higgins, A. and Wohlford, R. (1986). A new method of text-
independent speaker recognition. In Proceedings of the IEEE International Conference on
Acoustics, Speech and Signal Processing, ICASSP 1986, volume 11, pages 869–872, Tokyo,
Japan. IEEE. Available from: http://ieeexplore.ieee.org/xpls/abs_all.jsp?

arnumber=1168975.

[Hirsch, 2005] Hirsch, H.-g. (2005). FaNT - Filtering and Noise Adding Tool. Available
from: http://dnt.kr.hsnr.de/download.html.

[Hirsch and Pearce, 2000] Hirsch, H.-g. and Pearce, D. (2000). The Aurora Experimental
Framework for the Performance Evaluation of Speech Recognition Systems under
Noisy Conditions. In Proceedings of the 6th International Conference on Spoken
Language Processing, ICSLP - Interspeech 2000, pages 16–19, Beijing, China. ISCA.
Available from: http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.

1.121.1762&amp;rep=rep1&amp;type=pdf.

[Hirson and Duckworth, 1993] Hirson, A. and Duckworth, M. (1993). Glottal fry and voice
disguise: a case study in forensic phonetics. Journal of Biomedical Engineering, 15(3):193–
200. Available from: http://dx.doi.org/10.1016/0141-5425(93)90115-F.

[Hollien and Majewski, 1977] Hollien, H. and Majewski, W. (1977). Speaker identification
by long-term spectra under normal and distorted speech conditions. The Journal of the
Acoustical Society of America, 62(4):975–980. Available from: http://link.aip.org/
link/JASMAN/v62/i4/p975/s1&Agg=doi.

[Hotelling, 1953] Hotelling, H. (1953). New Light on the Correlation Coefficient and its
Transforms. Journal of the Royal Statistical Society. Series B (Methodological), 15(2):193–
232. Available from: http://www.jstor.org/stable/2983768.

[Huang et al., 2001] Huang, X., Acero, A., and Hon, H.-W. (2001). Spoken Language
Processing: A Guide to Theory, Algorithm and System Development. Prentice Hall PTR.
Available from: http://www.worldcat.org/isbn/0130226165.

[ITU-T, 2004] ITU-T (2004). Recommendation P.563: Single ended method for objective
speech quality assessment in narrow-band telephony applications. Technical report,
International Telecommunications Union. Available from: http://www.itu.int/rec/
T-REC-P.563/en.

[Kain and Macon, 1998] Kain, A. and Macon, M. W. (1998). Spectral Voice Conversion
For Text-To-Speech Synthesis. In Proceedings of the IEEE International Conference on
Acoustics, Speech and Signal Processing, ICASSP 1998, volume 1, pages 285–288, Seattle,
Washington, USA. IEEE. Available from: http://ieeexplore.ieee.org/xpls/abs_
all.jsp?arnumber=674423.

[Kajarekar et al., 2006] Kajarekar, S. S., Bratt, H., Shriberg, E., and de Leon, R. (2006). A
Study of Intentional Voice Modifications for Evading Automatic Speaker Recognition.
In Proceedings of the IEEE Odyssey 2006 - The Speaker and Language Recognition
Workshop, pages 1–6, San Juan, Puerto Rico. IEEE. Available from: http://

ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=4013540.

http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=1168975
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=1168975
http://dnt.kr.hsnr.de/download.html
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.121.1762&amp;rep=rep1&amp;type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.121.1762&amp;rep=rep1&amp;type=pdf
http://dx.doi.org/10.1016/0141-5425(93)90115-F
http://link.aip.org/link/JASMAN/v62/i4/p975/s1&Agg=doi
http://link.aip.org/link/JASMAN/v62/i4/p975/s1&Agg=doi
http://www.jstor.org/stable/2983768
http://www.worldcat.org/isbn/0130226165
http://www.itu.int/rec/T-REC-P.563/en
http://www.itu.int/rec/T-REC-P.563/en
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=674423
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=674423
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=4013540
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=4013540


BIBLIOGRAPHY 323

[Kalinli et al., 2009] Kalinli, O., Seltzer, M. L., and Acero, A. (2009). Noise adaptive
training using a vector taylor series approach for noise robust automatic speech
recognition. In Proceedings of the IEEE International Conference on Acoustics,
Speech and Signal Processing, ICASSP 2009, pages 3825–3828, Taipei, Taiwan.
IEEE. Available from: http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.

htm?arnumber=4960461.

[Karam et al., 2009] Karam, W., Bredin, H., Greige, H., Chollet, G., and Mokbel, C.
(2009). Talking-Face Identity Verification, Audiovisual Forgery, and Robustness Issues.
EURASIP Journal on Advances in Signal Processing, 2009:1–15. Available from:
http://asp.eurasipjournals.com/content/2009/1/746481.

[Kelly and Harte, 2011] Kelly, F. and Harte, N. (2011). Effects of Long-Term Ageing on
Speaker Verification. In Biometrics and ID Management, Proceedings of the COST 2101
European Workshop, BioID 2011, volume 6583 of Lecture Notes in Computer Science,
pages 113–124, Brandenburg, Germany. Springer Berlin Heidelberg. Available from:
http://link.springer.com/chapter/10.1007/978-3-642-19530-3_11.

[Kenny, 2005] Kenny, P. (2005). Joint factor analysis of speaker and session variability
: Theory and algorithms - Technical report CRIM-06/08-13. Technical report, CRIM,
Montreal. Available from: http://www.crim.ca/perso/patrick.kenny/FAtheory.
pdf.

[Kenny, 2010] Kenny, P. (2010). Bayesian Speaker Verification with Heavy-Tailed Priors.
In Proceedings of Odyssey 2010 - The Speaker and Language Recognition Workshop,
Brno, Czech Republic. ISCA. Available from: http://www.crim.ca/perso/patrick.
kenny/kenny_Odyssey2010.pdf.

[Kenny et al., 2007a] Kenny, P., Boulianne, G., Ouellet, P., and Dumouchel, P. (2007a).
Joint Factor Analysis versus Eigenchannels in Speaker Recognition. IEEE Transactions
on Audio, Speech and Language Processing, 15(4):1435–1447. Available from: http://
ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=4156202.

[Kenny et al., 2007b] Kenny, P., Boulianne, G., Ouellet, P., and Dumouchel, P. (2007b).
Speaker and session variability in GMM-based speaker verification. IEEE Transactions
on Audio, Speech and Language Processing, 15(4):1448–1460. Available from: http://
ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=4156203.

[Kenny et al., 2008] Kenny, P., Ouellet, P., Dehak, N., Gupta, V., and Dumouchel, P.
(2008). A Study of Interspeaker Variability in Speaker Verification. IEEE Transactions
on Audio, Speech and Language Processing, 16(5):980–988. Available from: http://

ieeexplore.ieee.org/xpl/freeabs_all.jsp?arnumber=4531370.

[Kim, 2014] Kim, U. (2014). Ultra Voice Changer. Available from: http://play.google.
com.

[Kinnunen, 2006] Kinnunen, T. (2006). Joint acoustic-modulation frequency for
speaker recognition. In Proceedings of the IEEE International Conference on
Acoustics, Speech and Signal Processing, ICASSP 2006, pages 665–668, Toulouse,
France. IEEE. Available from: http://ieeexplore.ieee.org/xpls/abs_all.jsp?
arnumber=1660108&tag=1.

http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=4960461
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=4960461
http://asp.eurasipjournals.com/content/2009/1/746481
http://link.springer.com/chapter/10.1007/978-3-642-19530-3_11
http://www.crim.ca/perso/patrick.kenny/FAtheory.pdf
http://www.crim.ca/perso/patrick.kenny/FAtheory.pdf
http://www.crim.ca/perso/patrick.kenny/kenny_Odyssey2010.pdf
http://www.crim.ca/perso/patrick.kenny/kenny_Odyssey2010.pdf
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=4156202
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=4156202
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=4156203
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=4156203
http://ieeexplore.ieee.org/xpl/freeabs_all.jsp?arnumber=4531370
http://ieeexplore.ieee.org/xpl/freeabs_all.jsp?arnumber=4531370
http://play.google.com
http://play.google.com
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=1660108&tag=1
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=1660108&tag=1


324 BIBLIOGRAPHY

[Kinnunen and Alku, 2009] Kinnunen, T. and Alku, P. (2009). On separating glottal source
and vocal tract information in telephony speaker verification. In Proceedings of the IEEE
International Conference on Acoustics, Speech and Signal Processing, ICASSP 2009,
pages 4545–4548, Taipei, Taiwan. IEEE. Available from: http://ieeexplore.ieee.

org/xpls/abs_all.jsp?arnumber=4960641.

[Kinnunen et al., 2008] Kinnunen, T., Lee, K. A., and Li, H. (2008). Dimension reduction
of the modulation spectrogram for speaker verification. In Proceedings of Odyssey 2008 -
The Speaker and Language Recognition Workshop, Stellenbosch, South Africa. ISCA.

[Kinnunen and Li, 2010] Kinnunen, T. and Li, H. (2010). An overview of text-
independent speaker recognition: From features to supervectors. Speech Communication,
52(1):12–40. Available from: http://linkinghub.elsevier.com/retrieve/pii/

S0167639309001289.

[Kinnunen et al., 2006] Kinnunen, T., Wei, C., Koh, E., Wang, L., Li, H., and Chng, E. S.
(2006). Temporal discrete cosine transform: Towards longer term temporal features for
speaker verification. In Proceedings of the 5th International Symposium on Chinese Spoken
Language Processing, ISCSLP 2006, pages 547–558, Singapore. Available from: http://
citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.144.4023.

[Kinnunen et al., 2012] Kinnunen, T., Wu, Z.-z., Lee, K. A., Sedlak, F., Chng, E. S., and
Li, H. (2012). Vulnerability of Speaker Verification Systems Against Voice Conversion
Spoofing Attacks: the Case of Telephone Speech. In Proceedings of the IEEE International
Conference on Acoustics, Speech and Signal Processing, ICASSP 2012, pages 4401–
4404, Kyoto, Japan. IEEE. Available from: http://ieeexplore.ieee.org/xpl/

articleDetails.jsp?arnumber=6288895.

[Kockmann et al., 2011] Kockmann, M., Ferrer, L., Burget, L., Shriberg, E., and Černocký,
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